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Abstract 

The availability of numerous technologies has led to an increase in the usage of bioinformatics in recent years. Siri, 
Alexa, and other artificial intelligence systems assist us in our daily lives. Voice recognition systems are used to confirm 
an individual's identity based on particular elements retrieved from his or her voice. In this regard, the current study 
attempted to assess the proportion of speaker identification in tonal language speaking persons. The study included 20 
participants in the age range from 20 to 40 years. All participants were given a few phrases to speak and were recorded. 
PRAAT software was used to analyze the obtained data. A vector was developed by using the first two formants, which 
was then utilized to calculate the percentage for speaker identification. From small sample size to bigger sample size, 
three groups were formed: A-5, B-10, and C-20 speakers. In a lower sample size, results showed a benchmark of 65% 
for vowel /i:/, which is better for SPID, 60% for /a:/, which is above chance level, and 45% for /u:/, which is below 
chance level. The authors stated that increasing the sample size has an influence on speaker identification. 
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1. Introduction

The challenge presented by speaker identification is fundamentally distinct from the challenge presented by any form 
of identification that relies on constant cues. The voice of an individual is far from constant. The majority of lay people 
are unaware that such variations occur because typically no one uses the same word twice with all attributes being the 
same. For instance, recognizing person’s voice on telephone banking systems, in alerting automated systems of speaker 
changes and identifying speaker in a discussion. Forensic speaker identification can also be performed by matching 
unknown voice with other voices present in the data list through various verification process to match the speaker. The 
emphasis in these systems is on the vocal qualities that make speech rather than on the sound or pronunciation of 
speech. The dimensions of the vocal tract, mouth, and other speech processing machinery in the human body can all 
have an effect on vocal qualities. The quality of the voice is altered by noisy environments and the emotional state of the 
users. A person's voice may also alter owing to health issues such as a cold, which may impair voice recognition. The 
size of the voice template library is big, which can affect matching performance. Automated voice recognition systems 
can identify people based on their voices with less than a 1% error rate. The error rate is even lower when speakers say 
a pre-programmed sentence. The accuracy of these technologies is comparable to that of fingerprint scanners. These 
systems have a 2% FAR and a 10% FRR if the sensor distance is 20 cm. SR systems are employed when the only 
accessible biometric is voice, which is affordable and requires minimal expenditure. [26]. 

Companies utilize biometric-based voice recognition software to prevent voice mimicry. The key to developing this 
type of software is to record and analyze a person's natural and distinctive aspects of voice and speech in the same 
way that a fingerprint or iris pattern is recorded. Voiceprint is a secure authent ication solution that enables 
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businesses to do two things: secure call centers from fraudulent calls and protect impersonated people whose 
identities have been stolen. A brief speech sample is sufficient to identify someone and exclude imposters. [10]  

Controlling access to protected resources necessitates the personal identification verification of users. Presenting a 
special personal item like a key, a badge, or a password is typically how one establishes their identification. But they 
might get misplaced or taken. In addition, a claim based solely on identity is insufficient if there is a high risk of loss and 
a harsh penalty for misrepresenting oneself. The asserted identification must therefore be confirmed. This can be done 
by looking at a person's unique biometric features, such as fingerprints, hand geometry, or retinal patterns, or by looking 
at specific features that come from their distinctive activity, such as speech or handwriting. Every time, the traits were 
contrasted with those that had already been saved for the subject whose identification was being asserted. If the 
decision criterion determines that this comparison is favorable, the asserted identification is confirmed. In terms of 
practical application, identity verification based on a person's voice stands out among these methods. Since speech is 
the method of communication that we all utilize most naturally, user approval of the system would be very high. There 
are three methods of speaker identification listening/perceptual method, visual method and machine. There have been 
several measures for speaker identification, first and second formant frequencies [30, 2, 25, 15 & 19], fundamental 
frequency [4], pitch contour [1], Linear Prediction Coefficients [24 & 29] Cepstral Coefficients & Mel Frequency Cepstral 
Coefficients [12, 3, 28] and Cepstrum [23, 3, 13, 22, 14, 9 & 17] have been used in the past. 

