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Abstract 

Nanotechnology is a novel technology that develops material at a size of 100 nm or less which has become beneficial in 
various human endeavors because of its unique characteristic features. Nano-materials are utilized in medicine, 
Engineering, and agricultural industries. The unique properties of these materials are applied for beneficial purposes 
and at the same time may also have negative toxicological and environmental impacts. Considering the impacts on the 
environment and human health, nanomaterials could be harmful because they are easily distributed through the 
environment, aquatic, and human systems. Particularly in human body system, the unique properties have made its 
transportation and distribution through the skin, lungs, gastrointestinal tract very easy. However, several toxicological 
studies have shown considerable inherent toxicity of some nano-particles to living organisms, and their negative and 
harmful effects on the environment and aquatic systems for which both quantitative structure activity relationship and 
relatively tedious animal testing procedures are available in various literatures for their characterization. Because of 
the large number of nanoparticles manufactured with the different intrinsic properties especially sizes and coatings, 
there is therefore need to explore an alternative approach that will not necessitate conducting test on every nano-
particle produced. It is the apprehensions of these potentially harmful effects of nanomaterials that constitute serious 
setback to nanotechnology commercialization. The objective of the study is to develop intelligent models to assess, 
evaluate, and manage the inherent risks. In view of these side effects, there is therefore the need to design and develop 
classification and nanomaterials toxicity predictive models using deep learning intelligent systems. This paper, 
therefore, focuses on the capability of deep learning techniques to model physicochemical properties and toxic effects 
of nanomaterials. Hence, the main motivation of this research work is to assist the users of nanomaterials in classifying, 
assessing and determining the risk of nanomaterials toxicity. 

Keywords: Deep learning; Artificial Neural Network; Long Short-term Memory; Gated Recurrent Unit; 
Nanotechnology; Toxicity 

1. Introduction

Nanotechnology is a novel technology that develops material at a size of 100 nm or less which are utilized in various 
human endeavors because of their unique characteristic features [1]. Nanomaterials are applied in medicine, 
Engineering, and agricultural industries. The unique properties of these materials are used for beneficial purposes and 
at the same time may also have negative toxicological and environmental impacts. Considering the impacts on the 
environment and human health, nanomaterials could be harmful because they are easily distributed through the 
environment, aquatic and human systems [2, 3, 4].  
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Because of the large number of nanoparticles manufactured with the different intrinsic properties especially sizes and 
coatings, there is therefore the need to explore an alternative approach that will not necessitate conducting test on every 
nano-particle produced.  

In recent years, it has been reported from various studies, that ENMs have hazardous potentials and harmful to human 
health. In the research work of Sharma et al., [5], carbon nanotubes (CNTs) were reported to have the potential of 
inducing reactive oxygen species (ROS) and pulmonary effects. Further studies of Saquib, et al [6] have also reported 
that titanium dioxide (TiO2) nano-particles have the tendency to induce cytotoxic, genotoxic [7], and inflammatory 
effects [8]. Similarly, it was also reported by Asare et al. [7] that silver nanoparticle is capable of causing harmful effects 
arising from exposure to nano-silver. More detailed information about the negative side- effects of various ENMs has 
been reported by several researchers [4,8,9].  

It is the apprehensions of these potential harmful effects of nanomaterials that constitute serious hindrance to 
nanotechnology commercialization. The objective of the study is to develop intelligent models to assess, evaluate, and 
manage the inherent toxic risks nanomaterials. In view of these side effects, there is therefore the need to design and 
develop classification and nanomaterials toxicity predictive models for using deep learning intelligent systems. This 
paper, therefore, focuses on the capability of deep learning techniques to model physicochemical properties and toxic 
effect of nanomaterials. Hence, the main motivation of this research work is to assist the users of nanomaterials in 
classifying, assessing, and determining the risk of nanomaterials toxicity.  

 Here, deep learning Systems such as Restricted Boltmann Machines, Deep Belief Network Deep Neural Network, 
Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) systems have 
been explored as an alternative to establish the relationship between physicochemical properties and biological activity. 
For the modeling purposes, the important descriptors such as size, shape, and surface charge, can be measured by means 
of various experimental techniques. Considering the established consensus on measurement and modeling descriptors 
of traditional (Q) SAR analysis, these descriptors are to be applied for nano-Intelligent system [10,11,12,13]. 

