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Abstract 

Fire is a critical tool for managing rangeland ecosystems; however, the increasing wildfire occurrence poses a 
considerable danger to rangeland ecosystem continuity. Predicting fire occurrence and mapping wildfire danger is 
critical in managing highly flammable rangelands. To identify potential remotely sensed variables for wildfire 
prediction, this study employed a Random Forest (RF) classifier using selected environmental variables to assess their 
possible use for wildfire prediction in Kgalagadi District, Botswana. The study used 107,883 active fire points from the 
Visible Infrared Imaging Radiometer Suite (VIIRS) sensor from 2015 to 2021. Datasets of remotely sensed Dry Matter 
Productivity (DMP), Soil Moisture (SM), Land Surface Temperature (LST), Live Fuel Moisture Content (LFMC), and Dead 
Fuel Moisture Content (DMFC) were analysed in ArcMap 10.7 Esri©. The RF model developed gave an Out of Bag (OOB) 
error of 9.91% and an overall accuracy of 90.15% for classifying fires and non-fire points using the test dataset. The 
results also showed a Kappa coefficient of 0.803, with 88.25% and 91.76% producer and user accuracies, respectively, 
for classifying fire points. The DMP was the most significant variable with Mean Decrease Accuracy (MDA)= 1,055.20 
and Mean Decrease Gini (MDG)= 9.328.62), followed by SM (MDA= 828.39 and MDG= 15,745). The LFMC and DMFC 
were found to be weak in detecting fires. It is recommended that field studies be carried out in the study area to calibrate 
these to improve their contribution to accurate fire prediction, as most literature shows that they are significant in fire 
prediction.  
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1. Introduction

There is a significant increase in wildfire incidences globally. Over 4 million square kilometres of land are burned 
annually, with 70% of the area burned in Africa and contributing 14 % to global greenhouse gas emissions [1–3]. 
Although wildfires have been reported to play a critical role in the continuous functioning of rangeland ecosystems, the 
devastating impact of natural wildfires and prescribed fires that often go out of control are far-reaching [4]. Moreover, 
the frequency, severity, and extent of wildfires have been predicted to increase in the next decade amidst a rapidly 
changing climate with prolonged droughts and lower precipitation [5, 6]. The expected increase in wildfires calls for 
accurate wildfire prediction methods and practical tools for wildfire management. Increasingly, control of wildfires is 
being carried out with acceptable risk management principles while considering analytical validity supported by the 
increasing wildfire studies [7]. Save for a handful of studies [8–11], wildfires in Africa are understudied, while the extent 
and frequency of wildfires in Southern African rangelands continue to grow unabated [11].  

Developed countries across the world have, in the previous decades, conducted several studies and achieved 
considerable success in wildfire occurrence prediction based on different methods and various factors such as climate 
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variables and fuel characteristics applied in various empirical models [12–15]. Wildfire management in Africa remains 
entirely dependent on the central governments. In Botswana, the Department of Forest and Range Resources (DFRR) 
spends over US$1.5 million annually on the maintenance of about 10,000km of firebreaks [16], with more effort being 
given to fire suppression rather than prevention [17], though fire remains a vital tool in land use management in rural 
communities [18]. Despite efforts to manage wildfires in Botswana, over 1.8 million hectares have been burned annually 
in the last decade (2012-2021) [19], resulting in considerable devastation of wildlife and communities. Botswana is 
significantly affected by wildfires due to the high biomass accumulation during the summer and the favourable climate 
characterised as semi-arid [17]. In Botswana, wildfires are more frequent in the spring (August to October) compared 
to the winter due to the hot conditions [20]. Kgalagadi and Ghanzi Districts in Botswana are highly drought-prone areas 
due to their aridness and rainfall below 300mm annually [21]. A significant proportion (63%) of the Kgalagadi district 
is remote and is occupied by a Wildlife Management Area (WMA). Recently there has been an increase in dry biomass 
accumulation due to the country's reduced wildlife population in the WMAs [17]. Therefore, it is essential to develop 
wildfire prediction models for Southern African rangelands that harbour grassland savannahs with the highest fire 
potential in Africa [17]. The increasing drought incidents in the Kgalagadi District, coupled with the accumulation of dry 
grass biomass during the rains, make the area highly vulnerable to wildfires necessitating the need for handy tools for 
fire risk prediction. 

