Home
World Journal of Advanced Engineering Technology and Sciences
International, Peer reviewed, Referred, Open access | ISSN Approved Journal

Main navigation

  • Home
    • Journal Information
    • Abstracting and Indexing
    • Editorial Board Members
    • Reviewer Panel
    • Journal Policies
    • WJAETS CrossMark Policy
    • Publication Ethics
    • Instructions for Authors
    • Article processing fee
    • Track Manuscript Status
    • Get Publication Certificate
    • Issue in Progress
    • Current Issue
    • Past Issues
    • Become a Reviewer panel member
    • Join as Editorial Board Member
  • Contact us
  • Downloads

ISSN: 2582-8266 (Online)  || UGC Compliant Journal || Google Indexed || Impact Factor: 9.48 || Crossref DOI

Fast Publication within 2 days || Low Article Processing charges || Peer reviewed and Referred Journal

Research and review articles are invited for publication in Volume 18, Issue 2 (February 2026).... Submit articles

Enhancing Email Security: A Hybrid Machine Learning Approach for Spam and Malware Detection

Breadcrumb

  • Home
  • Enhancing Email Security: A Hybrid Machine Learning Approach for Spam and Malware Detection

Walter Oluchukwu Ugwueze, Sylvester Okwudili Anigbogu, Emmanuel Chibuogu Asogwa *, Doris Chinedu Asogwa and Kenechukwu Sylvanus Anigbogu

Department of Computer Science, Nnamdi Azikiwe University Awka, Nigeria.

Research Article
 
World Journal of Advanced Engineering Technology and Sciences, 2024, 12(01), 187–200.
Article DOI: 10.30574/wjaets.2024.12.1.0160
DOI url: https://doi.org/10.30574/wjaets.2024.12.1.0160

Received on 15 March 2024; revised on 01 May 2024; accepted on 04 May 2024

Recent research indicates a notable surge in SMS spam, posing as entities aiming to deceive individuals into divulging private account or identity details, commonly termed “phishing” or "email spam". Conventional spam filters struggle to adequately identify these malicious emails, leading to challenges for both consumers and businesses engaged in online transactions. Addressing this issue presents a significant learning challenge. While initially appearing as a straightforward text classification problem, the classification process is complicated by the striking similarity between spam and legitimate emails. In this study, we introduce a novel method named "filter" designed specifically for detecting deceptive SMS spam. By incorporating features tailored to expose the deceptive techniques employed to dupe users, we achieved an accurate classification rate of over 99.01% for SMS spam emails, while maintaining a low false positive rate. These results were attained using a dataset comprising 746 instances of spam and 4822 instances of legitimate emails. The filter's accuracy, evaluated on a dataset with two attributes and 5568 instances, notably surpasses existing methodologies. Our proposed model, a Hybrid NB-ANN model, achieves the highest accuracy at 99.01%, outperforming both Naïve Bayes (98.57%) and Artificial Neural Network (98.12%). This highlights the efficacy of the hybrid approach in enhancing accuracy for email spam detection and malware filtering, ensuring comprehensive coverage across training and test datasets for improved feedback loops.

Machine learning; Predictive model; SMS spam; Malware filtering Hybrid NB-ANN

https://wjaets.com/sites/default/files/fulltext_pdf/WJAETS-2024-0160.pdf

Get Your e Certificate of Publication using below link

Download Certificate

Preview Article PDF

Walter Oluchukwu Ugwueze, Sylvester Okwudili Anigbogu, Emmanuel Chibuogu Asogwa, Doris Chinedu Asogwa and Kenechukwu Sylvanus Anigbogu. Enhancing Email Security: A Hybrid Machine Learning Approach for Spam and Malware Detection. World Journal of Advanced Engineering Technology and Sciences, 2024, 12(01), 187–200. Article DOI: https://doi.org/10.30574/wjaets.2024.12.1.0160

Get Certificates

Get Publication Certificate

Download LoA

Check Corssref DOI details

Issue details

Issue Cover Page

Editorial Board

Table of content


Copyright © Author(s). All rights reserved. This article is published under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format, as long as appropriate credit is given to the original author(s) and source, a link to the license is provided, and any changes made are indicated.


Copyright © 2026 World Journal of Advanced Engineering Technology and Sciences

Developed & Designed by VS Infosolution