The identification of toxicity-related properties that can be used as descriptors of harmful effects of ENMs is the first 
step in the modelling process. The recommended list of characteristics and properties by almost all nanotoxicologists 
as important determinants of toxicity include: size distribution, agglomeration state, shape, crystal structure, chemical 
composition, surface area, surface chemistry, surface charge, exposure time, and concentration. This paper, will 
therefore explore the capability of deep learning systems to model physicochemical properties and toxic effect of 
nanomaterials for the prediction of nanomaterials toxicity. 

Section 1 gives a brief introduction. Section 2 highlights the physico-chemical characteristics dependent toxicity. Section 
3 discusses materials and method. Section 4 discusses the prediction of Toxicity. Section 5 discusses the results and 
discussion. Finally, Section 6 discusses the conclusion of the study.  

2. Physico-Chemical Characteristics Dependent Toxicity 

Several mathematical correlations between various physico-chemical characteristics of nano-based products and the 
potential harmful effects have been reported by many researchers. In the following section, the descriptors which are 
considered to be critical toxicity determinant will be discussed. 

2.1. Nanomaterial Size 

Several toxicological studies have shown that nanomaterial size has been one of the most critical properties influencing 
the toxic effects of ENMs because as the particle size decreases, surface area which also affect the surface energy and 
the overall reactive ability increases. Also, the size of nano-based products influences the ability of these materials to 
transport, retain and interact with living systems as well as the release of ENMs within the environment and human 
body [14,15,16]. 

Monteiro-Riviere et al [17] also reported that the harmful side effects exhibited by nano-particles increases as particle 
size decreases. Fubini [18] further reported that respiratory organs of living organism can be affected adversely by 
nanoparticles (<100 nm) , when compared with larger particles produced from the same material. For instance, Jiang 
[2,3] illustrated this through an uptake of titanium oxide particles of two different sizes, 20 nm and 250 nm diameter 
by rat, and it was shown that smaller particles produced a more pronounced lung inflammatory reaction. 
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2.2. Aspect ratio  

Some researchers have reported that the aspect ratio nanoparticle affects the toxic effects of nano- particle in such a 
way as it increases so also is the toxicity of nano-based materials [2,3]. The effects of aspect ratio on toxicity can also 
explained for CNTs. It was reported by Poland et al. [15] that short MWCNTs are less toxic than long multi-walled CNTs 
(MWCNTs). (Powers et al. [13,14] also reported that the antibacterial activity of silver NPs is influenced by shape. 
Gratton et al. [16] has also confirmed in his research work that rod-like shape indicating high aspect ratio nanoparticles 
are transported and deposited easily into cells than cylindrical nano-particles.  

2.3. Concentration 

Research works have shown that particle aggregation is influenced by a high concentration of ENMs [2,3] and therefore 
the potential toxic effects is less pronounced compared to lower concentrations. Most aggregates observed at a 
threshold value of 100 nm, may have serious adverse health effects.  

2.4. Crystal Structure (Crystallinity)  

Reports from research work of Jiang et al. [2,3] have shown that ENMs having different atomic and crystal structure 
may have different toxicological effects despite the fact that they are made of the same chemical composition. 
Particularly, the effect of crystallinity on nano-particle activity was investigated by comparing the ROS generating 
capacity of TiO2 NPs with similar size but different crystal phases (amorphous, anatase, rutile, and anatase/rutile 
mixtures). It was reported that the highest level of ROS activity was manifested in amorphous samples followed by pure 
anatase and anatase/rutile mixtures, while the lowest level of ROS was exhibited by pure rutile.  

2.5. Surface characteristics 

Surface characteristics is also considered to be important in the reactivity and aggregation behavior of nano-particle in 
liquid media. For instance, research works have reported that the surface coating has serious influence on the toxicity 
of Ag-nano-particles [19,20,21,22,23,24,25]. The results from Nguyen et al. [20] also confirmed that coated Ag-nano-
particles are less toxic than uncoated Ag-nanoparticles.  

2.5.1. Surface area 

Nanoparticles with large surface area have been reported to impact a greater toxicity than their smaller surface area 
with identical chemical and crystalline structure. From research studies, it can be concluded that the inflammatory effect 
may depend on the surface area of Nanoparticles. Actually, the higher the surface area and particle number per unit 
mass, the more pronounced is the reactivity [2,3] and source of ROS, as reported from vitro experiments [9]. 