Identifying potential predictor variables is critical in developing an accurate wildfire prediction model. The use of 
meteorological parameters and remotely sensed data in wildfire prediction were employed in several studies [22–26]. 
However, the application of these parameters and indices for wildfire prediction in Africa is limited by the sparse 
network of meteorological stations and the capacity to process imagery [27, 28]. To establish an efficient wildfire 
prediction model, it remains pertinent to determine a set of parameters and indices which can be used to predict the 
likelihood of wildfire occurrence in the Kgalagadi district. Machine learning methods combined with remotely sensed 
datasets are increasingly being used in predicting wildfires [24, 29–31]. Random Forest models have received 
significant attention in wildfire prediction studies and have been reported to produce promising results [24, 32]. 
Applying remotely sensed imagery in Botswana’s wildfire management system is necessary since most of these fires 
occur in the remote wilderness where they burn unnoticed, exposing the spatial and temporal inadequacy of existing 
fire management methods such as firebreaks. 

This study seeks to identify potential remotely sensed variables for wildfire prediction in Botswana. The hypothesis is 
that Dry Matter Productivity (DMP), Soil Moisture (SM), Land Surface Temperature (LST), Live Fuel Moisture Content 
(LFMC), and Dead Fuel Moisture Content (DFMC) could be used as potential predictors of rangeland wildfires. 

2. Material and methods 

The methodology comprises the study area description, data collection, and data analysis.  

2.1. Study area 

The study was conducted in Kgalagadi District (105,200 km2), located southwest of Botswana, about 400km west of 
Gaborone city, lying between latitudes 20054' and 21020' and longitudes -23016' and -26046' (Figure 1). The district lies 
in the Kalahari/ Okavango basin, and it is characterised by a large portion of rangeland with savannah grasslands 
forming the primary land cover type in the area, covering 54.42% of the district's land area, and 60.3% of the wildfires 
in the area are experienced in grasslands. Kgalagadi is semi-arid with a relatively higher wildfire vulnerability since 
fuels are dry for most of the months during the year [20]. The area is predominantly a Wildlife Management Area 
(WMA), with most of the land area (63%) being covered by the Kgalagadi Transfrontier Park (KTP) and WMAs (Figure 
1). Pastoral farming and ranching are also prominent in the district, with many ranches in the Eastern part of the district 
[33]. The low rainfall (<300mm annually) and low soil fertility inhibit successful arable farming; hence livestock 
production is the mainstay in the Kgalagadi district. Farmers rely on the grasslands to feed their livestock [33].  

2.2. Data collection 

This study developed a wildfire prediction model for the Kgalagadi District using LFMC, LST, SM, DMP, and DFMC as 
independent variables. Active fire points acquired between 2015 and 2021 were used to train and test a wildfire 
prediction model using a Random Forest (RF) classifier. The dependent variable was a combination of active fire points 
and non-fire points.  
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Figure 1 Study area location, Wildlife Management Area (WMA), National Park; the inset is a map indicating the 
location of Botswana in Africa 

2.2.1. Dependent variable 

Active fire points obtained using Visible Infrared Imaging Radiometer Suite (VIIRS) sensors at 375km resolution were 
obtained from the National Aeronautics and Space Administration (NASA) Fire Information and Resource Management 
System (FIRMS).  

Table 1 Number of active fire points recorded in Kgalagadi between 2015 and 2021 (Source: FIRMS website) 

Year Number of fire points 

2015 1210 

2016 715 

2017 17,154 

2018 6,679 

2019 382 

2020 7,666 

2021 65,845 

Total 99651 

 

The VIIRS data is processed by the University of Maryland in the United States of America (USA) using the standard 
quality Thermal Anomalies / Fire locations. The wildfire data was presented and supplied by FIRMS as point data 
containing the location (latitude and longitude coordinates), date, and time of capture. For this study, 99,651 random 
VIIRS fire points were used (Table 1). 

