
 Corresponding author: Christian Mancas; Email:
DATASIS Pro Soft srl, Bucharest, Romania.

Copyright © 2022 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0.

On variable geometry database keys and their subkeys

Christian Mancas *

DATASIS ProSoft srl, Bucharest, Romania.

World Journal of Advanced Engineering Technology and Sciences, 2022, 06(02), 071–080

Publication history: Received on 25 June 2022; revised on 28 July 2022; accepted on 30 July 2022

Article DOI: https://doi.org/10.30574/wjaets.2022.6.2.0086

Abstract

This paper introduces variable geometry database (db) keys and their subkeys, both mathematically and in db
terminology, provides an algorithm for assisting their discovery, characterizes it, and presents methods for enforcing
variable geometry keys and their subkeys in db applications using SQL embedding event-driven programming
languages, with an example in MS VBA.

Keywords: Database constraint design; Database constraint enforcement; Database variable geometry key; Database
subkey; MatBase; The (Elementary) Mathematical Data Model

1. Introduction

Key is the most important type of database (db) constraint. By (unique) key, db theory and management systems (DBMS)
understand both single ones, i.e. table columns that do not allow for duplicates, and concatenated (composite) ones, i.e.
sets of table columns that do not allow for duplicates.

Mathematically, single keys are one-to-one functions, while concatenated ones should be minimally one-to-one function
products [1]. Any non-minimal one-to-one product is called a superkey in dbs. Unfortunately, most DBMS versions allow
for declaring both keys and superkeys (which is taking unneeded storage space and processing time).

1.1. Keys and foreign keys

Even more unfortunately, especially beginners are confused by some DBMS versions that are grouping together
(unique) keys (that we will refer from now on as, simply, keys) and the so-called foreign keys (i.e. either table columns
or table column sets that are referencing other ones of same or compatible types, generally from another table, but
sometimes from the same one).

As we have already shown [1, 2], these are in fact orthogonal concepts (e.g. in a COUNTRIES table, column CountryName
is a key, but not a foreign one, Continent is a foreign key, but not a key one, Population is neither a key, nor a foreign key,
and Capital is both a key and a foreign key). In this paper we are only interested in keys and not in foreign keys.

1.2. Keys and null values: variable geometry db keys and their subkeys

Mathematically, functions are not only functional, but also totally defined (i.e. for each element in their domain there is
one and only one associated element from their codomain). In dbs, as rather often it is the case that we do not know, at
least temporarily, or do not care for some column values, or they are not possible in some contexts, columns are
functional, but not total: totality is considered a constraint type, generally denoted NOT NULL.

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://wjaets.com/
https://doi.org/10.30574/wjaets.2022.6.2.0086
https://crossmark.crossref.org/dialog/?doi=10.30574/wjaets.2022.6.2.0086&domain=pdf

World Journal of Advanced Engineering Technology and Sciences, 2022, 06(02), 071–080

72

Mathematically, this implies the existence of a countable distinguished set NULLS that is merged with the base table
column codomains. For example, again in a table COUNTRIES, a column MaxAltitude would not be declared NOT NULL,
so the corresponding function would be MaxAltitude : COUNTRIES  [0, 8850]  NULLS.

Normally, being infinitely many (and distinct between them), null values (nulls) should not interact with db single keys.
Fortunately, for example, in MS Access you can still declare Capital a key, even if it is not NOT NULL, and store in it as
many null values as you wish (including for all the rows of the COUNTRIES table). Unfortunately, for example, MS SQL
Server assumes that there is a single null value, so you can still declare Capital as a key, but it cannot store more than
one null value at any moment. The only exception that is uniformly treated by all DBMS versions are the primary keys,
which do not accept nulls by definition and which may be declared in any table, but there may be only one such key per
table.

However, even theoretically, null values sometimes heavily interact with db concatenated keys. For example, in any
operating system in which files reside in folders, should have a name, and might have an optional extension, and in
which folders are files as well, in any folder there may not be two files having either same name and extension, or same
name without extensions.

Mathematically, this means that not only Folder  FName  FExt : FILES  FILES  ASCII(255)  ASCII(255)  NULLS is
minimally one-to-one, but also Folder  FName : FILES  FILES  ASCII(255) is minimally one-to-one for any x FILES
for which FExt(x)  NULLS. Please note, however, that Folder  FName  FExt is not a superkey of Folder  FName, as
there may be in any folder two files having same name, but distinct not-null extensions or one extension not-null and
the other one null, so Folder  FName  FExt is minimally one-to-one.