2.5.2. Surface charge 

The biological interactions and hence, toxicity of ENMs are also largely affected by surface charge. Jiang [2,3] analyzed 
the effect of surface charge on toxicity using negatively and weakly negatively charged silica-NPs. They observed that 
negatively charged silica-NPs exhibited higher cytotoxicity than weakly negatively charged silica-NPs. In another 
experiment, the core of silicon-NPs was coated with different organic monolayers in order to induce different surface 
charges (positive, negative, and neutral) [25]. It was discovered that positively charged silicon-NPs showed a greater 
toxic effect than neutral silicon-NPs, while negatively charged silicon-NPs exhibited virtually zero cytotoxicity. Zeta 
potential measurement is usually used to quantify the surface charge because of the difficulty in measuring directly the 
charge at the surface of particles.  

3. Material and Method 

Deep Learning is a collection of intelligent computational methodologies such as Restricted Boltmann Machines, Deep 
Belief Network Deep Neural Network, Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and Gated 
Recurrent Unit (GRU) systems that attempts to solve problems not easily solvable by conventional mathematical tools. 
In this study the deep learning systems are therefore applied to relate the biological endpoints of a series of 
nanomaterials to their physicochemical properties in a quantitative way (Monteiro-Riviere et al [17]: Puzyn [11,12]. 

3.1. Basic Neural Network Components 

An artificial neural network (ANN), consists of many simple units known as neurons which are interconnected together 
and designed mimic human nervous system. ANNs transform the inputs to outputs by adjusting the weights during a 
training of the network through a process known as back propagation. In a basic multi-layer ANN structure, as shown 
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in Fig. 1, the input layer of the artificial neural network gets information from the environment and the output layer 
sends the response back to the environment. The layers between the input layer and the output layer of an ANN are 
called the hidden layers which has no direct communication with the environment. The number of hidden layers varies 
and may be one or more depending to the problem being solved. The output of an ANN depends on the weights of the 
connections between neurons in different layers which indicates relative importance of a particular connection. [26]  

 

Figure 1 Multi-Layer Perceptron 

3.2. Restricted Boltzmann Machines 

A restricted Boltzmann machine (RBM) , as shown in Fig. 2, is a type of generative neural network which is made up of 
a visible layer, hidden layer, and connections between the two layers [27,28]. The mode of operation of the machine 
involves the propagation of the input upwards from the visible layer to the hidden layer, after which the hidden layer 
will propagate the data back down into the visible layer to produce a new set of inputs. The training of RBMs is 
accomplished by adjusting the weights between the visible and hidden layer. A sigmoidal activation function was 
applied since most implementations of restricted Boltzmann machines have functioned well with this particular 
function. Several steps are involved in updating the weights of an RBM. 

 

Figure 2 A Restricted Boltzmann Machine 

First, compute the probability of a given hidden unit by summing all the activations over every visible unit. This is used 
to determine whether each hidden unit is activated or not. Apply the same process in reverse to propagate downwards 
to the visible units. The weights are then updated, and this process is repeated over all training examples, until either a 
certain minimum error is reached or a maximum number of training steps is exceeded. 

3.3. Deep Belief Networks 

The Deep Belief Network is designed by a combination of more than one RBMs as shown in Fig.3. It was shown that 
RBMs can be combined and trained in a greedy manner to form so-called Deep Belief Networks (DBN) [29,30].  

The principle of greedy layer-wise unsupervised training can be applied to DBNs with RBMs as the building blocks for 
each layer. 
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Figure 3 Deep Belief Network 

 The process is as follows: 

 Train the first layer as an RBM that picks up the raw input as its visible layer. 

 Use the data in the first hidden layer to obtain a representation of the input that will be used as data for the 

second layer.  

 Train the second layer as an RBM, taking the transformed data ( mean activations) as training examples for 

the visible layer of that RBM)  

 Iterate (2 and 3) for the desired number of layers, each time propagating upward either samples or mean 

values. 

3.4. Fully-Connected Networks 

The basic neural network architecture called the multilayer perceptron (MLP) has one hidden layer, which is the 
simplest form of a fully connected network as shown in Fig.1. However, a layout in which we have more than one hidden 
layer model as provided in Fig. 4, is known as fully connected network or deep neural network. MLPs are feed-forward, 
meaning that information flow is always directed towards the output layer. It has been shown that they can used to 
approximate function [27,28,29]. MLPs have an input layer whose values are obtained by the input samples, more than 
one hidden layer whose values are derived from previous layers, and an output layer whose values are derived from 
the last hidden layer. Each neuron in the input and hidden layers has a forward-directed connection to each neuron in 

the next layer. A non-linear activation function at each neuron introduces non-linearity to the neural 
network [27,28,29]. Each neuron in the network receives data from every neuron in the previous layer and each of 
these inputs is multiplied by an independent weight. The weighted inputs are summed and are then sent through an 
activation function to produce the output values. 