A round 1000 m radius buffer zone was created around fire points for each year to avoid non-fire points from being 
created very close to the fire points, and non-fire points that fell within the buffer zone were excluded. The study applied 
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the double random principle of time and space and randomly assigned dates and times of occurrence from the fire 
seasons to the randomly created fire points [25, 34].  

All fire and non-fire points with missing values were excluded from the final dataset used for the study. The overall 
dataset contained fire points (n=80,860) and non-fire points (n=76,965). For analysis purposes, the points were 
assigned 1 and 0 for the fire and non-fire points, respectively. The final dependent variable for RF analysis contained 
107,883 points. The study split the dataset into the training dataset (70% of 157, 825 = 107,883 observations) and the 
testing dataset (30% of 157, 825 = 53,942 observations), as commonly applied in most machine learning studies [35, 
36]. 

2.2.2. Independent variables 

The independent variables used in this study included DMP, SM, LFMC, and DFMC, obtained for the study period (2015-
2021). Table 2 provides a detailed description of the independent variables used in this study. 

Table 2 Description of independent variables 

Independent 
variable 

Description 

Soil moisture 
(SM) 

The Soil Moisture Active Passive (SMAP) surface soil moisture (0-0.05m depth) was used for fire 
prediction. Soil moisture data were acquired from NASA National Snow and Ice Data Centre 
Distributed Active Archive Centre (https://nsidc.org/data/data-programs/nsidc-daac). The 
SMAP/Sentinel-1 L2 Radiometer/Radar 30-Second Scene 3 km EASE-Grid Soil Moisture V003 
was used for the study [37].  

Dry Matter 
Productivity 
(DMP) 

The DMP data was downloaded from the Copernicus Global Land Service site 
(https://land.copernicus.eu/global/) at a temporal resolution of 10 days and spatial resolution 
of 300m. The data aligned well with the land cover data obtained from the ESA World Cover 
project 2020 at a 10m resolution [38], with the lowest DMP values in bare areas, while the 
shrubland indicated the highest DMP for the study period (Figure 3). 

Land surface 
temperature 
(LST) 

The Moderate Resolution Imaging Spectroradiometer (MODIS) 1km resolution daily Land 
Surface Temperature/Emissivity (MOD11A1 v61) data downloaded from the NASA MODIS site 
(https://modis.gsfc.nasa.gov/data/dataprod/mod11.php). The MODIS Terra LST day data was 
used due to the 10:30 am overpass with clear sky compared to Aqua with 1:30 pm overpass time 
[39, 40]. The MOD11A1 has been applied in several other fire-related studies [39, 41] and other 
environmental studies[42, 43]. The MODIS-derived LST has been reported to correlate 
significantly with Landsat 8-derived LST with a Root Mean Square Error (RMSE) of 1.19K [44]. 
Similarly, an RMSE of 2.44K and bias of 1.43K were indicated for MODIS LST collection 6 data 
compared with in-situ station data in the Kalahari Desert [45]. 

Live Fuel 
Moisture 
Content 
(LFMC) 

The empirical model Chuvieco et al. [47] proposed to compute live fuel moisture content for 
grasslands was applied since (60.3%) of the fires occur in the grasslands. 

gg FDLSTNDVILFMC  75.136089.0808.284103.57
 Equation 1  

Where; NDVI is the Normalised Difference Vegetation Index obtained from the Copernicus 
Global Land service website (https://land.copernicus.eu/global/products/ndvi [46]. FDg is the 
function of the day was derived from    Equation 2 [47], which accounts for the 
seasonal LFMC variations[24,25]; 

3.1
365

5.1sin

4

3

1




































DyDy

FDg 

   Equation 2 

Where; Dy is the day of the year. 

Dead Fuel 
Moisture 
Content 
(DFMC) 

DFMC was estimated using the regression model proposed by Zormpas et al.  [49]. Daily MODIS 
band 20 Brightness Temperature (BT) 1km data were obtained from the USGS Earth data site 
(https://appeears.earthdatacloud.nasa.gov/) [50]. The data was clipped to the study area, 
converted to degrees Celsius using ArcMap's raster calculator spatial analysis tool, and then 
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daily DFMC values were then estimated using the equation (     
Equation 3). 

