Home
World Journal of Advanced Engineering Technology and Sciences
International, Peer reviewed, Referred, Open access | ISSN Approved Journal

Main navigation

  • Home
    • Journal Information
    • Abstracting and Indexing
    • Editorial Board Members
    • Reviewer Panel
    • Journal Policies
    • WJAETS CrossMark Policy
    • Publication Ethics
    • Instructions for Authors
    • Article processing fee
    • Track Manuscript Status
    • Get Publication Certificate
    • Issue in Progress
    • Current Issue
    • Past Issues
    • Become a Reviewer panel member
    • Join as Editorial Board Member
  • Contact us
  • Downloads

ISSN: 2582-8266 (Online)  || UGC Compliant Journal || Google Indexed || Impact Factor: 9.48 || Crossref DOI

Fast Publication within 2 days || Low Article Processing charges || Peer reviewed and Referred Journal

Research and review articles are invited for publication in Volume 18, Issue 2 (February 2026).... Submit articles

Convolution neural networks with hybrid feature extraction methods for classification of voice sound signals

Breadcrumb

  • Home
  • Convolution neural networks with hybrid feature extraction methods for classification of voice sound signals

Pratibha Rashmi * and Manu Pratap Singh

Department of Computer Science, Dr. Bhimrao Ambedkar University, Khandari Campus, Agra, India.

Review Article
 
World Journal of Advanced Engineering Technology and Sciences, 2023, 08(02), 110–125.
Article DOI: 10.30574/wjaets.2023.8.2.0083
DOI url: https://doi.org/10.30574/wjaets.2023.8.2.0083

Received on 07 February 2023; revised on 16 March 2023; accepted on 19 March 2023

The convolutional neural networks (CNNs) lead in the domain of Sound Recognition due to its flexibility and ability with different adjusting parameters. The recognition of spoken English Alphabets by different people with deep learning techniques attracted the research community. In this paper, we are exploring the use of convolutional neural network (CNN), a deep learner that can automatically learn features directly from the dataset while training for the classification of sounds signals of English alphabets. In this proposed work, we consider two CNN architectures. In first architecture, we propose MFCC based features for pretrained two convolutional layer CNN architecture. In the second architecture, we propose a hybrid feature extraction method to train a block-based CNN architecture. The proposed systems consist of two components namely hybrid feature extraction and CNN classifier. The five auditory features log-Mel spectrogram (LM), MFCC, chroma, spectral contrast and Tonnetz features are extracted and then LM & MFCC are combined as one feature set. LM, MFCC, and CST features are aggregated as another for training to the proposed two CNNs, respectively. The different sound samples of English alphabets are collected from different people of different age groups. The feature sets collected from the hybrid feature extraction methods are presented to both the proposed CNNs and the experimental results are collected. The experimental results indicate that the taxonomic accuracy of the proposed architectures can surpass the existing methods of CNNs with single feature extraction methods. The proposed second architecture performs more effectively over the proposed first CNN architecture.

Deep Neural Network; Convolutional Neural Networks; Sound Recognition; MFCC; Classification

https://wjaets.com/sites/default/files/fulltext_pdf/WJAETS-2023-0083.pdf

Get Your e Certificate of Publication using below link

Download Certificate

Preview Article PDF

Pratibha Rashmi and Manu Pratap Singh. Convolution neural networks with hybrid feature extraction methods for classification of voice sound signals. World Journal of Advanced Engineering Technology and Sciences, 2023, 08(02), 110–125. Article DOI: https://doi.org/10.30574/wjaets.2023.8.2.0083

Get Certificates

Get Publication Certificate

Download LoA

Check Corssref DOI details

Issue details

Issue Cover Page

Editorial Board

Table of content


Copyright © Author(s). All rights reserved. This article is published under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format, as long as appropriate credit is given to the original author(s) and source, a link to the license is provided, and any changes made are indicated.


Copyright © 2026 World Journal of Advanced Engineering Technology and Sciences

Developed & Designed by VS Infosolution