 

Figure 4 Deep Neural Network 
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The outputs from each neuron can then be fed into the next layer of the neural network in the same manner. However, 
simple DNN was trained by Back-propagation algorithm. 

3.5. Long Short-Term Memory (LSTM)  

Short-term memory (LSTM) is a deep learning system that avoids the vanishing gradient problem associated with 
recurrent neural network. It consists of recurrent gates called "forget" gates. LSTM prevents back-propagated errors 
from vanishing or exploding thus making it possible to flow backwards through unlimited numbers of layers unfolded 
in space. 

 

 Figure 5 Long short-term memory unit 

 

The LSTM operates on a memory cell Ct that can maintain its state information over time, which allows gradients to 
flow over long sequences. The flow of information into and out of the memory cell Ct is controlled by three gates: an 
input gate, (it), a forget gate, (ft) and an output gate, (ot). During a forward pass, the cell states (st) and outputs (ht) of 
the LSTM layer at each time-step t, are calculated using (4) - (9) [31,32,33,34,35,36,37,38]. In the first step, the LSTM 
layer determines which information should be removed from its previous cell states st-1. Therefore, compute the 
activation values of the forget gates at time step t based on the current input xt, the outputs ht-1 of the memory cells at 
the previous time step (t-1), and the bias terms, bf of the forget gates. The sigmoid function is usually applied to reduce 
all activation values into an interval between 0 (completely forget) and 1 (completely remember): 

ft= 𝜎 (𝑊𝑓𝑡  ∗ 𝑥𝑡 + 𝑊𝑓ℎ ∗ ℎ𝑡−1 + 𝑏𝑓  (4)  

 In the second step of LSTM layer, information which should be added to the network's cell states (st) is determined and 
this process is done by two operations: First, the potential candidate values ŜT, which could be added to the cell states, 
are determined. Secondly, the activation values of the input gates (it) are computed: 

ŜT=𝑡𝑎𝑛ℎ (𝑊𝑠𝑥  ∗ 𝑥𝑡 + 𝑊𝑠ℎ ∗ ℎ𝑡−1 + 𝑏𝑠 (5)  

it = sigmoid (𝑊𝑖𝑥  ∗ 𝑥𝑡 + 𝑊𝑖ℎ ∗ ℎ𝑡−1 + 𝑏𝑖  (6)  

The third step calculates the new cell states (st) based on the results of the previous two steps with ° denoting the 
Hadamard product: 

st = ft ° st-1 + it ° ŜT (7)  

Finally, the output (ht) of the memory cells is computed using the following two equations: 



World Journal of Advanced Engineering Technology and Sciences, 2022, 06(01), 073–085 

79 

ot= 𝜎 (𝑊𝑜𝑥  ∗ 𝑥𝑡 + 𝑊𝑜ℎ ∗ ℎ𝑡−1 + 𝑏0 (8)  

ht = ot o tanh (st) (9)  

3.6. Gated Recurrent Unit  

Gated Recurrent Unit is a type of recurrent neural network designed to address the inherent long-term dependencies 
which is capable of leading to either exploding or vanishing gradient. This is accomplished by storing memory from the 
previous time for the purpose of future predictions [32,33,34,35,36,37,38,39]. The governing equations for GRU are: 

Z=𝜎 (𝑊𝑧  ∗ 𝑥𝑡 + 𝑈𝑧 ∗ ℎ𝑡−1 + 𝑏𝑧 (10)  

r=𝜎 (𝑊𝑟  ∗ 𝑥𝑡 + 𝑈𝑟 ∗ ℎ𝑡−1 + 𝑏𝑟  (11)  

ȟ=𝑡𝑎𝑛ℎ (𝑊ℎ  ∗ 𝑥𝑡 + 𝑟 ∗ 𝑈ℎ ∗ ℎ𝑡−1 + 𝑏𝑧 (12)  

h= 𝑍 ∗ ℎ𝑡−1 + (1 − 𝑍)  ∗ ȟ (13)  

Update Gate, Z: The activation value of update gate is computed by taking in the input and the hidden state from the 
previous timestamp t-1 and are multiplied by Wz and Uz respectively to which update bias 𝑏𝑧 is added as shown in 
equation (10) . The sigmoid function is usually applied to reduce all activation values into an interval between [0, 1]. . 