BTDFMC  4.0832.19      Equation 3 

Where BT is the brightness temperature 

2.3. Data pre-processing 

All datasets were re-sampled to 1000m spatial resolution to ensure consistent spatial resolution. The mean soil 
moisture was estimated for each 10-day decadal using the daily data. The soil moisture values for the study area from 
the SMAP ranged between 0.02cm3/cm3 to 0.5cm3/cm3 aligning with those indicated for SMAP-sentinel active-passive 
soil moisture retrievals [37] (Figure 2). The 10-day decadal DMP data was processed using ArcMap, and DMP values 
ranged from 0 kg/ha/day to 327 kg/ha/day (Figure 3). The daily LST datasets were converted to degrees Celsius using 
ArcMap's raster calculator spatial analysis tool (Error! Reference source not found.).  

 

Figure 2 Thematic maps for the study area indicating the annual mean SM during the study period (2015-2021) 

10-day decadal LFMC was estimated using ArcMap's raster calculator spatial analysis tool and obtained values between 
-50 to 350%, with most of the values falling between 0 and 200%. The negative LFMC values obtained were due to the 
very low NDVI for the study area, with NDVI values below 0.1 [47]. The daily DFMC estimates were determined using 
ArcMap, and areas covered with shrubs in the northeastern region had the highest DFMC (up to 7.6%) than the 
Southwestern region with bare lands, with negative DFMC values due to the high BT. Values of all the independent 
variables for the day/10-days decadal before the fires were extracted to the fire points and non-fire points in ArcMap 
and then exported to Microsoft Excel spreadsheets.  
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Figure 3 Dry matter productivity (kg/ha/day) variation for the study period 2015 to 2021 

 

Figure 4 Annual mean Surface temperature during the study period (2015-2021) 

2.4. Model training and testing 

The Random Forest Classifier was used to train and classify the wildfire prediction model. The classifier was trained 
using the training dataset, and the testing dataset was used for the testing. 
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2.4.1. Random Forest model setup 

The Random Forest (RF) classification algorithm in the R project for statistical computing software was used to predict 
wildfire occurrence in the study area using bootstrap samples drawn with replacement. The algorithm is designed to 
retain about one-third of the samples for validation, referred to as the Out-Of-Bag (OOB). At each node in the tree, the 
RF algorithm randomly samples some of the predictor variables referred to as 'mtry' to produce the best split for each 
predictor variable. The number of trees (mtree) and the number of variables at the nodes (mtry) are hyper-parameters. 

However, it is recommended that the mtry be the square root of the number of variables ( P  where P is the number 

of variables) [51]. 

RF also calculates the variable importance (VI) of the predictor variables by calculating the OOB error for each tree (t) 
and permuting each variable (Xj). In contrast, the other variables in the OOB data are left unchanged, and the OOB error 
(errOOB) is calculated in the permuted dataset [25, 52]. 

 
t

t

j

t

j errOOBOOBerr
ntree

XVI )(
1

)( /
………….Equation 4 

Where ntree is the number of trees in the forest and ∑ indicates the sum of all trees, for this study, RF classification was 
used; thus, the OOB error suggests the rate of misclassification by the forest. The aim is to minimise the OOB error by 
the RF algorithm. The RF can then be used to select contributing variables in the model. 

2.4.2. RF model training 

The randomForest package in the R project for statistical computing was used for implementing the Random Forest 
classification algorithm [53]. The caret package was used to streamline the training process. In this study, several trials 
were conducted with varying numbers of trees, and the optimal number of trees (ntree) was set at 900 with a mtry of 3 
(Figure 4). 

 

Figure 4 RF plot for the number of trees against the error rate 

2.4.3. RF Model testing 

The model was assessed using the test dataset, and the variable importance was obtained for each variable used. The 
model's overall accuracy, kappa coefficient, and user's and producer's accuracy were determined using the test results 
of the RF model. Mcnemar's Test P-Value was used to determine if the performance of the fire and non-fire point 
prediction from the model were equal.  

