
 Corresponding author: Okparaku, Victor Ikedichi
Uma Ukpai Polytechnic, Asaga, Ohafia, Abia State, Nigeria.

Copyright © 2022 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0.

Codes application in trajectory generation of simulated robot arm dynamics

Okechukwu Stanley Ikwunze 1, kelechi Kingsley Igbokwe 2 and Victor Ikedichi Okparaku 3, *

1 Department of Electrical/Electronics, Abia State Polytechnic, Aba, Abia State, Nigeria.
2 Department of physics/Electronics, Abia State Polytechnic, Aba, Abia State. Nigeria.
3 Uma Ukpai Polytechnic, Asaga, Ohafia, Abia State, Nigeria.

World Journal of Advanced Engineering Technology and Sciences, 2022, 06(01), 047–052

Publication history: Received on 21 April 2022; revised on 31 May 2022; accepted on 02 June 2022

Article DOI: https://doi.org/10.30574/wjaets.2022.6.1.0061

Abstract

The robot arm used in this research had already been modelled and simulated using Simulink software (i.e. software
environment) to yield a robot arm that will mimic the functionality and control of real human arm. The main objective
is not to rebuild the robot arm to further enhance tasks performance by armless people in the society, rather to verify
the significance of the code (program) application in trajectory generation of simulated robot arm or when simulating
a robot arm. The common problem encountered with trajectory generation is to connect the initial configuration to a
final configuration while satisfying other specified constraints at the endpoints (e.g., velocity constraints). The trajectory
parameters (such as angle and angular velocity) of the robot arm joint had already been simulated with reference to the
real human arm in order to generate a robot dynamics (trajectory) of same and equal functionality to real human arm.
The code system which implies writing of appropriate languages was confirmed to contain the performance and
controlling information of the robot arm. This performance and control of the robot arm appears to be the trajectory
generation of the simulated robot arm. Hence, the input languages into the software environment (Simulink) were
presented as codes which resulted to (have output of the desired functions) to trajectory generation of the simulated
robot arm.

Keywords: Trajectory Planning; Code; Computer Language; Robot Dynamics; Software Environment; Simulation

1. Introduction

Robot dynamics entails the relationship between the forces acting on a robot mechanism and the corresponding
accelerations produced by them. Characteristically, the robot mechanism is modelled as a rigid-body system in which
case robot dynamics is applying rigid-body dynamics to robots [2], [5]. The robotic kinematics is essentially describing
the end-effector's position, orientation as well as motion of all the joints, while dynamics modeling is crucial for
analyzing and synthesizing the dynamic behavior of robot [1].

Trajectory planning is act of moving from point A to point B while avoiding collisions over time and it can be computed
in both discrete and continuous methods. Also, trajectory planning is a major area in robotics as it gives way to
autonomous vehicles [3]. The aim of the trajectory generation is to generate inputs to the motion control system which
ensures that the planned trajectory is executed. The user or the upper-level planner describes the desired trajectory by
some parameters, usually the initial and final point (point-to-point control) [8].

The trajectory planning could be achieved by coding the language and input it into the software environment. Coding is
essentially written instructions that a robot or computer program can read and then execute [8]. One must determine
the task one wants to complete through a robot, design the code to make it happen, and then send it to the robot to view

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://wjaets.com/
https://doi.org/10.30574/wjaets.2022.6.1.0061
https://crossmark.crossref.org/dialog/?doi=10.30574/wjaets.2022.6.1.0061&domain=pdf

World Journal of Advanced Engineering Technology and Sciences, 2022, 06(01), 047–052

48

the outcome. Coding is a list of step-by-step instructions that get computers to do what you want them to do. It makes
it possible for us to create computer software, games, apps and websites. The coders or programmers are people who
write the programmes behind everything we see and do on a computer [7].

The purpose of this research is actually to determine the pragmatic implication of applying code as computer language
or instruction in trajectory generation in robotic and simulation.

2. Limitation of Trajectory

A problem with trajectory is to connect the initial to a final configuration while satisfying other specified constraints at
the endpoints (e.g., velocity constraints). Without loss of generality, it is the benefit of the researcher to consider
planning the trajectory for a single joint, since the trajectories for the remaining joints will be created independently
and in exactly the same way [6].

3. Illustration of a Robot Trajectory Planning

Figure 1 Block diagram of common/existing trajectory planning

4. Methodology

In achieving the control of a robot arm, personal computer (PC) is used and there must be connection between the robot
and PC. This connection is called interface connection and it is done by using a microcontroller. The microcontrollers
are devices commonly used in embedded computing applications to impart computing and smart decision-making
capabilities to machines, products, and processes. They are designed to interface and interact with electrical/electronic
devices, sensors and actuators, and high-tech gadgets to automate systems [4]. Microcontrollers are not meant to
interface with human beings, however, they do not have graphical user interface (GUI) capabilities that are common in
many personal computer (PC) applications. The complete control process can be divided into two categories: hardware
and software. The suitable environment (approach) for the Robot arm control is software environment.

Software environment can be divided into two parts: the CUBLOC microcontroller program and MATLAB Program. In
CUBLOC program, a code is written to make the interfacing between PC and the robot arm. The MATLAB program
consists of the Serial Communication codes and the graphical user interface (GUI). The codes input into the software
environment in simulating the robot arm are languages (instructions) to building parameters of the robot joints, angular
velocity and the acceleration.

5. Results and Discussion of Trajectory Generation (Via Coding Application)

The figures below are the input and output of trajectory generation for simulated robot arm dynamics. The input figure
is categorized into part A and part B because of large data which could not be visibly clear to the reader. However, part
B is the continuation of part A. Codes were used to input the language functions into Simulink software to generate the
resulting trajectory.

