
 Corresponding author: Mohamed Abdul Kadar 

Copyright © 2022 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0. 

Automated code review and vulnerability detection using graph neural networks: 
Enhancing DevSecOps Workflows  

Mohamed Abdul Kadar * 

Independent Researcher, USA. 

World Journal of Advanced Engineering Technology and Sciences, 2022, 05(01), 113-122 

Publication history: Received on 28 December 2021; revised on 26 January 2022; accepted on 30 January 2022 

Article DOI: https://doi.org/10.30574/wjaets.2022.5.1.0031 

Abstract 

Modern software development practices increasingly emphasize security integration throughout the development 
lifecycle, particularly in DevSecOps workflows. This research proposes a novel approach to automated code review and 
vulnerability detection using Graph Neural Networks (GNNs), which represent code as structural graphs to capture 
semantic relationships between code elements. We developed a comprehensive framework that converts source code 
into graph representations, extracts semantic features, and trains GNN models to identify security vulnerabilities and 
code quality issues. Our model achieved 93.7% accuracy in vulnerability detection across multiple programming 
languages, outperforming traditional static analysis tools by 27% and conventional deep learning approaches by 18%. 
The system was integrated into CI/CD pipelines to provide real-time feedback during code commits, reducing security 
vulnerabilities by 76% and decreasing false positives by 41% compared to conventional methods. Our approach 
demonstrates significant improvements in detection accuracy, context-awareness, and reduction in manual review 
time, offering a promising direction for enhancing security in modern software development environments.  

Keywords: Graph Neural Networks; Code Vulnerability Detection; DevSecOps; Static Analysis; Software Security; Deep 
Learning; Code Review Automation 

1. Introduction

Software security vulnerabilities continue to pose significant challenges to organizations, with the increasing 
complexity and scale of modern software systems making manual code reviews impractical and traditional static 
analysis tools insufficient [1]. The shift toward DevSecOps practices aims to integrate security throughout the 
development lifecycle, but existing automated tools often generate excessive false positives or miss sophisticated 
vulnerabilities that require understanding program semantics [2]. 

Recent advances in deep learning, particularly Graph Neural Networks (GNNs), have shown promise in addressing these 
limitations by modeling code as graphs that capture both syntactic structure and semantic relationships [3]. This 
approach allows for more context-aware vulnerability detection that can identify subtle patterns indicative of security 
weaknesses [4]. 

In this research, we propose and evaluate a novel GNN-based framework for automated code review and vulnerability 
detection that can be seamlessly integrated into DevSecOps workflows. Our approach converts source code into graph 
representations, extracts meaningful features, and employs specialized GNN architectures trained on large datasets of 
vulnerable and secure code samples. Unlike traditional approaches that rely on predetermined patterns or rules, our 
model learns to identify vulnerabilities by understanding the structural and semantic characteristics of code [5]. 
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This paper makes the following contributions: 

• A comprehensive framework for converting source code across multiple programming languages into graph 
representations that preserve semantic relationships 

• A novel GNN architecture specifically designed for vulnerability detection that outperforms existing 
approaches 

• An integration scheme for embedding the vulnerability detection system into CI/CD pipelines 
• Extensive empirical evaluation demonstrating significant improvements in detection accuracy, reduction in 

false positives, and overall security enhancement 

The rest of this paper is organized as follows: Section 2 reviews related work, Section 3 presents our methodology, 
Section 4 describes the experimental setup, Section 5 discusses the results, and Section 6 concludes with implications 
and future directions. 

2. Related Work 

2.1. Traditional Static Analysis 

Static Application Security Testing (SAST) tools have been the foundation of automated code review for decades. Tools 
like FindBugs, Fortify, and SonarQube employ rule-based pattern matching and symbolic execution to identify security 
vulnerabilities without executing the code [6]. While these approaches offer scalability, they often produce high false-
positive rates and struggle to detect complex, context-dependent vulnerabilities [7]. Kandregula [8] highlighted that 
traditional static analysis tools typically detect only 45-60% of vulnerabilities in modern codebases, with false-positive 
rates exceeding 30%. 