2.4.4. Variable importance 

A discriminant analysis was run within the RF to rank the importance of variables using the Mean Decrease Accuracy 
(MDA) and the Mean Decrease Gini (MDG). The RF model's final output was the predictor variables' relative importance. 
The variable importance was used to determine the groups of predictor variables that give better wildfire predictions. 
The variables with higher fire predicting power were then assessed for prediction accuracy by running RF models using 
the different variable combinations. 
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A summary of the Step by step workflow for identifying potential predictors is indicated in Figure 5 below. 

 

Figure 5 Workflow for wildfire prediction using remotely sensed variables 

3. Results and discussions 

3.1. Model training and testing 

A confusion matrix and accuracy metrics in Table 3 below indicate the model predictions and actual outcome of the 
training and testing datasets used. Overall results showed an OOB error rate of 9.91%, which means a reasonably good 
model for predicting wildfires in the study area. The model was tested using a randomly selected testing dataset, and 
the different statistics from the testing are indicated in Table 3 and 4.  

Table 3 Confusion matrix for RF classification model testing, the class errors, accuracy statistics, and overall error of 
the RF classification model 

Prediction 

  Event Fires Non-fires 

Reference 
Fires 24 816 2 137 

Non-fires 3 177 23 812 

Accuracy Metrics 

Producer's Accuracy 0.8823 0.9207 

User's Accuracy 0.9176 0.8865 

Overall accuracy 0.9015 

Kappa 0.803 

Overall OOB error 9.91% 

Results indicate a substantial agreement between the fire and non-fire observers, with an overall kappa statistic of 0.803 
(Table 3). The Kappa statistic obtained in this study is almost in perfect agreement. It is comparable to and higher than 
earlier fire prediction studies such as Santos et al. [54], who reported a substantial Kappa value of 0.65 for a RF fire 
prediction model of Minas Gerais, Brazil (2010). Le et al. [55] also found a 0.63 kappa value for their proposed deep 
neural computing model for predicting wildfires in tropical Vietnam. The results from this study indicate a promising 
and reliable RF model for predicting wildfires in the Kgalagadi District.  
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Although the RF model correctly classified 92.07% of the reference non-fire points, only 88.65% were identified as non-
fire points by the classification model. In addition, the model achieved a user's accuracy of 91.76% for points classified 
as fires despite a lower producer's accuracy of 88.23% with 11.77% of fire points classified as non-fire points (Table 4). 
There was a significant difference (Mcnemar's Test P-value<0.05) between the prediction of fires and non-fire points 
by the model, indicating that it performs differently for the two classes (Table 4). The model exhibited a high probability 
of correctly predicting fires as real fires, indicated by the high User accuracy (Table 3). Tonini et al. [29] attribute the 
power of the RF models to discriminate burned areas in 75% of their study period in Greece to the good generalisation 
capabilities of the models.  

Table 4 Statistics calculated from testing the RF model using the testing dataset 

Statistic Value 

P-Value [Acc>NIR] <0.001 

Mcnemar's Test P-Value <0.001 

Detection rate 0.4414 

Detection Prevalence 0.5003 

Balanced Accuracy 0.9021 

 

The study observed a Detection prevalence of 50.03% of the total predictions, which shows the number of positive 
events (correctly and incorrectly classified fires). The study found the detection rate to be 44.14% of the predictions, 
which indicates the fraction of points classified as real fires. The RF model showed a balanced fire prediction accuracy 
of 90.21%. The high balanced accuracy indicates the classifier's high sensitivity (a large proportion of correctly 
predicted fire points) and specificity (a large proportion of correctly predicted non-fire points). The performance of the 
RF model agrees with earlier studies that also showed high accuracies (>70%)of the RF model in wildfire studies [24, 
25, 56, 57]. The model accurately predicted fire and non-fire points (Table 3), which indicates the RF model's high 
reliability and accuracy in predicting fire occurrences using the predictor variables. The accuracy is in the range 
reported by other authors for predicting fires by using different variables. For example, Karimi et al. [58] reported more 
than 80% accuracy when they used six vegetation indices derived from MODIS data to predict fire hazards in Golestan 
forests in Iran.  