By using the visual method, [18] claimed an identification rate of more than 95%. However, in training and experimental 
tasks, [33] found that identification rates were 78.4% and 37.3%, respectively. An error rate of 21% was observed by 
[30]. Researchers have reported speaker identification utilizing various acoustical metrics in modern, non-modern, 
field, lab, and concealed situations using semi-automatic approaches. [31] Automatically calculated the voice speech's 
lowest three formants and pitch period. The outcome showed strong performance. The findings of the study by [11] 
showed that (a) formants changed as speakers' ages increased and (b) imitators struggled to match formants and pitch. 
In typical circumstances, two vectors—time energy distribution and voiced unvoiced speech time contrast—produce 
100% speaker identification scores [16]. [7] stated that the formant frequencies were in the first factor (factor analysis) 
in differentiating talking gender using the frequencies of the first three formants, F0, jitter, shimmer, and duration. Two 
speech samples can be considered as belonging to two different speakers if 67% of the measurements in [27] analysis 
of spectral and temporal measures in Hindi-speaking normal subjects were different. [32] Attempted benchmarking for 
a temporal and spectral measure in normal and four disguised speaking settings in direct and telephone recordings as 
part of an investigation on acoustics and similarities and differences. In direct recordings, formant frequencies were 
benchmarked at 68%, 50%, and 40%, while in telephone recordings, they were 76%, 68%, and 58%. When taking into 
account 5 speakers, [19] benchmarking results for the vowels /i:/ 70% and /a:/ 65% which she derived using formants 
F2 and F1, were above the chance level. [5] Speaker identification scores are affected similarly by the nasal continuants 
/m/ and /n/. A semi-automatic speaker recognition system's performance is significantly impacted by the number of 
speakers. In contrast to other vowels, the study discovered that the vowel /a:/ before both the nasals /m/ and /n/ was 
reliable for speaker identification. [21] The production of fundamental frequency and voicing is determined by the 
tension in the vocal folds. This work studies the interaction between tone and voicing in Mizo, a lesser-known tone 
language. Results showed that for Mizo, the first 25% of the F0 contour displays notable coarticulatory effects. Inducing 
tone-specific F0 features while reducing IF0 and CF0 requires speakers to modify their vocal cords during this time. [22] 
did a study on to check the vowel space in a disguised voice by comparing it with the normal voice. Vowel space was 
larger in the original app voice than in the normal and other disguised voices. The author also stated that the formant 
frequencies were increased in the disguised voice with the effect of the voice changer app. The male and boy-disguised 
voices also show higher formant frequencies, which is close to the normal recorded (female) voice. Hence, there is no 
significant difference between the normal voice and the other disguised voices (original app, male and boy). 

Biometric voice recognition systems can accurately recognize the unique features of each person's voice apparatus 
in order to generate a user profile. This is accomplished by capturing and evaluating personal characteristics such 
as the buccal and cranial cavity, vocal frequency, and other voice parameters. Voice impersonation scams via phone 
calls are on the rise since they are a low-cost and, sadly, often rather effective technique of fraud due to inadequate 
security solutions deployed in the targeted companies. Voice recognition using biometric param eters is not a new 
technology. However, far too few organizations employ it to safeguard themselves, and, more critically, the data of 
their customers or clients, from fraud. These approaches have a promising future in voice recognition. With your 
voice registered and entirely safe, you will be able to unlock your phone, open your vehicle, or sign a transaction 
with full legal validity. Physical (static) traits that can be used for authentication include retinas, irises, face patterns , 
hand vein patterns, and palm geometry, whereas behavioral features include signature, stride, and typing 
(dynamic). Some biometric traits, such as voice, have both physical and behavioral elements. [26]. 
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Except for [11], single acoustic parameters were employed for comparisons, according to the review. Since the vocal 
tract's size and shape are reflected in the formant frequency, high intra-speaker similarities were anticipated. Statistical 
analysis of the data, however, has not produced a strong benchmarking. Better benchmarking of F2≈F1 may be obtained 
by using a vector, such as F2≈F1, rather than single metrics. This was taken into consideration when designing the 
current study. The goal of this study was to compare F2 and F1 for Mizo speaker identification. In the present study, 
three variables were considered i.e., vowels (3) and the number of known speakers (5, 10, 20). The effect of these two 
variables on the percentage of correct speaker identification was examined as outlined below.  