Reset Gate, r: The purpose of reset gate is to allow the network to ignore past information that may be irrelevant in the 
future time steps. The value of rt is computed using equation (11) will be in the interval [0, 1] because of the sigmoid 
function. Here Ur and Wr are weight matrices for the reset gate. 

The resultant value is the candidate’s hidden state is computed as shown in equation (12). The most important aspect 
of (12) is how the value of the reset gate can be used to control the the influence of previous hidden state on the 
candidate state. The final output is computed using equation (13) which also shows the influence of Z. Surpose the value 
of Z is around 0 then the first term in the (13) will vanish which indicates that the new hidden state will not have much 
information from the previous hidden state. On the other hand, the second part becomes almost one which indicates 
that the hidden state at the current timestep will essentially have the information from the candidate state only. 

 

Figure 6 Gated Recurrent Unit (GRU) Cell Architecture 
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4. Prediction of Toxicity 

The data used for the prediction of toxicity of nanomaterials were obtained from Arts et al. [40] and Dossiers of the 
OECD Working Party on Manufactured NMs. Sponsorship Program on the testing of NMs (OECD, 2015a,b,c,d 
[41,42,43,44];  

The DF4nanoGrouping process allows nanomaterials to be assigned to any of the four main groups, to sub-group, active 
NMs and passive NMs. This will facilitate the determination and evaluation of the required information for hazard and 
risk [40]  

 MG1: This group have soluble and non-bio-persistent nanomaterials which depend on chemical structure for 

hazard assessment. 

 MG2: This group has bio-persistent, High Aspect Ratio (HAR) nanomaterials which have shown certain level of 

rigidity and meets WHO conditions for respirable fibres. 

 MG3: These are passive, bio-persistent, non-fibrous which are neither MG1 nor MG2 nanomaterials. They do 

not (i) show high surface reactivity; (ii) do not exhibit toxic effects (chemical composition do not possess active 

ingredients; no known cellular effects); and (iii) are immobile (agglomerates in biological fluids) . From the In-

vivo test, the passive nature of NMs is confirmed due to lack of elicit apical toxic effects.  

 MG4: These are active bio-persistent, non-fibrous nanomaterials with harmful potential. Arts et al. [40] 

proposed assigning NMs to MG4 by considering chemical composition, dissolution in biological media, surface 

reactivity, dispersibility, or cellular effects. In vivo, active NMs can exhibit apical toxic effects at a lower 

concentration. 

According to vivo screening, research shows that the STIS NOAEC (Short-term inhalation study: STIS, No Observed 
Adverse Effect Concentration: NOAEC), the toxic potency is as shown below: 

Table 1 Nanomaterials Toxic Potency 
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CeO2 A 9.0 9.0 0.0073 16.0 9.7 66.0 44.0 0.97 8.0 1 

CeO2 B 19.0 8.0 0.0324 42.0 40.0 27.0 44.0 4.0 7.9 1 

CeO2 C 18.0 7.255 0.0434 15.0 15.0 48.0 50.0 1.5 7.5 1 

CeO2 D 18.0 7.25 0.0424 16.0 10.0 61.0 44.0 1.0 7.6 1 

CeO2 19.5 8.018 0.0324 17.0 70.2 33.0 46.0 7.0 7.7 1 

TiO2 1 0.08 0.063 0.0244 -17.0 21.0 51.0 44.0 2.0 9.0 1 

TiO2 2 0.08 0.073 0.0245 -17.0 27.0 40.0 42.0 2.7 9.5 1 

TiO2 3 0.07 0.015 0.0243 -20.0 25.0 45.0 41.0 2.5 8.5 1 

BaSO4 

NM220 
6.0 0.675 0.0503 -39.0 32.0 41.4 30.0 3.2 10.6 -1 

ZnO NM-110 0.0 98.0 0.078 20.0 70.0 12.0 35.0 7.0 15.0 -1 

ZnO NM-111 0.0 99.0 0.0389 21.0 82.0 15.0 14.0 8.0 16.5 -1 

CuO NM 18.0 120.0 2.205 28.0 10.0 47.0 20.0 4.0 17.0 -1 

Fe2O3 
Hematite 

0.8 0.5 0.0372 -27.0 15 85.0 38.0 1.5 ? ? 
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Figure 7 Prediction of Cytotoxicity (EC50)  