We call keys like Folder  FName  FExt variable geometry keys, i.e. concatenated keys that have at least one non-totally
defined member, without which they are still keys whenever that member has null values, and constraints like Folder 
FName minimally one-to-one for any x FILES for which FExt(x)  NULLS subkeys.

Denotationally, we write Folder  FName  FExt key (which is a shortcut for (x,yFILES, xy)(Folder(x)  Folder(y) 
FName(x)  FName(y)  FExt(x)  FExt(y))) and Folder  FName subkey whenever FExt IS NULL (which is a shortcut for
(x,yFILES, xy)(FExt(x)  NULLS  FExt(y)  NULLS  Folder(x)  Folder(y)  FName(x)  FName(y))), respectively.

Generally, given a key f1  …  fn, n > 1, a subkey of it is a constraint of the form (x,ydom(f1  …  fn), xy)(f1(x)  NULLS
 f1(y)  NULLS  …  fm(x)  NULLS  fm(y)  NULLS  fm + 1(x)  fm + 1(y)  …  fn(x)  fn(y)), where 1 ≤ m < n, m and n
naturals; then, formally, a variable geometry key is a concatenated key that has at least one associated subkey.

Obviously, if we denote by s the number of subkeys of a key f = f1 • … • fn having at least one non-total member, according
to Newton’s binomial, 0 ≤ s ≤ 2n - 2, as there may be none and at most C(n, 1) + … + C(n, n - 1) subkeys of it; if f has i non-
total members, 1 ≤ i ≤ n, then, if f is a variable geometry key, 1 ≤ s ≤ 2i – 1 = C(i, 0) + … + C(i, i - 1).

All business rules (constraints) that are governing the sub-universes modelled by dbs should be discovered and
enforced in the corresponding dbs’ schemas and db managing applications: otherwise, their instances might be
implausible. Besides the key type ones, the subkeys of variable geometry keys also play a cornerstone role, both
practically and theoretically.

Unfortunately, not only minimal uniqueness is both relative, highly dependent on the context, semantic, hence only
discoverable by humans, and not that easy to fully detect, as the complexity of this process is exponential in the number
of involved table prime columns, but, as shown in the second section of this paper, subkeys are too.

Consequently, it is our firm belief that any purely syntactic approach to inferring keys and/or subkeys may not be
successful. Fortunately, math and computer science may assist db designers in both validating existing enforced keys
and discovering all those that are possibly missing, including subkeys of the variable geometry ones, by algorithmically
guiding them not to miss any possible key and subkey, not to waste time with either non-prime attributes or superkeys,
or NOT NULL ones, as well as when to safely stop looking for keys, as none others might be discovered afterwards.

1.3. Related work

Keys, foreign keys, and null values have been extensively studied for the last half of century, e.g. [1, 2, 3]. Interactions
between keys and null values have also been investigated (e.g [4, 5, 6, 7, 8, 9, 10]), but, to our knowledge, variable
geometry keys and their subkeys were not.

World Journal of Advanced Engineering Technology and Sciences, 2022, 06(02), 071–080

73

The subkey constraint type presented here was introduced in the framework of the (Elementary) Mathematical Data
Model [11] and is completely different from the homonym concept used in the design of normal forms in the framework
of the Relational Data Model [3].

1.4. Paper outline

The second section of this paper investigates variable geometry keys and their subkeys discovery, while the third one
provides hints on their enforcement. The paper ends with conclusion and references.

2. Variable geometry keys and their subkeys discovery

Currently, there are two main approaches for keys discovery [2]: data mining (syntactical) and db design techniques
(semantical). As advocated in [2], we strongly favor the semantical approach, mainly as only humans can decide whether
a function should be one-to-one or a function product should be minimally one-to-one in a given sub-universe of
discourse, but also to guarantee plausibility of db instances even before they are created, as well as to avoid both false
negative and false positive keys (obtained through data mining). Consequently, we proposed a series of algorithms for
key discovery assistance [1, 2].