2. Methodology 

2.1. Subjects 

Twenty Mizo-speaking*** normal male subjects in the age range of 20 -40 years participated in the study. all the subjects 
had normal speech and hearing and without any neurological or oro-motor abnormalities. The hearing screening was 
done for all subjects.  Participants without any history of speech, language or hearing problem, normal oral structure 
and no associated problems are included in the study. 

***The Mizo language, or Mizo ṭawng, is a Kuki-Chin-Mizo language belonging to the Tibeto-Burman family of languages, 
spoken natively by the Mizo people in the Mizoram, Meghalaya, Bangladesh, Assam, Nagaland, Tripura, Manipur states 
of India and Chin State in Myanmar. Around 843,750 (2011, census) uses this language. 

2.2. Material 

 The long vowels /a:/ /i:/ /u:/ occurring in nine words were selected; these were embedded in three sentences in word-
initial and word-medial positions. The data was given in the table 1. 

Table 1 The stimulus used in the study 

Sl. No Sentences 

1. A zuang sa:ng ber hi dinti:r tu:r  

2. Tu:nlaia a fel zia enti:r na:n ani 

3.  Zi:ngah kawngka:ah a lo lu:t 

2.3. Procedure 

 The subject’s consent to participate in the study was obtained. Subjects were instructed to speak the sentence normally. 
Subjects were informed about the nature of the study and were instructed to speak the sentence in a normal manner. 
The sentence was recorded live (direct) by using PRAAT 6.0 version software [9]. The sampling rate was selected at 
44kHz. The distance between the mouth and the voice recorder was kept constant at approximately 10 cm. Each word 
was truncated from the sentence and stored in the computer's memory. All the recordings were done at different places 
according to the subject's convenience and the noise was controlled as much as possible at that place. All the recordings 
were analyzed.   

2.4. Analysis 

Before the analysis the keywords were judged by three qualified speech-language pathologists in order to check the 
accuracy of the production of vowels in words. The best sample out of the three was chosen for further analysis. 

2.5. Acoustical Analysis 

 The formant frequencies (F1-F2) for long vowels in the words were extracted using the PRAAT software. 

 In the steady state of each vowel, F1-F2 at 10 evenly spaced segments were extracted. For instance, figure 1 

shows a spectrogram of a word /zuang sa:ng/. 



World Journal of Advanced Engineering Technology and Sciences, 2022, 07(02), 163–173 

166 

 

Figure 1 waveform, wide band bar type of spectrogram, and formant tracks of the word /zuang sa:ng/ 

Thirty F1 and F2 values were obtained for each vowel, and each speaker's 90 values were derived. For each subject, the 
average of the first fifteen values served as the speaker who was known, while the remaining values were utilized to 
represent unknown speakers. 

Three factors—vowels, recording circumstances, and the quantity of 'known' speakers—were taken into account in the 
current investigation. These two variables were looked at for their impact on the accuracy of speaker identification. 

(1) Vowels: The percentages of /a:/, /i:/, and /u:/ being correctly identified were looked at. 

(2) Number of "known" speakers: For three groups with various numbers of "known" speakers, the percentage of 
correct identification was evaluated. Speakers 1 through 20 were chosen at random from among all twenty speakers. 
Group A, Group B, and Group C were the three speaker groups that were evaluated. All twenty speakers in Group A were 
divided into four subgroups of five speakers each. These five "known" speakers were given the numbers 1 through 5, 6 
through 10, 11 through 15, and 16 through 20. The five "known" speakers of Group A were contrasted with one 
"unknown" speaker. All twenty speakers in Group B were divided into two groups of ten speakers each. Speakers 1 
through 10 and Speakers 11 through 20 were given to these ten "known" speakers. Ten "known" speakers from group 
B were compared to one "unknown" speaker. One "unknown" speaker was compared to all twenty known speakers in 
Group C. 