Table 2 Performance of Deep Learning Models 

 RMSE R2 Predicted Cytotoxicity (EC50)  

mg/m3 

Standard Artificial Neural Network (ANN)  0.9858 0.9588 15.77 

Restricted Boltmann Machine (RBM)  0.567 0.9913 12.25 

Deep Belief Network (DBN)  0.499 0.9991 15.72 

Long Short-Term Memory (LSTM)  0.1551 0.9995 13.87 

Gated Recurrent Unit (GRU)  0.0192 0.9999 15.64 

Deep Neural Network (DNN)  0.8651 0.9817 16.34 

 

 

Figure 8 Classification of Nanomaterial  
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Table 3 Classification Performance of Deep Learning Models 
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Machine 
(RBM)  

1.00 5 8 8 0 5 0 100 100 -1 

Deep Belief 
Network 

(DBN)  
1.00 5 8 8 0 5 0 100 100 -1 

Long Short 
Term 

Memory 
(LSTM)  

1.00 5 8 8 0 5 0 100 100 -1 

Gated 
Recurrent 
Unit (GRU)  

1.00 5 8 8 0 5 0 100 100 -1 

Deep Neural 
Network 

(DNN)  
1.00 5 8 8 0 5 0 100 100 -1 

 

5. Results and discussion 

In this case study, nanoparticle of metal oxides and sulphates were examined. We have five materials (10nm CuO, 
ZnONM-110 and NM-111, BaSO4 NM-220, 15nmFe2O3) which are passive NMs while eight materials (CeO2 NM-A, NM-B, 
C,D TiO2 NM-1-3 are active (Toxic NMs) .The predicted toxicity classification label of 15nm Fe2O3 is -1 indicating that it 
is passive (non-toxic) . The training and testing dataset used for the model implementation are as presented in Table1. 
The two classification errors are Type I and Type II errors. The Type I refers to when toxic material was erroneously 
classified as non- toxic material while Type II refers to erroneous classification of non- toxic material as toxic material. 
The predicted result is as listed in Fig. 8 and Table 3. We observed form these results that ANN, RBM, DBN LSTM and 
GRU models exhibited satisfactory performance for predictive correlations. The models showed high classification 
performance, and with no absolute percent relative error type and type II errors, no root mean square error, and the 
100% correlation coefficient among other correlations for the two distinct data sets.  

The predicted toxicity (Cytotoxicity (EC50) of 15nm Fe2O3 are as shown in Table 2. The toxic potency (STI NOAEC) 
according to tier 3 in [40]. is ≥10mg/m3. The performance of the five models, ANN, RBM, DBN LSTM and GRU, are very 
competitive with values >10mg/m3. However, GRU has the lowest RMSE of 0.01923 against other models as shown in 
the Table 2 and also has R2 99.9% with predicted toxicity (Cytotoxicity (EC50) of 15.64 mg/m3. In essence, the results of 
all the models are highly competitive for the prediction of cytotoxicity value. The predicted curves of the five models 
show little deviation from the experimental curves. Fig 7 shows the value of predicted cytotoxicity curve by ANN, RBM, 
DBN LSTM and GRU models which are >10mg/m3. Therefore, predicted toxicity (Cytotoxicity (EC50) of 15nm Fe2O3 is 
15.64 mg/m3 being the value of GRU model having the lowest RMSE and highest R2. This also confirms the classification 
of 15nmFe2O3 as passive (non-toxic) nanomaterial. 

6. Conclusion 

This study developed and compared the performance of ANN, RBM, DBN LSTM and GRU models to predict toxicity. The 
study and understanding of the ANN, RBM, DBN LSTM and GRU models and their roles in regression and classification 
capabilities were achieved. These techniques were implemented using the Microsoft C# programming language to 
perform regression and classification task for the nanomaterial toxicity. The deep learning approach therefore provided 
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means of predicting the toxicity of nanomaterials. In view of the uncertainty surrounding the classification of 
nanomaterials and prediction of toxicity of nanomaterials, Fuzzy Logic (FL) concept will be considered as part of the 
future work. 
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