For example, variable geometry keys and their subkeys may be discovered with only an addition at the end of Algorithm
A3 from [2] shown in Figure 1 (i.e. pseudo-code statements between 16 and 28). The main ideas behind this addition to
A3 are the following two ones:

 Variable geometry keys can be discovered only after discovering a concatenated key that has at least one non-
total member.

 There may be several non-total members in a function product, so there may be several subkeys in a variable
geometry key, all of which should be discovered, which means that for any concatenated key that has i not NOT
NULL members, all its possible 2i – 1 combinations should be investigated.

ALGORITHM A4 Keys Discovery Assistance, Including Variable Geometry Ones

Input: a set of n prime not key columns S = {c1, cn} of a same table T and a set of associated keys K, card(K) = k,

k and n naturals, n > 1.

Output: K’, the set of all the keys, and SK, the set of all the subkeys of T.

01. K’ = K;

02. if n > 0 and c1  …  cn is unique then // for all mappings, if any, look for keys

03. if c1  …  cn is minimally unique (in the given context) then

04. K’ = K’  {c1  …  cn}; // add newly found key

 else

05. kmax = C(n, [n/2]); // maximum possible numbers of keys

06. i = 1; // starting column products arity

07. allSuperkeys = false; // initially, no superkeys possible for i = 1

08. while i < n and l < kmax and not allSuperkeys do

09. allSuperkeys = true; // all C(n, i) combinations might be superkeys

10. repeat for all C(n, i) mapping products p made out of i elements

11. if p is not a superkey then // at least one no superkey discovered on

World Journal of Advanced Engineering Technology and Sciences, 2022, 06(02), 071–080

74

12. allSuperkeys = false; // the current level i

13. if p is minimally unique (in the given context) then

14. K’ = K’  { p }; // add newly found key

 end if;

end if; // (of 11.: if p is not a superkey)

 end repeat;

15. i = i + 1; // increment level (mapping products arity)

 end while;

 end if; // (of 03.: if c1  …  cn is minimally unique)

 end if; // (of 02.: if n > 0 and c1  …  cn unique)

16. SK = ; // initialize SK

17. for j = 1 to card(K’) // discover variable geometry keys

18. a = arity(K’(j)); // K’(j) = c1  …  ca

19. if a > 1 then // is current key a concatenated one?

20. i = 0; // number of not NOT NULL columns

21. for m = 1 to a

22. if cm is not NOT NULL then // does current key member allow nulls?

23. i = i + 1;

 end if;

 end for; // (of 21: for m = 1 to a)

 end if; // (of 19: if a > 1)

24. if i > 0 then // K’(j) is a possible variable geometry key

25. for s = 0 to 2i – 2 // investigate all possible subkeys of K’(j)

26. generate sk(s), the s-th possible combination of K’(j)‘s columns;

27. if sk(s) is a subkey (in the given context) then

28. SK = SK  {sk(s)}; // another subkey discovered

 end if;

 end for; // (of 25: for s = 0 to 2i – 2)

 end if; // (of 24: if i > 0)

World Journal of Advanced Engineering Technology and Sciences, 2022, 06(02), 071–080

75

 end for; // (of 17: for j = 1 to card (K’))

End ALGORITHM A4

Figure 1 Algorithm A4 (Best practical keys discovery assistance algorithm, including variable geometry keys and their
subkeys)

For example, let us apply Algorithm A4 from Figure 1 with the above input: T = FILES; S = {Folder, FName, FExt}; n =
card(S) = 3; K = ; k = card(K) = 0:

01. K’ = ;

02. if 3 > 0 and Folder  FName  FExt is unique then // yes, it is

03. if Folder  FName  FExt is minimally unique then // yes, it is

04. K’ = {Folder  FName  FExt};

 end if; // (of 03. if Folder  FName  FExt is minimally unique)

 end if; // (of 02. if 3 > 0 and Folder  FName  FExt unique)

16. SK = ;

17. for j = 1 to 1 // card (K’) = 1

18. a = 3; // K’(1) = Folder  FName  FExt

19. if 3 > 1 then

20. i = 0;

21. for m = 1 to 3

22. if Folder is not NOT NULL end if; // Folder is NOT NULL

22. if FName is not NOT NULL end if; // FName is NOT NULL

22. if FExt is not NOT NULL then // FExt is not NOT NULL

23. i = 1;

 end if;

 end for; // (of 21: for m = 1 to 3)

 end if; // (of 19: if 3 > 1)