Since all of the recordings were made in one sitting for this investigation, every voice sample was current. The examiner 
knew the 'unknown' speaker was one of the 'known' ones when they completed closed-set speaker identification tasks. 
In all scenarios, the remaining values served as unknown speakers while the average of the first fifteen values served 
as known speakers. For all vowels and recording settings, all "known" speakers were given numbers ranging from 1 to 
20, while matching "unknown" speakers were given numbers ranging from US 1 to US 20. For illustration, the same 
speaker is represented by speaker 01 (known) and speaker US1 (unknown). 

The F2≈ F1 was plotted for groups of varying numbers of speakers from known speaker’s vs one unknown speaker, 
with F1 on the horizontal axis and F2 on the vertical axis. The recognized speakers and the mystery speaker were 
contrasted. The distance between the unknown and known speakers was used to determine if a speaker may be 
identified positively or negatively. If there was less distance between the unknown speaker and the corresponding 
known speaker, speaker identification was regarded to be accurate; if there was more distance between the unknown 
speaker and any other known speaker, speaker identification was deemed to be incorrect or false. The percent correct 
identification was calculated by using the following formula 

Percent correct identification =
Number of correct identification

Number of total identification
× 100 

2.6. Statistical analysis 

The mean and SD were measured and paired t-tests were done to compare F2-F1 vector between vowels  
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3. Results and discussion 

3.1. F2≈F1 vector among vowels  

The result indicated variation in F2≈F1 among subjects. Subject 10 had the lowest F2≈F1, and subject 6 had the highest 
F2≈F1 for the vowel /a:/. Subject 9 had the lowest F2≈ F1, and subject 17 had the highest F2≈ F1 for the vowel /i:/. 
Subject 3 had the lowest F2≈ F1 and, subject 20 had the highest F2≈ F1 for the vowel /u:/. Vowel /i:/ had the highest 
F2≈ F1 followed by vowel /a:/ and /u:/. The range of F2≈F1 was 478Hz, 559Hz, and 436 Hz. The data was tabulated in 
the table 2. 

Table 2 The mean and SD of 30 observations (3 × 10 observations), F2≈F1 (Hz) for each of the vowels /a:/, /i:/ and 
/u:/. *SD was calculated as ‘0’ due to the distribution of values in the same range 

Speakers /a:/ /i:/ /u:/ 

1 762 (0) 1434 (0) 792 (0) 

2 671 (0) 1359 (0) 773 (0) 

3 742 (0) 1665 (0) 648 (0) 

4 847 (0) 1398 (0) 1007 (0) 

5 684 (0) 1335 (0) 784 (0) 

6 1087 (0) 1615 (0) 791 (0) 

7 845 (0) 1520 (0) 935 (0) 

8 914 (0) 1499 (0) 1107 (0) 

9 761 (0) 1260 (0) 891 (0) 

10 609 (0) 1502 (0) 859 (0) 

11 635 (0) 1297 (0) 784 (7.02) 

12 732 (0) 1287 (0) 705 (0) 

13 840 (0) 1560 (0) 817 (0) 

14 729 (0) 1312 (0) 762 (0) 

15 866 (0) 1414 (0) 818 (0) 

16 765 (0) 1344 (0) 812 (0) 

17 924 (0) 1819 (0) 958 (0) 

18 1050 (0) 1716 (0) 876 (0) 

19 864 (0) 1663 (0) 784 (0) 

20 1013 (0) 1769 (0) 1084 (0) 

3.2. Interspeaker identification 

The F2 ≈ F1 was plotted with F1 on the horizontal axis and F2 on the vertical axis for groups of varied numbers of 
speakers from known speaker’s vs one unknown speaker. To identify the speakers, a total of 180 figures (3 vowels, 1 
recording condition, 3 groups of speakers, and 20 speakers) were plotted. Here are a few samples of both correct and 
inaccurate speaker identification for each of these. 

