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Abstract 

A study was conducted in Dinogeng Agricultural Extension Area (DAEA) of Kgatleng District, Botswana, with the 
objective of assessing current soil erosion risk (using 2020 Landsat imagery) resulting from the Integrated Support 
Programme for Arable Agricultural Development (ISPAAD) that was launched in 2009. The Soil Loss Estimation Model 
for Southern Africa (SLEMSA) tool integrated with Geographical Information System (GIS) and Remote Sensing assessed 
the soil erosion risk in the study area. The results indicated that 88% of DAEA has low to moderate soil erosion risk (0 
– 2 tha-1yr-1). Only 12% of the study area experience very high to extreme high erosion risk (5 - ≥10 tha-1yr-1) along the
streams, at steep slopes and areas of bare land. Common practice calls for conservation measures to be applied on areas 
with high soil loss. This study has underscored the role of topography and soil erodibility, as natural factors, in driving 
soil erosion.  
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1. Introduction

Soil erosion is one of the major worldwide environmental hazards causing severe land degradation. The estimated mean 
rates of soil erosion across the world ranges between 12 and 15 t ha−1 yr −1 [1]. In the Ethiopian highlands, an annual 
soil loss reaches 200-300 tons ha-1 year-1 [2]. Botswana, located in semi-arid environments, is most vulnerable to soil 
erosion threats due to less biomass to sustain soil structural integrity [3]. Population explosion, deforestation, 
unsustainable agricultural cultivation, and overgrazing are among the main factors causing soil erosion hazards. A study 
by Kayombo et al. [4] observed that the deterioration of soil quality, in terms of nutrient depletion and poor physical 
properties for cultivated as compared to virgin soils was a result of continuous cultivation. The average crop yield from 
a piece of land in Botswana is very low mainly due to soil fertility decline associated with removal of topsoil by erosion. 

Soil loss risk can now be estimated from a wide range of empirical, conceptual and physical based models [5, 6]. These 
models vary in complexity, data requirements, processes and calibration, and include statistical model of the Universal 
Soil Loss Equation (USLE) and its derivatives - Revised Universal Soil Loss Equation (RUSLE), Soil Loss Estimation Model 
for Southern Africa (SLEMSA), and Soil and Water Assessment Tool (SWAT) or the Water Erosion Prediction Project 
(WEPP). In general, model selection is particularly dependent on the availability of data, attributes of a working area 
and intended use. The dominant model adopted in most countries in Southern Africa and selected for this study is the 
SLEMSA model.  

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://wjaets.com/
https://doi.org/10.30574/wjaets.2022.7.2.0111
https://crossmark.crossref.org/dialog/?doi=10.30574/wjaets.2022.7.2.0111&domain=pdf


World Journal of Advanced Engineering Technology and Sciences, 2022, 07(01), 001–012 

2 

Introduction of Geographical Information Systems (GIS) and Remote Sensing (RS) technology has made it possible to 
implement the equation in a spatially distributed manner and prediction of soil erosion on a cell-by-cell basis using the 
SLEMSA model [7].  

Several studies have been carried out by different researchers on soil erosion risk modelling. However, the 
implementation of SLEMSA model has received little attention in Botswana. Less is known about the spatial extent and 
distribution within human-induced disturbed areas at an agricultural extension area scale. The objective of the present 
study was, therefore, to model soil erosion in the Dinogeng Agricultural Extension Area of Kgatleng District using 
SLEMSA integrated with GIS and Remote Sensing.  

2. Material and methods 

2.1. Study site description 

The study area extends from 240 8҆ 0҆ ̓ to 240 35҆ 0҆ ҆ S latitude and 260 5҆ 0҆ ̓ to 260 35҆ 0҆ ҆ E longitude and it covers an area of 
about 83 100 hectares. The climate is semiarid with a mean annual average temperature of 20.7 0C fluctuating from 13.2 
℃ to 28.2 ℃. The topography is flat and undulating, with the elevation ranging from 901 to 1003m. The communities in 
the study area depend on ground water for their livelihood. The soils are predominantly Luvisols with a textural 
inclination from sandy clay loam to sandy clay. The vegetation of the study site is dominated by shrubs with areas of 
woodland and savanna. Almost 50% of the area is covered by shrubs; about 7% is evergreen forest mainly along the 
Notwane River and other drainage lines (Sitayelo, 2022). An overview of the boundary of the study area is given in 
Figure 1. 