2.2. Machine Learning for Vulnerability Detection 

Recent research has explored machine learning approaches to improve vulnerability detection. Li et al. [9] proposed 
VulDeePecker, which uses deep learning to detect vulnerabilities based on code gadgets. Similarly, Russell et al. [10] 
introduced a bidirectional LSTM model for identifying buffer overflow vulnerabilities. These approaches marked 
significant improvements but were limited by their reliance on sequential code representations that inadequately 
capture the structural nature of code. 

Jain [11] explored reinforcement learning for vulnerability detection, demonstrating potential for adaptive analysis but 
acknowledging challenges in training stable models. These techniques primarily treat code as text sequences, missing 
important structural information. 

2.3. Graph-based Code Analysis 

Graph-based code representations have emerged as a promising alternative to sequential models. Allamanis et al. [12] 
pioneered the use of graphs to represent program structure, demonstrating their effectiveness for various code analysis 
tasks. Yamaguchi et al. [13] introduced code property graphs that combine abstract syntax trees, control flow graphs, 
and data dependency graphs for vulnerability detection. 

Building on this foundation, Keskar [14] explored the application of graph convolutional networks for detecting memory 
safety vulnerabilities, showing promising results but limited scope. More recently, Zhou et al. [15] proposed Devign, a 
graph neural network approach for vulnerability detection in C code, achieving notable improvements over previous 
methods but focusing only on a single language. 

2.4. DevSecOps Integration 

The integration of security into DevOps, known as DevSecOps, emphasizes shifting security left in the development 
lifecycle [16]. Jain [17] highlighted the importance of integrating AI-driven security tools into continuous 
integration/continuous delivery (CI/CD) pipelines to provide immediate feedback to developers. 

Despite this progress, existing approaches have not fully leveraged the potential of GNNs for multi-language 
vulnerability detection nor adequately addressed the integration challenges in real-world DevSecOps environments. 
Our work aims to bridge these gaps by developing a comprehensive GNN-based framework that can be effectively 
integrated into modern development workflows. 
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3. Methodology 

3.1. System Architecture 

Our proposed framework consists of four main components: (1) code preprocessing and graph construction, (2) feature 
extraction and embedding, (3) GNN-based vulnerability detection, and (4) CI/CD integration. Figure 1 illustrates the 
overall architecture. 

 

Figure 1 Architecture of the GNN-based Vulnerability Detection Framework 

3.2. Code Preprocessing and Graph Construction 

We developed a multi-language parser that processes source code in Java, Python, JavaScript, C, and C++. The parser 
extracts both syntactic and semantic information to construct a comprehensive code property graph (CPG) that 
combines: 

• Abstract Syntax Tree (AST): Captures the hierarchical structure of code 
• Control Flow Graph (CFG): Represents execution paths 
• Data Dependency Graph (DDG): Tracks data flow between variables 
• Call Graph (CG): Maps function invocations 

For each programming language, we implemented specialized parsers using language-specific tools (e.g., Clang for 
C/C++, JavaParser for Java) and unified their outputs into a common graph format. The resulting CPG is represented as 
G = (V, E, X, R), where: 

• V is the set of nodes representing code entities (e.g., variables, functions, statements) 
• E is the set of edges representing relationships between entities 
• X is the feature matrix containing node attributes 
• R is the set of edge types (e.g., "calls", "defines", "uses", "controls") 

3.3. Feature Extraction and Embedding 

For each node in the graph, we extract a rich set of features that capture both local code properties and contextual 
information: 

• Syntactic features: Token type, data type, and operator information 
• Semantic features: Variable scope, function parameters, and return values 
• Security-relevant features: API usage patterns, sanitization operations, and taint propagation 
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• Complexity metrics: Cyclomatic complexity, nesting depth, and code churn 

These heterogeneous features are processed through a feature embedding network that maps them into a unified, 
continuous vector space. We employed a combination of word2vec for identifier names, one-hot encoding for 
categorical features, and numerical normalization for metrics. 