If there was less distance between the unknown speaker and the corresponding known speaker, the speaker was 
deemed to have been correctly identified. If there was a significant gap between the speaker and the corresponding 
known speaker, they were considered to be unidentified. Figures 2 to 7 display the true/false speaker identification. 
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Figure 2 Correct identification of US1 with S1 

 

Figure 3 Correct identification US5 with SP5 

 

Figure 4 False identification of US2 with SP5 
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Figure 5 False identification of USP5 with SP1 

 

Figure 6 Correct identification of US4 with SP4 

 

Figure 7 Correct identification of USP2 with SP2 
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3.3. Comparison of F2≈F1 vector between the groups 

 Group A showed a benchmark of around 60% for vowel /a:/ whereas 65% for vowel /i:/ this indicates slightly 

better speaker identification which means it was noticed that above probability. Vowel /u:/ showed 45% which 

is said to be below probability and considered as poor benchmarking. 

 Group B showed a benchmark of around 50% for the vowel /a:/ which states probable level and vowel /i:/ 

showed 40% whereas /u:/ showed 20% which is said to be below probability and considered as poor 

benchmarking. 

 Group C showed a below probability and considered as a poor benchmark for speaker identification in vowel 

/a:/ (20%) and vowel/i:/ (25%) whereas 0% for vowel /u:/. 

Overall, the interspeaker identification revealed that benchmarking depended on the no. of speakers and vowels. The 
per cent correct identification decreased as the number of speakers increased from 5 to 20. The mean per cent correct 
identification was 57% (5 speakers), 37% (10 speakers) and 15% (20 speakers). There is no particular trend observed 
across the speakers in relation to the vowels. This indicates that these vowel vectors are not useful for speaker 
identification in larger groups. The present study authors stated that the benchmarks may be affected by the increase 
of speakers and various vowels. The whole data was tabulated in the table 3 and depicted in figure 8. 

Table 3 Percent correct identification of speakers 

Sl.No Group % Correct Identification 

/a:/ /i:/ /u:/ Mean 

1 A (5 speakers) 60 65 45 57 

2 B (10 speakers) 50 40 20 37 

3 C (20 speakers) 20 25 0 15 

 

 

Figure 8 Percent correct identification for vowels /a:/, /i:/ and /u:/ 

3.4. Comparison of F2≈F1 vector between vowels 

Paired sample t-test was done to compare the F2-F1 vectors among vowels where it observed that higher means were 
observed in vowel /i:/ and the normal pattern was followed. There is a highly significant difference found between pair 
1 (a:-i:) and pair 3 (i:-u:) where p<0.000. There is no significant difference between vowels a:-u: where p>0.05 this could 
be due to the effect of place and manner of articulation as both are back vowels. The whole data was given in the table 
4. 
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Table 4 Paired Samples Test 

   Mean Std. Deviation        T Significance 

Pair 1 a: 817.00 133.404 -23.644 0.000** 

i: 1488.40 172.021 

Pair 2 a: 817.00 133.404 -1.116 0.278 

u: 849.35 118.265 

Pair 3 i: 1488.40 172.021 16.265 0.000** 

u: 849.35 118.265 

 

The result indicated several points of interest. First of all, benchmarking for F2≈ F1 for the vowel /a:/ was 60% when 
five speakers were considered, 40% when ten speakers were considered and 20% when twenty speakers were 
considered and the benchmarking for vowels was below chance level. 

Second, benchmarking for F2≈ F1 for vowel /i:/ was 60% when five speakers, 30% in ten speakers and, 25% in 20 
speakers and benchmarking for vowels was below chance level. 

Thirdly, benchmarking for F2≈ F1 for vowel /u:/ was 45% when five speakers, 20% in ten speakers and, 0% in 20 
speakers and benchmarking for vowels was below chance level. This indicates very poor benchmarking which states 
that the use of F2≈ F1 of this vowel for forensic speaker identification is not useful. 