 

Figure 1 Location of Dinogeng within Kgatleng District in Botswana 

2.2. Mapping of soil erosion risk 

Mapping of soil erosion risk in the study area was carried out according to SLEMSA model. The model input data 
included rainfall energy, soil erodibility, slopes length and steepness, topographic factor, crop ratio and principal factor.  

2.2.1. Rainfall Energy (E) 

The monthly rainfall amounts of Dinogeng were collected for over 19 years from the Department of Meteorological 
Services (DMS). Monthly rainfall records from three nearby meteorological stations covering various periods between 
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1995 and 2019 were used to calculate the mean annual rainfall. Rainfall energy was then determined according to 
Equation (1) for erosive rainfall [8, 9]. The mean annual rainfall was first interpolated to generate continuous rainfall 
data for each grid cell by using Analyst Tools Raster Inverse Distance Weighting (IDW) Interpolation in ArcGIS to create 
a raster map for the area shown in Figure 2. The rainfall stations were selected based on the availability of complete 
data and their proximity to the study area. Details of the rainfall stations are presented in Table 1 

E = 18.846*MAP………………………….. (1) 

Where, E is the rainfall energy and MAP is the mean annual precipitation (mm). 

Table 1 Meteorological variable records for the stations 

Station 

no. 

Station 

ID 

Station 

name 

Latitude 

◦S 

Longitude 

◦E 

Elevation 

amsl (m) 

Average Annual 

Rainfall mm 

Period 

1 136 Mochudi Police 240 23’ 260 8’ 945 405 2000 to 2019   

2 177 Olifantsdrift Police 240 12’ 260 41’ 855 326 1995 to 2019 

3 228 Sikwane Police 240 25’ 260 27’ 915 373 1995 to 2019 

 

 

Figure 2 Dinogeng spatial rainfall variability 

2.2.2. Soil Erodibility Factor (F) 

The soil units’ map for the area of interest was extracted from Kgatleng District digital soil map at 1: 250 000 scale by 
masking using Spatial Analyst Tools within ArcGIS environment. The soil erodibility (F) factor given in Table 2 was 
estimated based on local condition and soil texture [2, 5, 7, 10, 11]. The F value increased with declining probability of 
soil erodibility. The resulting shape file was converted to raster format with a cell size of 30 m x 30 m. The raster map 
was then reclassified based on their erodibility values. 
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Table 2 Soil erodibility factor (F) values  

Soil texture Soil type F value 

Light Sands, Loamy sands, Sandy Loams 4 

Medium Sandy clay Loam, Sandy clay 5 

Heavy Clay, Heavy clay 6 

2.2.3. Slope length and slope steepness 

The Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) of spatial resolution of 30 m was used to 
generate slope using Spatial Analyst Tools within ArcMap 10.7 environment. Flow accumulation and slope steepness 
were then calculated using filled DEM with a Raster Calculator in ArcGIS [2], using Equations (2) and (3): 

l = Flow accumulation * cell size……………………….. (2) 

S = (0.43 + 0.30 s + 0.043 s2)/6.613 ………………….. (3) 

Where; 
l is the slope length,  
S is the slope gradient factor and s is the gradient (%). 

2.2.4. Topographic factor (X) 

The topographic ratio is a product of two factors: a slope gradient factor and a slope length factor. The slope length and 
slope gradient factors were calculated using the filled DEM and entered the Equation (4) [12] to produce the topographic 
factor grid map. To calculate the slope length, derivation of flow accumulation was based on the DEM after conducting 
the Fill and Flow direction process respectively in ArcGIS [13]. 

X=√ (l/22.1) (0.065+0.045S+0.0065S2)……………………….. (4) 

Where; 
X is the topographic ratio, 
 l is the slope length (m), S is slope (%). 

2.2.5. Crop ratio (C) 

The land cover classification generated from Landsat 8 imagery for the year 2020 was used to determine the C-factor. 
Due to the lack of detailed information and difficulties in processing, C-factor values were assigned to every class in a 
GIS using a raster calculator, based on literature data in Table 3. 