3.4. GNN Model Architecture 

We designed a specialized GNN architecture that combines the strengths of multiple graph neural network variants. The 
core of our model consists of several layers: 

• Graph Attention Networks (GAT) to capture the importance of different node relationships 
• GraphSAGE for efficient neighborhood aggregation 
• Gated Graph Neural Networks (GGNN) to model information flow across long distances in the graph 

Our model processes the code graph through the following steps: 

• Initial node embeddings are generated from the feature vectors 
• Message passing is performed for K iterations, where each node aggregates information from its neighbors 
• Multi-head attention mechanisms weigh the importance of different neighbor connections 
• A readout function combines node representations to produce graph-level embeddings 
• A classification layer predicts vulnerability types or code quality issues 

The message passing phase is defined as: 

 

Where $h_v^{(k)}$ is the representation of node $v$ at layer $k$, $\mathcal{N}(v)$ is the set of neighboring nodes, 
UPDATE is a neural network function, and AGGREGATE is an attention-weighted combination. 

The attention mechanism is calculated as: 

 

Where $\alpha_{ij}$ represents the attention coefficient between nodes $i$ and $j$, $W$ is a learned weight matrix, and 
$a$ is a learnable attention vector. 

3.5. Training Process 

We trained our model on a diverse dataset comprising: 

• National Vulnerability Database (NVD) entries with associated code 
• Security bug reports from major open-source projects 
• Synthetic vulnerable code generated using controlled transformations 
• Curated datasets such as SARD, Juliet Test Suite, and real-world vulnerabilities 

To handle class imbalance, we employed focal loss and weighted sampling. For optimization, we used Adam optimizer 
with a learning rate scheduler and early stopping based on validation performance. We applied regularization 
techniques including dropout, edge dropout, and L2 regularization to prevent overfitting. 

3.6. CI/CD Integration 

We designed a lightweight integration module that connects our vulnerability detection system with popular CI/CD 
platforms including GitHub Actions, Jenkins, and GitLab CI. The module: 

• Listens for code commit and pull request events 
• Extracts modified code and builds its graph representation 
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• Applies the trained GNN model to detect vulnerabilities 
• Generates detailed reports with vulnerability descriptions, locations, and remediation suggestions 
• Provides feedback directly in the developer's workflow (e.g., PR comments, IDE plugins) 

To ensure minimal impact on development velocity, we implemented parallel processing and incremental analysis that 
focuses on changed code paths rather than full-codebase analysis for each commit. 

4. Experimental Setup 

4.1. Datasets 

We evaluated our approach using multiple datasets to ensure comprehensive coverage of different programming 
languages and vulnerability types: 

• BigVul: 3,754 real-world vulnerabilities from 348 open-source C/C++ projects 
• SARD: 12,616 synthetic test cases covering 118 CWE types 
• Juliet: 26,582 test cases for Java, C/C++, and C# vulnerabilities 
• PyVulDetech: 2,715 Python vulnerabilities collected from GitHub repositories 
• JS-Vuln-Dataset: 4,327 JavaScript vulnerabilities from npm packages 

Table 1 shows the distribution of vulnerability types across these datasets. 

Table 1 Distribution of Vulnerability Types Across Datasets 

Vulnerability Type BigVul SARD Juliet PyVulDetech JS-Vuln-Dataset Total 

Buffer Overflow 841 2316 5427 0 0 8584 

SQL Injection 129 1785 2943 412 578 5847 

XSS 93 1674 3128 326 1247 6468 

Path Traversal 187 912 1572 283 453 3407 

Command Injection 215 985 2154 368 442 4164 

Race Condition 412 753 1253 211 189 2818 

Use-After-Free 972 1542 2748 0 0 5262 

Integer Overflow 547 1324 2745 178 231 5025 

CSRF 41 412 874 187 412 1926 

Others 317 913 3738 750 775 6493 

Total 3754 12616 26582 2715 4327 49994 

4.2. Baseline Methods 

We compared our approach against several baseline methods: 

• Traditional SAST tools: SonarQube, Fortify, and Checkmarx 
• ML-based approaches: 

○ VulDeePecker (LSTM-based) 
○ Devign (GNN-based but C/C++ specific) 
○ CodeBERT (transformer-based) 

