Home
World Journal of Advanced Engineering Technology and Sciences
International, Peer reviewed, Referred, Open access | ISSN Approved Journal

Main navigation

  • Home
    • Journal Information
    • Abstracting and Indexing
    • Editorial Board Members
    • Reviewer Panel
    • Journal Policies
    • WJAETS CrossMark Policy
    • Publication Ethics
    • Instructions for Authors
    • Article processing fee
    • Track Manuscript Status
    • Get Publication Certificate
    • Issue in Progress
    • Current Issue
    • Past Issues
    • Become a Reviewer panel member
    • Join as Editorial Board Member
  • Contact us
  • Downloads

ISSN: 2582-8266 (Online)  || UGC Compliant Journal || Google Indexed || Impact Factor: 9.48 || Crossref DOI

Fast Publication within 2 days || Low Article Processing charges || Peer reviewed and Referred Journal

Research and review articles are invited for publication in Volume 18, Issue 2 (February 2026).... Submit articles

Deep learning in high-frequency trading: Conceptual challenges and solutions for real-time fraud detection

Breadcrumb

  • Home
  • Deep learning in high-frequency trading: Conceptual challenges and solutions for real-time fraud detection

Halima Oluwabunmi Bello 1, *, Adebimpe Bolatito Ige 2 and Maxwell Nana Ameyaw 3

1 Independent Researcher, Georgia, USA.
2 Information Security Advisor, Corporate Security, City of Calgary, Canada.
3 CPA, KPMG, USA.

Review Article
 
World Journal of Advanced Engineering Technology and Sciences, 2024, 12(02), 035–046.
Article DOI: 10.30574/wjaets.2024.12.2.0265
DOI url: https://doi.org/10.30574/wjaets.2024.12.2.0265

Received on 23 May 2024; revised on 28 June 2024; accepted on 01 July 2024

High-frequency trading (HFT) has transformed financial markets by enabling rapid execution of trades, exploiting market inefficiencies, and optimizing trading strategies. However, this speed and complexity also present significant challenges for real-time fraud detection. Deep learning, a subset of machine learning, offers promising solutions to these challenges through its ability to analyze large volumes of data and uncover intricate patterns. This review explores the conceptual challenges and solutions associated with deploying deep learning for fraud detection in HFT environments. One of the primary challenges in implementing deep learning for HFT fraud detection is the sheer volume and velocity of data. HFT systems generate vast amounts of transactional data in milliseconds, necessitating highly efficient and scalable deep learning models. Convolutional neural networks (CNNs) and recurrent neural networks (RNNs) are particularly suited for this task due to their ability to process and analyze sequential data efficiently. However, these models require substantial computational resources and sophisticated infrastructure to operate in real time. Another significant challenge is the need for high accuracy and low latency in fraud detection. False positives can lead to unnecessary interventions, while false negatives can result in undetected fraudulent activities. Deep learning models must be fine-tuned to balance these risks, employing techniques such as hyperparameter optimization and ensemble learning to enhance their predictive capabilities. Additionally, integrating real-time anomaly detection methods can help identify suspicious activities promptly, reducing the window of opportunity for fraudsters. Data quality and integrity also pose substantial challenges. HFT environments are susceptible to noise and outliers, which can distort model predictions. Ensuring high-quality data through rigorous preprocessing and anomaly filtering is crucial for the accuracy of deep learning models. Techniques such as data augmentation and normalization can further improve model robustness. To address these challenges, a hybrid approach combining deep learning with traditional statistical methods and rule-based systems can be effective. This approach leverages the strengths of each method, providing a comprehensive fraud detection framework that is both accurate and responsive. Additionally, ongoing model retraining and adaptation to evolving fraud patterns are essential to maintain the effectiveness of the system. In conclusion, while deep learning presents significant opportunities for enhancing real-time fraud detection in high-frequency trading, it also requires addressing challenges related to data volume, computational demands, accuracy, and data quality. By employing a hybrid approach and continually refining models, financial institutions can effectively mitigate fraud risks and safeguard their trading operations.

Deep Learning; High-Frequency Trading; Conceptual Challenges; Solutions; Real-Time Fraud Detection

https://wjaets.com/sites/default/files/fulltext_pdf/WJAETS-2024-0265.pdf

Get Your e Certificate of Publication using below link

Download Certificate

Preview Article PDF

Halima Oluwabunmi Bello, Adebimpe Bolatito Ige and Maxwell Nana Ameyaw. Deep learning in high-frequency trading: Conceptual challenges and solutions for real-time fraud detection. World Journal of Advanced Engineering Technology and Sciences, 2024, 12(02), 035–046. Article DOI: https://doi.org/10.30574/wjaets.2024.12.2.0265

Get Certificates

Get Publication Certificate

Download LoA

Check Corssref DOI details

Issue details

Issue Cover Page

Editorial Board

Table of content


Copyright © Author(s). All rights reserved. This article is published under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format, as long as appropriate credit is given to the original author(s) and source, a link to the license is provided, and any changes made are indicated.


Copyright © 2026 World Journal of Advanced Engineering Technology and Sciences

Developed & Designed by VS Infosolution