Table 3 C-factor values for the study area 

No Land cover classes  C-factor values Source  

1 Shrub  0.014  [11]  

2 Forest  0.01  [14]  

3 Cultivated land  0.15  [2]  

4 Bare land  0.6  [13, 14]  

2.2.6. Principal factor (K) 

The value of the K factor was determined by relating mean annual soil loss to mean annual rainfall energy (E) using 
Equation (5) [15] 

lnK= b ln E + a…………………Equation (5) 

Where; 
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E is in Jm-2mm-1;  
a and b are functions of the soil erodibility factor (F): 

a = 2.884 – 8.2109F………………………… (6) 

b = 0.4681 + 0.7663F………………………. (7) 

Equations (6) and (7) were substituted into equation (5) to get the final Equation (8) used for estimation of the K factor. 

K= exp [(0.4681 + 0.7663*(F)) ln E + 2.884 + (8.1209*F)] ………………………. (8) 

K factor values were assigned to respective soil types in soil map to generate the soil erodibility map using GIS.  

2.2.7. Soil loss analysis 

The overall procedure involved the use of the SLEMSA model in a GIS environment. The input parameters obtained from 
meteorological stations, soil map, topographic map, satellite images and DEM were processed as shown in Figure 3. A 
cell-by-cell analysis of the soil loss was done to determine annual soil loss rate by overlaying and multiplying the 
respective SLEMSA sub-model values (K, C, and X) interactively by using Spatial Analyst Tool Map Algebra Raster 
Calculator in ArcGIS 10.7 environment as shown in Equation (9). 

Z = KCX [8] ………………….. (9) 

Where;  
Z is the predicted mean annual soil loss in tha-1yr-1; 
K is the mean annual soil loss in tha-1yr-1 from a standard field plot 30 x 10 m with a slope of 4.5% and for a soil of a 
known erodibility rating F under a weed-free bare fallow; 
C is the ratio of soil lost from a cropped plot to that lost from bare fallow; 
X is the ratio to account for different slope steepness and length. 

The soil loss potential was then categorized into different severity classes to determine erosion risk priority areas for 
conservation planning [6]. 

 

Figure 3 Flowchart for implementation of SLEMSA model 
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2.3. Software Packages and Data Processing 

Geomatica 2018 Catalyst Professional software was used for image processing and digital image classification or 
spectral class recognition was accomplished by supervised classification. The classification results (i.e. land cover raster 
image) were exported into ArcMap 10.7 for accuracy assessment with the aid of high-resolution imagery software, 
Google Earth and Google Earth Pro. Layers were spatially organized with the same resolution and coordinate system 
within ArcGIS environment [16]. Microsoft Office was used for presentation, documentation and pre-processing 
calculations in excel environment. The GeoConverter-Geoplaner software package was used for converting geographical 
coordinates.  

3. Results and discussion 

3.1. Mapping of soil erosion risk 

Mapping of soil erosion in the study area was carried out according to SLEMSA model. The SLEMSA model includes 
topographic indices derived from the DEM, climatic factors, vegetation and soil characteristics. 

3.1.1. Topographic Ratio (X) 

The DEM, slope and flow accumulation maps are presented in Figure 4. The input factors were combined to determine 
the topographic factor map (Figure 5) using Equation (4). The topographic ratio ranged from 0 to a maximum of 41.2 
as observed in Figure 4. The findings show that the slope and flow accumulation are heavily influenced by altitude and 
by increasing their values, the topographic ratio factor also implies an increasing trend. 

 

Figure 4 Topographic Ratio input factors and DEM 
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Figure 5 Topographic ratio (X factor) map 

3.1.2. Rainfall energy (E) 

The mean annual precipitation data interpolated over the entire study area using IDW interpolation technique was 
converted to rainfall energy by applying Equation (1). The annual rainfall of Dinogeng ranges from 347.8 mm to 
403.9mm. The result showed that the average E factor value in the study area was 7071 MJmmha-1 year-1 ranging from 
6554MJmmha-1 to 7612 MJmmha-1 as shown in Figure 6. 

3.1.3. Soil erodibility factor (F) 

Soils which are highly susceptible to erosion have erodibility values close to 1, whereas corresponding values close to 
10 indicate the resistive nature of the soil as shown in Figure 6. In the current study, information on soil structure and 
profile permeability was not available. Therefore, the F factor was appraised based on soil texture as shown in Table 4. 

