A novel approach to find feature selection using modified fuzzy C-mean
Department of studies in Computer Science, Davangere University, Davangere, India.
Research Article
World Journal of Advanced Engineering Technology and Sciences, 2023, 09(02), 359–365.
Article DOI: 10.30574/wjaets.2023.9.2.0224
Publication history:
Received on 07 July 2023; revised on 23 August 2023; accepted on 25 August 2023
Abstract:
Feature selection, also known as dimensionality reduction, is a common preprocessing step in the fields of pattern recognition, data mining, and machine learning. This is a critical issue when mining high-dimensional, massive data sets. Preprocessing the data before analysis to acquire a smaller collection of representative features and keeping the optimal salient properties of the data leads to more compactness of the models trained and better generalization, as well as a decrease in processing time. Therefore, the standard for dimension reduction is to save just the information that is most important from the original data, as determined by certain optimality criteria. In this paper we are going to form a new framework include the combination of MFCM and APSO, to find the HIDS.
Keywords:
MFCM (modified fuzzy c-mean); APSO (accelerated particle swarm optimization); Feature selection; IDS
Full text article in PDF:
Copyright information:
Copyright © 2023 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0