24. if 1 > 0 then // K’(1) is a possible variable geometry key

25. for s = 0 to 0

26. sk (0) = Folder  FName whenever FExt IS NULL;

27. if Folder  FName is a subkey whenever FExt IS NULL then // yes, it is

28. SK = {Folder  FName subkey whenever FExt IS NULL};

World Journal of Advanced Engineering Technology and Sciences, 2022, 06(02), 071–080

76

 end if;

 end for; // (of 25: for s = 0 to 0)

 end if; // (of 24: if 1 > 0)

 end for; // (of 17: for j = 1 to 1)

Let now us investigate the characterization of A4, starting with the one of A3 [1, 2] (which is made up of statements 01
to 15 from Figure 1):

Theorem TA3 (Keys Discovery Algorithm Characterization)

The algorithm A3 has the following properties:

 its complexity is O(2n);
 it is complete (i.e. it is generating all possible keys);
 it is sound (i.e. it is generating only possible keys);
 it is relatively optimal (i.e. it generates the minimum possible number of questions to users relative to its

strategy, i.e. only one per possible key, and it is doing its job with minimum number of statement executions).

First, let us note that the added sub-algorithm made of statements between 16 to 28 always stops in finite time:

• 17 runs exactly l = card(K’) times, 0 ≤ l ≤ C(n, [n/2]), naturals [1, 2];
• 21 runs exactly a = arity(K’(j)) times, 2 ≤ a ≤ n, 1 ≤ j ≤ l, naturals;
• 25 runs exactly 2i – 1 times, 0 ≤ i ≤ a, naturals.
• Consequently, the complexity of this sub-algorithm is O(C(n, [n/2]) * (n + 2n)).
• 25 to 28 are generating all possible subkeys of a key; 17 runs 25 to 28 for all table keys; consequently, A4

is complete for the subkeys as well.
• 21 to 24 eliminate all single keys and all concatenated ones that do not have at least one not NOT NULL

column; consequently, A4 is sound for subkeys as well.
• 16 to 28 inspects any key only once, generates any possibly subkey and asks users if it should be one only

once, so A4 is relatively optimal for subkeys as well.

This proves that A4 is characterized by Theorem TA4:

Theorem TA4 (Keys and Subkeys Discovery Algorithm Characterization)

The algorithm A4 has the following properties:

• its complexity is O(C(n, [n/2]) * (n + 2n));
• it is complete (i.e. it is generating all possible keys and their subkeys);
• it is sound (i.e. it is generating only possible keys and their subkeys);
• it is relatively optimal (i.e. it generates the minimum possible number of questions to users relative to its

strategy, i.e. only one per possible key and possible subkey, and it is doing its job with minimum number
of statement executions, both for keys and their subkeys).

The exponential complexity of algorithm A4 should not scare anybody: n, the number of prime columns of any
fundamental db table is generally small, of one digit only, out of which generally more than half are NOT NULL; hence,
the corresponding maximum number of keys is C(9, 4) = 126, while the maxim number of subkeys per variable geometry
key is 24 – 1 = 15.

Practically, in our over 40 years of real life db modelling and db software application architecture, design, and
development, even in large dbs having over 1000 fundamental tables, in average we discovered some 3 keys per table,
not more than one variable geometry key per 10 tables, with no more than 2 subkeys per such keys.

Consequently, it is our firm belief that any DBMS should implement at least A4 to assist its users in discovering all keys
and subkeys in any sub-universe modelled by a db. Algorithm A4 is already implemented in MatBase [12], a prototype

World Journal of Advanced Engineering Technology and Sciences, 2022, 06(02), 071–080

77

intelligent Knowledge and DBMS. Consequently, its users do not need to bother with either missing combinations,
detecting superkeys, skipping variable geometry ones or their subkeys, or in vain looking for subkeys of not variable
geometry keys. Moreover, MatBase automatically generates needed SQL and C# / VBA code for enforcing both keys and
their subkeys.

It is true that, however, discovering of all keys and subkeys of a large db, even when benefitting from working with an
intelligent DBMS as MatBase, is requiring an important amount of db modelling and architectural effort, but it is a one-
time one and it then guarantees the data plausibility forever, so we consider it as extremely worthwhile.