Table 4 Method of assessing F value (Heydarnejad et al., 2020) 

Soil texture Soil type F value 

Light Sands, Loamy sands, Sandy Loams 4 

Medium Sandy clay Loam, Sandy clay 5 

Heavy Clay, Heavy clay 6 

3.1.4. Principal factor (K) 

After determining the values of F and E, the value of K was calculated using Equation (8) in a GIS environment to produce 
a map. The results show that the K factor ranges between 1.1 tha-1yr-1 and 7.2 tha-1yr-1 (Figure 6) with an average value 
of 2.5 tha-1yr-1. 

3.1.5. Crop ratio factor (C) 

To evaluate and determine the crop ratio, indicating the amount of soil loss at bare surfaces and the effect of vegetation 
on soil conservation, C-factor values were assigned to every LULC class in a GIS using a raster calculator, based on 
literature data in Table 5 and the values ranged from 0.01 to 0.6 as shown in Figure 7.  
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Table 5 C-factor values for the study area 

No Land cover classes  C-factor values  Source 

1 Shrub  0.014  [11] 

2 Forest  0.01  [14] 

3 Cultivated land  0.15  [2] 

4 Bare land  0.6  [13, 14] 

 

 

Figure 6 Principal K and input factors 
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Figure 7 Spatial distribution of (a) LULC for 2020 and (b) Crop ratio  

3.2. Determination of SLEMSA model (Z) 

The calculation of erosion in this model was carried out through equation Z = KCX (Elwell, 1978) to obtain the annual 
soil loss map shown in Figure 8. The results were then used to determine different categories of erosion risk areas 
shown in Table 6 and Figure 9. 

 

Figure 8 Spatial distribution of annual soil loss of Dinogeng Agricultural Extension Area 
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3.3. Potential erosion risk analysis 

The study area was classified into five soil erosion risk categories shown in Figure 9 [6]. The area and proportion of soil 
erosion risk classes are illustrated in Table 6. The estimated soil erosion risk averaged 0.9 t ha-1 yr-1. The maximum and 
minimum losses are ranging from about 0 tha−1∙yr−1 to 213.2 tha−1∙yr−1. Eighty-eight percent of the study area (69, 999 
ha) has erosion risk of 0 tha−1yr−1 to 2 tha−1y−1 (low to moderate). Only 2% (1905 ha) and 10% (7946 ha) of the study 
area experience very high to extreme soil erosion loss rate of 5-10 tha-1yr-1 and ≥10 tha-1yr1, respectively. The spatial 
patterns of the estimated soil erosion risk indicate very high to extreme erosion risk areas are occurring along the 
streams, at steep slopes and areas of bare land. Similar studies have been done to produce soil erosion hazard maps for 
agricultural and management planning [8, 9, 17, 18]. 

Soil erodibility and topography were found to be key determinants of soil erosion risk in the study area according to 
SLEMSA model. However, areas with a high slope are small compared to plain and flat areas. A larger portion of the 
study area is located on flat areas which experience low erosion. Vegetation is a human controlled factor and thus by 
implementing conservation measures and preserving existing vegetation, erosion risks can be greatly reduced. 

Table 6 Estimated soil erosion risk in Dinogeng Agricultural Extension Area for 2020 LULC 

Erosion risk classes Soil loss (tha-1yr-1) Area (ha) Percentage  

Low 0 - 1 62521.0 75% 

Moderate 1 - 2 7477.9 9% 

High 2 - 5 3266.7 4% 

Very high 5 - 10 1905.4 2% 

Extremely high >10 7946.0 10% 

 

 

Figure 9 Soil erosion risk map for Dinogeng Agricultural Extension Area 

4. Conclusion 

In mapping soil erosion hazards, the integration of SLEMSA in GIS was used to estimate the spatial distribution of soil 
loss in the Dinogeng Agricultural Extension Area (DAEA) using the LULC map of 2020 Landsat imagery. The results 
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indicated that 88% of DAEA has low to moderate soil erosion risk (0 – 2 tha-1yr-1). Only 12% of the study area experience 
very high to extreme high erosion risk (5 - ≥10 tha-1yr-1) along the streams, at steep slopes and areas of bare land. The 
results of the study have shown SLEMSA as a useful model to differentiate areas of high and low erosion potential. 

This study has underscored the role of topography and soil erodibility, as natural factors, in driving soil erosion. As a 
larger portion of the study area is located on flat areas which experience low erosion, LULC is a key human controlled 
factor affecting erosion, and therefore, implementing conservation measures and preserving existing vegetation can 
greatly reduce erosion risks. 
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