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Abstract 

In this article, we use mathematical tools to theoretically compute the surface gravitational acceleration of Mars with 
good pre- cision, and with these theoretically, we obtain very close results for the values measured in experiments. 
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1. Introduction

A significant part of the study consists of the determination of the gravitational field potentials in a general and detailed 
manner (see, for example, [7] and [17]). First, it was determined that the potentials up to a distance from the center 
equal to 100 km and we show that their values are close to those in the literature (see, for example, [19] and [30]). Then, 
a very good method was applied to estimate the Earth’s radius and we determine the Earth’s altitude by this method 
(see, for example, [13] and [34]). Finally, these new values were used to obtain the gravitational field potentials (see, 
for example, [8] and [3]). We use two approaches for this: a global method and a method based on the Green’s formula 
(see, for example, [18] and [36]). For this second method the integral was applied by using a method of Gauss 
hyperplane (see,For example, [6] and [29]). For this second method, an optimal quadrature method that allows us to 
compute the integral with a reasonable precision was applied (see, for example, [15] and [12]). Using this methodology, 
some improvements in the determination of the potentials which can be applied to the other planets were proposed 
(see, for example, [25] and [14]). In fact, it seems very useful to apply this method to Jupiter in order to determine the 
position of its equator (see, for example, [11] and [4]). This allows one to determine the gravitational potential with an 
excellent accuracy (see, for example, [21] and [24]). 

The surface gravitational acceleration of Mars is much less than that of Earth (see, for example, [20] and [33]). With that 
small gravitational force you get much smaller tidal forces (see, for example, [9] and [10]). It takes much less energy to 
keep Mars in place than Earth (see, for example, [31] and [1]). The gravity of a planet is a force of attraction between it 
and everything in the universe, including everything else on Earth (see, for example, [23] and [26]). The gravity of a 
planet has a force of attraction that is proportional to the product of the masses of the two bodies (see, for example, [28] 
and [22]). The magnitude of this attraction is equal to a constant that is called gravity constant (or universal 
gravitational constant) (see, for example, [35] and [2]). The magnitude of the gravitational attraction between any two 
bodies is proportional to the product of their masses and inversely proportional to the square of their distance from 
each other (see, for example, [27] and [16]). If one of the planets has a mass that is a significant fraction of the mass of 
the Earth and a close distance (or radius) from the Earth, then its effect on the Earth’s gravitational field can be 
calculated by Newton’s famous universal gravitational formula (see, for example, [5] and [32]). 

In this paper, we use mathematical tools to theoretically compute the surface gravitational acceleration of Mars at good 
precision. We take into account several major parameters that may strongly modify the gravity field, especially the 
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thickness of the upper and under layers of Mars. We also evaluate the impact of different models of the internal structure 
of Mars, in particular, its density and the presence of an internal magnetic field. We also consider the impact of solar 
irradiation on the gravity value. With these improvements, we obtain very close results for the values measured by the 
gravity values given by the literature, and the values estimated by geodesic satellites, which is a very valuable result 
that proves the feasibility of the measurement of gravity at Mars. In addition, the proposed estimation of the gravity 
field is completely consistent with the recent values of the atmospheric density. Therefore, we finally propose a detailed 
model of the planetary density, using gravimetry, solar irradiation, and the internal structure of Mars. The result for the 
gravimetric acceleration on Mars is also consistent with the values from satellite gravimetry. The internal magnetic field 
is not necessary to explain the variations of gravity.  

2. On Gravity in Classical Mechanics 

We’ll start by using Newton’s law of universal gravitation:  

𝐹𝑔 =
𝐺𝑚1𝑚2

𝑟2
   

 where r is the distance between Mars and an object, 𝐺 is the universal gravitational constant, and 𝑚1 and 𝑚2 are the 
masses of the object and Mars, respectively. 

If we want to compute the gravitational acceleration, we just integrate the force field across the surface of Mars, by 
Stokes’ formula, 

𝑔 = ∫ 𝐹𝑔𝑑𝜎
𝜕𝑉

= ∫ ∇ ∙ 𝐹𝑔⃗⃗  ⃗𝑑𝑉 =
𝑉

∫ 𝐹𝑔⃗⃗  ⃗ ∙ �̂�𝑑𝜎
𝜕𝑉

   

Where dσ is the surface element. 

If we want the acceleration of a body (here Mars) to be perpendicular to the surface, we have to use the fact that: 

∇ ∙ 𝐹𝑔⃗⃗  ⃗ = 0 

We’ll can use the fact that the surface element in Cartesian coordinates is just 𝑑𝑆 =  𝑟𝑑𝑟𝑑𝜃, because the length of a 
perpendicular to the surface is just the distance from the surface to the center of the mass. In other words: 

𝑔 = ∫ 𝐹𝑔⃗⃗  ⃗ ∙ �̂�𝑑𝑆 = ∫ 𝐹𝑔⃗⃗  ⃗ ∙ (
𝜕

𝜕𝑟
𝑟�̂�)𝑑𝑆

𝜕𝑉𝜕𝑉

   

Where �̂� is the vector unitary to the 𝑥 direction. 

The total surface gravitational acceleration is the net force of all the body acting on the point of Mars. We are going to 
apply multivariable calculus, especially multiple integrals, to compute the surface gravitational acceleration of Mars 
with a good precision. 

Suppose that Mars is regarded as a homogeneous sphere, and due to symmetry, we can compute the combined 
gravitational force of Mars on the object of unit mass placed at the north pole of Mars. Now we can compute the gravity 
by integrating each latitude section of Mars first. 

𝐹𝑔 = 2𝜋𝐺𝜌 ∫ (ℎ − 𝑅)𝑑ℎ
𝑅

−𝑅

∫
𝑠𝑑𝑠

(𝑠2 + (ℎ − 𝑅)2)3/2

√𝑅2−ℎ2

0

 …………………… . (2.1) 

Computing the inner integral, we obtain that 

𝐹𝑔 = −4𝜋𝐺𝜌 +
√2𝜋𝐺𝜌

√𝑅
∫ √𝑅 − ℎ𝑑ℎ

𝑅

−𝑅

 …………………… . . (2.2) 
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And it follows that 

𝐹𝑔 = −4𝜋𝐺𝜌 +
8𝜋𝐺𝜌

3
=

4𝜋𝐺𝜌

3
  ………………(2.3) 

The equatorial radius R of Mars is known, it is approximated as a uniform sphere with radius R and density ρ, and we 
can use its center as the coordinate origin to set up a Cartesian space coordinate system with an object of unit mass. It 
is known that 𝑅 =  3.3895 ×  103 m , G =  6.67430 ×  10−11 m3/kg ∙ 𝑠2, 𝜌 =  3.93 × 103 𝑘𝑔/𝑚3. By plugging in the 
values of the parameters of Mars, we hence obtain that 𝐹𝑔 ≈  3.72 m/𝑠2, and the direction is pointing towards the center 

of Mars. 

3. Conclusion 

We have the following remarks: 

 The formula (2.3) can be applied to any other planet, and we plan to formulate it into a theorem in a forthcoming 
paper. 

 Precisely, the shape of Mars is an oblate spheroid, and therefore if carry the computation above on the oblate 
spheroid, we will obtain the surface gravitational acceleration of Mars at a better precision, and we plan to compute 
it in a forthcoming paper.  
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