3. Variable geometry keys and their subkeys enforcement

The best solution for enforcing subkeys is developing corresponding methods to be automatically invoked by the event-
driven methods of type Validating (in MS .NET), BeforeUpdate (in MS VBA), etc. from the classes attached to the GUI
forms managing the data from the corresponding tables.

For example, the subkey Folder • FName could be enforced in MS VBA (the simplest event-driven programming
language) by the following function subkeyFolder_FName, called from the Form_BeforeUpdate event-driven method of
the class Form_FILES managing data from table FILES (assuming that the primary key of it is denoted x):

Sub Form_BeforeUpdate (Cancel As Integer)

Cancel = subKeyFolder_FName ()

End Sub

Function subKeyFolder_FName() As Boolean

Dim v as Variant

subKeyFolder_FName = False

If IsNull(FExt) Then

 v = DLookup("x", "FILES ", "x <> " & x & " AND FExt Is Null and Folder = " & Folder & " AND FName = '" & FName & "'")

 If Not IsNull(v) Then

 subKeyFolder_FName = True

 Beep

 MsgBox "There is already a file in this folder having this name and no extension!", vbCritical, _

"Please change either folder or file name, or add a file extension…"

 End If

End If

End Function

Each time users would try to create a new file or change the name and/or the extension of and/or copy or move an
existing one in another folder, the system is automatically invoking the above Form_BeforeUpdate method; if, when
finishes, Cancel is False, the requested operation is performed; otherwise, it is not, as the subkey Folder • FName would
be violated.

World Journal of Advanced Engineering Technology and Sciences, 2022, 06(02), 071–080

78

The function subKeyFolder_FName returns False whenever corresponding FExt is not null (i.e. users also specified an
extension for the current file) or it is null, but in the Folder folder there is no other file having same file name and no
extension; otherwise, it displays the corresponding error message and returns True.

The syntax of its DLookup function is equivalent to the following SQL query:

SELECT x FROM FILES WHERE x <> cr.x AND FExt IS NULL AND Folder = cr.Folder AND FName = "cr.FName";

Where cr is the current row from the table FILES. Whenever the result of such queries is the empty set, DLookup returns
null.

The corresponding pseudocode algorithm is the following:

Boolean Function subKeyFolder_FName (table FILES, int x, int Folder, text FName, text FExt)

// returns true if FExt is null and, in FILES, there is in Folder another file having same FName as file x;

// otherwise, returns false

subKeyFolder_FName = false;

if FExt  NULLS then

 if yFILES such that y  x and FExt(y)  NULLS and Folder(y) == Folder and FName(y) == FName then

 subKeyFolder_FName = true;

 display “There is already a file in this folder having same name and no extension: please change

either folder or file name, or add a file extension!”;

 endif;

endif;

The variable geometry key Folder • FName • FExt, can be simply enforced in any DBMS that correctly assumes NULLS
being infinite (e.g. MS Access) just like any other key, with the following SQL statement:

ALTER TABLE FILES ADD CONSTRAINT keyFolderFNameFExt UNIQUE (Folder, FName, FExt);

In all other DBMS (which either assume that there is only one null value, e.g. MS SQL Server, Oracle, etc. or does not
allow not NOT NULL columns in their keys) they may be enforced together with their subkeys. For example, the
following VBA method varGeomKeyFolder_FName_FExt is enforcing both the above variable geometry key and its
subkey:

Function varGeomKeyFolder_FName_FExt() As Boolean

Dim v As Variant

varGeomKeyFolder_FName_FExt = False

If IsNull(FExt) Then

 v = DLookup("x", "FILES ", "x <> " & x & " AND FExt Is Null AND Folder = " & Folder & " AND FName = '" & FName & "'")

 If Not IsNull(v) Then

 varGeomKeyFolder_FName_FExt = True

World Journal of Advanced Engineering Technology and Sciences, 2022, 06(02), 071–080

79

 Beep

 MsgBox "There is already a file in this folder having this name and no extension!", vbCritical, _

"Please change either folder or file name, or add a file extension…"

 End If

Else

 v = DLookup("x", "FILES", "x <> " & x & " AND FExt = '" & FExt & "' AND Folder = " & Folder & " AND FName = '" & _

FName & "'")

 If Not IsNull(v) Then

 varGeomKeyFolder_FName_FExt = True

 Beep

 MsgBox "There is already a file in this folder having these name and extension!", vbCritical, _