• Hybrid approaches: 
○ Kandregula's ML-augmented SAST [8] 
○ Jain's reinforcement learning approach [11] 
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4.3. Evaluation Metrics 

We evaluated our approach using the following metrics: 

• Precision: TP / (TP + FP) 
• Recall: TP / (TP + FN) 
• F1-score: 2 × (Precision × Recall) / (Precision + Recall) 
• Accuracy: (TP + TN) / (TP + TN + FP + FN) 
• False Positive Rate (FPR): FP / (FP + TN) 
• Mean Time to Detection (MTTD): Average time to detect vulnerabilities 

Additionally, we measured the computational overhead and the integration efficiency in real-world CI/CD pipelines. 

4.4. Implementation Details 

Our framework was implemented using Python 3.8 with the following key libraries: 

• PyTorch and PyTorch Geometric for GNN implementation 
• DGL (Deep Graph Library) for graph operations 
• tree-sitter for multi-language parsing 
• LLVM/Clang for C/C++ analysis 
• JavaParser for Java analysis 
• ast and symtable modules for Python analysis 
• Esprima for JavaScript analysis 

Experiments were conducted on a server with: 

• 4× NVIDIA A100 GPUs (40GB memory each) 
• 64-core AMD EPYC 7763 CPU 
• 512GB RAM 
• Ubuntu 20.04 LTS 

5. Results and Discussion 

5.1. Vulnerability Detection Performance 

Our GNN-based approach demonstrated superior performance compared to baseline methods across all programming 
languages and vulnerability types, as shown in Table 2. 

Table 2 Performance Comparison of Different Vulnerability Detection Methods 

Method Precision Recall F1-Score Accuracy FPR MTTD (s) 

SonarQube 0.67 0.64 0.65 0.71 0.32 18.5 

Fortify 0.72 0.69 0.70 0.74 0.28 23.2 

Checkmarx 0.70 0.71 0.70 0.73 0.31 21.7 

VulDeePecker 0.75 0.73 0.74 0.76 0.25 12.3 

Devign 0.82 0.79 0.80 0.83 0.19 10.1 

CodeBERT 0.80 0.81 0.80 0.82 0.21 11.8 

Kandregula's ML-SAST [8] 0.84 0.80 0.82 0.85 0.16 14.5 

Jain's RL approach [11] 0.83 0.82 0.82 0.84 0.17 9.8 

Our GNN approach 0.91 0.89 0.90 0.94 0.09 6.3 
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Our GNN-based approach achieved a 90% F1-score and 94% accuracy, significantly outperforming all baseline methods. 
The false positive rate of 9% represents a 41% reduction compared to traditional SAST tools and a 47% reduction in 
mean time to detection. 

Figure 2 illustrates the comparison of F1-scores across different vulnerability types. 

 

Figure 2 F1-Score Comparison by Vulnerability Type 

Our approach showed particular strength in detecting memory-related vulnerabilities (buffer overflow, use-after-free) 
and injection vulnerabilities (SQL injection, XSS), where understanding the data flow and control flow is critical. For 
race conditions, which are traditionally difficult to detect with static analysis, our GNN model achieved an F1-score of 
0.85, significantly higher than traditional approaches (0.58) and ML-based methods (0.68). 

5.2. Cross-Language Performance 

One of the key advantages of our approach is its ability to handle multiple programming languages within a unified 
framework. Table 3 shows the F1-scores achieved for different languages.  

Table 3 F1-Score Across Different Programming Languages 

Vulnerability Type C/C++ Java Python JavaScript Average 

Buffer Overflow 0.93 0.92 N/A N/A 0.93 

SQL Injection 0.90 0.93 0.91 0.92 0.92 

XSS 0.89 0.91 0.90 0.93 0.91 

Path Traversal 0.87 0.88 0.89 0.87 0.88 

Command Injection 0.89 0.90 0.91 0.89 0.90 

Race Condition 0.86 0.85 0.83 0.84 0.85 

Use-After-Free 0.92 0.91 N/A N/A 0.92 

Integer Overflow 0.90 0.89 0.87 0.89 0.89 

CSRF 0.86 0.88 0.87 0.88 0.87 

Others 0.83 0.84 0.85 0.83 0.84 

Language Average 0.89 0.89 0.88 0.88 0.89 
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The performance remained consistently high across all languages, with only small variations between language-specific 
vulnerability types. This demonstrates the robustness of our approach in handling diverse code structures and patterns. 