In the past, [31] created an algorithm and automatically assessed the lowest three formants and pitch period of spoken 
speech. The algorithm's performance on vowels glides, and semi-vowels was demonstrated by the results. However, 
considering the poor quality of the benchmarking, the results of the present study do not appear to agree with those of 
[31]. 

[27] Used F1≈F2 transition 67% of the measures varied between participants, and 61% of the measures varied within 
subjects. Under direct and telephone recordings, [32] tried benchmarking for temporal and spectral measurements in 
normal and four disguised speech circumstances. The benchmarking for formant frequencies in direct recording was 
68%, 50%, and 40%, and in telephone recording, it was 76%, 68%, and 58%. She does not, however, provide the 
benchmarking for each vowel. 

[19] Did a study on benchmarks for SPID by using the F1-F2 vector, where results revealed that a high percentage was 
observed in /i/ in 70% and for vowel /a/ 65%. And benchmarking for other vowels was below the chance level when 5 
speakers were considered and benchmarking obtained was above the chance level for ten and twenty speakers for all 
three vowels. 

When five Hindi speakers were taken into account, [13] employed Quefrency to benchmark and produced benchmarks 
of 83.33% (live vs. live) and 81.67% (mobile vs. mobile). Additionally, when live speech was contrasted with mobile 
recording, a benchmark of 78.33 was obtained. Compared to Jakhar, the benchmarking in the current study was poor.  

[5] Speaker identification scores are affected similarly by the nasal continuants /m/ and /n/. A semi-automatic speaker 
recognition system's performance is significantly impacted by the number of speakers. In contrast to other vowels, the 
study discovered that the vowel /a:/ before both the nasals /m/ and /n/ was reliable for speaker identification. Suresh 
et.al. (2015) 90% identification for /n/ in vowels that follow the nasal sound. Formant frequencies varies with speakers 
as the current study shows better benchmark for /i:/ and poor benchmarks for /u:/ due to the variations in the tonal 
language and is also agreeing with [22] which states the formant frequencies showed higher in various disguise 
condition. 

[6] developed a benchmark for speaker identification on children with cleft lip and palate which revealed 75% for/i:/ 
and 60% for /a:/ among 5 speakers and the other vowels showed below probability. Authors stated that speaker 
identification is difficult as the speaker size increased and there is no significant difference found between vowels which 
could be due to the effect of manner of articulation.  
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Paired sample t-test was done to compare the F2-F1 vectors among vowels where it observed that higher means were 
observed in vowel /i:/ and the normal pattern was followed. There is a highly significant difference found between pair 
1 (a:-i:) and pair 3 (i:-u:) where p<0.000. There is no significant difference between vowels a:-u: where p>0.05 this could 
be due to the effect of place and manner of articulation as both are back vowels.  

The field of speaker identification has benefited from the findings of this study. In summary, it came to the conclusion 
that speaker identification in tonal language was not well served by F2≈F1. Except for /i:/, when a percentage of 65% 
is permissible. Although the results of other studies were compared with those of the current study, they were 
completely different because the other studies used different methods, including automatic and quefrency, in various 
speech sounds like nasal continuants and other consonants, where they discovered between 85% and 90% speaker 
identification. The F2≈F1 vector in tone language, which shows 65% for /i:/, was used in the current investigation. This 
indicates a SPID benchmark that is suitable for a smaller population group, and the authors of the current study stated 
that increase in number of speakers leads to poor SPID. Finally, the current study authors stated that in the Tonal 
language also vowels /a:/ and /i:/ found better benchmark in smaller sample size similarly to other languages. 

4. Conclusion 

The present study was restricted to less population, only one tonal language, restricted to vowels and gender. The 
present study results can be used as reference, field of forensics and also can be used in the assessment and management 
of speech perception aspects of tonal languages. The future studies can be carried out in other tonal languages, between 
various regions, larger sample size, various speaking aspects, different age groups and gender variations. 
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