"Please change either folder, or file name, or extension…"

 End If

End If

End Function

The equivalent pseudocode method is the following:

Boolean Function varGeometryKeyFolder_FName(table FILES, int x, int Folder, text FName, Text FExt)

// returns true if, in FILES, there is in Folder another file having same FName and FExt as file x or if both of them have

// no extension; otherwise, returns false

varGeometryKeyFolder_FName = false;

if FExt  NULLS then

 if yFILES such that y  x and FExt(y)  NULLS and Folder(y) == Folder and FName(y) == FName then

 subKeyFolder_FName = true;

 display “There is already a file in this folder having same name and no extension: please change

either folder or file name, or add a file extension!”;

 endif;

else

 if yFILES such that y  x and FExt(y) == FExt and Folder(y) == Folder and FName(y) == FName then

 varGeometryKeyFolder_FName = true;

World Journal of Advanced Engineering Technology and Sciences, 2022, 06(02), 071–080

80

 display “There is already a file in this folder having same name and extension: please change

either folder, or file name, or extension!”;

 endif;

endif;

4. Conclusion

This paper provides db and mathematical definitions for both variable geometry keys and their subkeys, an extension
to, in our opinion, the best algorithm assisting keys discovery for also discovering the variable geometry ones and their
subkeys, a Theorem that characterizes this algorithm, as well as programmatical solutions for enforcing the variable
geometry keys and their subkeys for both DBMS types – i.e. assuming either an infinite number of nulls or only one.

Declaring and enforcing subkeys as well further contribute to guaranteeing db instances quality. Consequently, subkeys
should be added to all DBMSes, so that developers need not enforce them through their code.

Compliance with ethical standards

Acknowledgments

The author declares that no funds, grants, or other support were received during the preparation of this manuscript.

Disclosure of conflict of interest

The author has no relevant financial or non-financial interests to disclose.

References

[1] Mancas C. (2015). Conceptual Data Modeling and Database Design: A Completely Algorithmic Approach. Volume
I: The Shortest Advisable Path. Apple Academic Press / CRC Press / Francis & Taylor, Waretown, NJ.

[2] Mancas C. (2016). Algorithms for Database Keys Discovery Assistance. In: Řepa V, Bruckner T (eds) Perspectives
in Business Informatics Research. BIR 2016. LNBIP 261: 322–338.

[3] Date CJ. (2013). Relational Theory for Computer Professionals: What Relational Databases Are Really All About?
O’Reilly Media, Sebastopol, CA.

[4] Thalheim B. (1989). On semantic issues connected with keys in relational databases permitting null values. J.
Inform. Process. Cybernet. 25: 11–20.

[5] Philip GC. (2002). Normalization of Relations with Nulls in Candidate Keys. JDN 13(3): 35–45.

[6] Hartmann S, Leck U, Link S. (2010). On Codd Families of Keys over Incomplete Relations. The Computer Journal
54(7): 1166–1180.

[7] Thalheim B, Schewe KD. (2010). NULL 'Value' algebras and logics. Frontiers in Artificial Intelligence and
Applications 225: 354–367.

[8] Kohler H, Link S, Zhou X. (2015). Possible and Certain SQL Keys. In: Proc. of the VLDB Endowment 8: 1118–1129.

[9] Alattar M, Sali A. (2019). Keys in Relational Databases with Nulls and Bounded Domains. In: Weltzer T, Eder J,
Podgorelec V, Kamišalić Latifić A (eds), Advances in Databases and Information Systems, ADBIS 11695: 33–50.

[10] Al-Atar MH. (2021). Key and Functional Dependency Constraints for Incomplete Databases with Limited
Domains. Ph.D. Dissertation Booklet, Budapest Univ. of Techn. & Econ., Dept. Comp. Sci. & IT.

[11] Mancas C. (2018). MatBase Constraint Sets Coherence and Minimality Enforcement Algorithms. In: Benczur A,
Thalheim B, Horvath T (eds.), Proc. 22nd ADBIS Conf. on Advances in DB and Inf. Syst., LNCS 11019, 263–277.

[12] Mancas C. (2019). MatBase – a Tool for Transparent Programming while Modelling Data at Conceptual Levels. In:
Meghanathan N et al (eds.), Proc. CSITEC 2019, 15–27.