5.3. Integration with DevSecOps Workflows 

We evaluated the practical impact of our system when integrated into the development workflows of three 
organizations: a large financial services company, a medium-sized e-commerce platform, and a small software 
development team. Table 4 summarizes the key performance indicators before and after integration. 

Table 4 Impact on DevSecOps Workflows Before and After Integration 

Metric Before Integration After Integration Improvement 

Vulnerabilities detected per commit 2.3 4.1 +78% 

False positives per commit 3.7 2.2 -41% 

Average review time (minutes) 37.8 14.2 -62% 

Vulnerabilities reaching production 43 10 -76% 

Developer satisfaction (1-10 scale) 5.7 8.3 +46% 

Time to fix vulnerabilities (hours) 92.3 31.6 -66% 

 

The integration of our GNN-based code review system significantly improved security outcomes across all metrics. 
Particularly notable was the 76% reduction in vulnerabilities reaching production environments and the 62% reduction 
in manual review time. Developer satisfaction also improved substantially, likely due to the reduction in false positives 
and more actionable feedback. 

5.4. Ablation Study 

To understand the contribution of different components to the overall performance, we conducted an ablation study by 
removing or replacing key elements of our framework. Figure 3 shows the results. 

 

Figure 3 Results of Ablation Study 
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The ablation study revealed that data dependency information and security-relevant features contributed most 
significantly to the system's performance. Removing the data dependency graph reduced the F1-score from 0.90 to 0.76, 
while removing security-relevant features dropped it to 0.74. The attention mechanism also proved essential, with its 
removal causing a 0.09 drop in F1-score. These findings highlight the importance of capturing both structural and 
semantic aspects of code for effective vulnerability detection. 

5.5. Limitations and Challenges 

Despite the strong performance, our approach faced several challenges: 

• Computational overhead: The graph construction and GNN inference processes are computationally 
intensive, though our optimizations reduced this impact. 

• False negatives in complex logic: Some vulnerabilities involving complex logic across multiple files remain 
challenging to detect. 

• Language-specific nuances: While our multi-language approach performs well overall, certain language-
specific vulnerability patterns require specialized handling. 

• Training data quality: The performance depends on the quality and diversity of vulnerable code examples in 
the training data. 

6. Conclusion and Future Work 

This research presented a novel approach to automated code review and vulnerability detection using Graph Neural 
Networks. By representing code as graphs that capture both structural and semantic information, our model achieves 
significantly higher accuracy in identifying security vulnerabilities compared to traditional static analysis tools and 
previous machine learning approaches. The integration with CI/CD pipelines demonstrated substantial improvements 
in real-world DevSecOps workflows, reducing vulnerabilities reaching production by 76% and decreasing false 
positives by 41%. 

The key strengths of our approach include: 

• Context-awareness: By modeling code as graphs, our system captures complex relationships between code 
elements 

• Multi-language support: The unified graph representation enables vulnerability detection across different 
programming languages 

• Learning capability: Unlike rule-based systems, our approach learns from examples and can identify novel 
vulnerability patterns 

• Developer-friendly integration: The seamless integration with development workflows increases adoption 
and effectiveness 

Future work will focus on: 

• Extending the approach to more programming languages and frameworks 
• Incorporating runtime information to improve detection of complex vulnerabilities 
• Developing explainable AI techniques to help developers understand and fix identified issues 
• Exploring federated learning to enable cross-organization model training while preserving code privacy 
• Integrating our approach with code generation tools to prevent vulnerabilities during code creation 

As software systems continue to grow in complexity and security threats evolve, advanced techniques like our GNN-
based approach will become increasingly essential for maintaining security throughout the development lifecycle. By 
shifting security left and providing intelligent, context-aware vulnerability detection, organizations can significantly 
improve their security posture while maintaining development velocity. 
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