World Journal of Advanced Engineering Technology and Sciences, 2022, 06(01), 047–052

49

Figure 2 Initial code (data) into Simulink for modelling (part A)

Figure 3 Initial code (data) into Simulink for modelling (part B)

World Journal of Advanced Engineering Technology and Sciences, 2022, 06(01), 047–052

50

Fig. 2 and Fig. 3 show a clear initial data (codes) input into the software environment (Simulink) which underwent
simulation (modelling) with the following coding descriptions. The coding instructions are for degree of freedom. The
other parameters modelled in the Simulink can be seen on the screenshotted figures.

n = s; degree of freedom
q0 = initial angle of joint in radians
qf = final of joint in radians
v = maximum velocity in rad/s
T = 1; final time
S = cell (n,1)
S (i) = trajectory [q0 (i), qf (i)), v (i), T]
acc. = s (1). qdd; s (2).qdd; s (3). qdd; s (4). qdd; s (5). qdd.
ref-qn = run from ref-q1: [s (1). t’ s (1). q’] to ref-q5: [s (5) t’. s (5). q’]
ref-qdn = from ref-qd1: [s (1). t’ s (1). qd’] to ref-qd5: [s (5). t’ s (5). s (5). qd’]
ref-qddn = from ref-qdd1: [s (1). t’ s (1). qdd’] to ref-qdd5: [s (5). t’ s (5). qdd’]

These codes were simulated based on the language connotation allocated to them. The process yielded the output in fig.
4 below.

Figure 4 Output/Result of the code (data) into Simulink after modelling

Fig. 4 gives the function (output) of the trajectory generation. The output is detailed as follows:

Function (output) = trajectory (q0, qf, v, tf)

If V ≤ 2* (qf – q0)/ tf &
V > (qf – q0)/ tf
tb = (q0 – qf + v* tf)/v;
a = v/tb;
t1 = linespace (0, tb)

World Journal of Advanced Engineering Technology and Sciences, 2022, 06(01), 047–052

51

i1 = l; length (t1);
qdd1 = (i1) = a;
qd1 = a* t1
q1 = q0 + (a*. t1^2)/2;
t1 = linespace (tb, tf - tb);
i2 = l; length (t2);
v (i2) = v;
qdd2 (i2) = 0,
qd2 = v; q2 = (qf + q0 – v* lf)/2 + v*. t2

t3 = linespace (tf – tb, tf);
i3 = l: length (t3);
qdd3 (i3) = -a;
qd3 = a* tf – a* t3;
q3 = qf - .5* a* tf^2 + a* tf. *t3 - .5* a*t3^2;
s.t = (t1, t2, t3)
s.q = (q1, q2, q3)
s.qd = (qd1, qd2, qd3)
s.qdd = (qdd1, qdd2, qdd3)
Output = s
Hence, n = s; degree of freedom.

This result/output is a generated trajectory like angle of the robot joints, angular velocity and the acceleration. Due to
the ambiguity in the output, the researchers extracted the output of the angle and angular velocities of the joints as
dynamic parameters. The angle of the joints and angular velocity are described as q and qd respectively.

6. Conclusion

The codes are inevitably essential in simulating a robot arm in a software environment – Simulink. Codes are
languages/instructions that the personal computer understands which are translated into the robot arm as
functions/roles/duties/assignments/tasks they are planned/programmed to achieve/execute. The coding output of the
angle and angular velocities of joints of the robot (represented as q and qd respectively) as dynamic parameters
excerpted from the simulation resembles the real human arm in terms of angle and angular velocities. This implores
those codes (computer languages) input into the software environment in simulation successfully generated the
required trajectory.

Recommendations

It is with great sense of understanding that the researchers recommend that code application is a primary and essential
component of trajectory planning in robotics.

When encoding during trajectory planning, ensure it is done error free because that becomes functionality of the
simulating robot and the instruction/command it obeys.

Compliance with ethical standards

Acknowledgments

We acknowledge the efforts of every researcher and the research assistant who enormously contributed towards the
completion of this research.

Disclosure of conflict of interest

The interest of the researchers is equal and evenly distributed.

References

[1] Almeida F, Lopes A. A force-impedance controlled industrial robot using an active robotic auxiliary device.
Robotics and Computer-Integrated Manufacturing. 2008; 24(3): 299-309.

World Journal of Advanced Engineering Technology and Sciences, 2022, 06(01), 047–052

52

[2] Arbib MA. Perceptual structures and distributed motor control: In V.B. Brooks, editor. Handbook of Physiology,
volume II of Section 2: The Nervous System, Motor Control, Part 1, American Physiological Society. 1981; 1449 –
1480.

[3] Arya W, Habibollah BH. Industrial Robot Simulation Software Development Using Virtual Reality Modeling
Approach (VRML) and MATLAB-Simulink Toolbox. University of Teknologi, Malaysia. 2004; 1-100.

[4] Chun HA, Khin TL, Yin MM. SS Modeling Motion Control System for Motorized Robot Arm using MATLAB,
Proceedings of World Academy of Science, Engineering and Technology. 2008; 20-50.

[5] Mark WS, Seth H, Vidyasagar M. Robot Modeling and Control. John Wiley & Sons, 1st Edition. 2005; 1-60.

[6] Martin R. Web Based Robot Simulation Using VRML. Proceedings of the 2000 Winter Simulation Conference.
2000; 10-35.

[7] Mataric M, Cliff D. Challenges in evolving controllers for physical robots. Robot. Autonomous System. 1996; 19:
67-83.

[8] Shala A, Bruqi M. Trajectory Tracking of Mobile Robot using Designed Optimal Controller. International Journal
of Mechanical Engineering and Technology. 2017; 8(8): 649 – 658.