3.2. Variable importance in classification 

 

Figure 6 The MDA and MDG plots indicate the relative predictor variable importance calculated by the RF model. 
DMP-Dry Matter Productivity, SM-soil moisture, LFMC-Live Fuel Moisture Content, LST-Land Surface Temperature, 

and DFMC-Dead Fuel Moisture Content 

The lack of dense meteorological stations or networks in Sub-Saharan African countries limits the meteorological 
factors' use in wildfire prediction studies, yet forest and vegetation composition maps use [59] are impossible in 
Botswana due to the lacking fuel maps. This study used validated remotely sensed global products such as DMP, SM, 
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LFMC, DFMC, and LST to predict wildfires in Kgalagadi District. The RF analysis outcome was the relative importance of 
the wildfire prediction factors used in training the model. The variable importance increases with the magnitude of the 
values, as shown in  

Figure 6 and Table 5. 

DMP and surface SM were the most essential variables in predicting wildfires in the study area, with MDA and MDG 
greater than 800, respectively ( 

Figure 6). LFMC and DFMC were the least important factors in wildfire prediction, with MDA and MDG of 600.28 and 
9,208.96 and 478.43 and 9480.72, respectively. Noteworthy, despite the higher MDA (1055.20) observed for DMP, SM 
has a higher MDG (15745.69) than all predictor variables, followed by LST (10169.40). Overall, all variables were 
significantly important in predicting fire points than non-fire points, with DMP and SM having higher variable 
importance for classifying fires. Discriminant analysis results indicate that a combination of SM and DMP gives better 
predictions (80.22% accuracy) than LST, LFMC, and DFMC, with 73.45% prediction accuracy. The overall order 
predictor variable significance in predicting wildfires was DMP> SM> LST> LFMC> DFMC. These results differ from 
earlier studies showing LFMC and DFMC as critical variables in wildfire prediction in different environments [60, 61]. 

Table 5 Variable importance from the RF model for prediction of fire and non-fire points 

  Non-fires Fires Mean Decrease Accuracy Mean Decrease Gini 

DMP 282.732 999.744 1 055.1978 9 328.616 

LFMC 165.318 503.436 600.2813 9 208.956 

LST 212.724 634.351 740.1304 10 169.398 

SM 163.969 753.415 828.39 15 745.69 

DFMC 282.584 484.285 478.4341 9 480.715 

 

Fuel quantities available to burn any time are fundamental in successful wildfire prediction studies, yet quantifying fuels 
remains entirely labour-intensive. These results indicate that 1055.1978 additional points would be misclassified by 
the model with a reduction of 9328.616 in the purity of the decision tree nodes if DMP is removed (Table 5). In the arid 
Kgalagadi district, most of the fuel produced during the summer rains becomes dry immediately after the rainy season, 
increasing ignition potential during the August to November fire season, explaining the higher contribution of DMP to 
wildfire prediction by the RF model. Despite the limited use of the remotely sensed DMP product in wildfire prediction, 
the results indicate considerable potential for its use and application for mapping wildfire danger. Evidence from earlier 
long-term field studies and satellite-based studies also bespeak the substantial contribution of fuel availability to fires 
in the southern African dry grassland savannahs [62]. The cumulative DMP could also be used for identifying areas with 
significant fuel accumulation before the fire season for timely fire management activities to be carried out to prevent 
the effects of severe and mega-fires. 

The availability of large quantities of dry matter produced during the rainy season and low SM seems to be a good recipe 
for wildfire ignition in the study area. The use of SM content in wildfire prediction has been suggested by several studies 
[63–65]. Results from this study agree with earlier studies that indicate the use of SM in wildfire prediction, with soil 
moisture having the highest (15,745.69) MDG of all parameters (Table 5). The high MDG indicates that SM has the 
highest contribution to the leaf nodes' purity at the decision tree's end. The substantial contribution of SM to prediction 
in the model is attributed to its effect on the fuel moisture contents, as shown in earlier studies [66, 67]. Rakhmatulina 
et al. [66] found that SM was the most critical environmental parameter in wildfire prediction in the Sierra Nevada. 
Every 1% increase in soil moisture resulted in a 0.6% increase in fuel moisture content [66]. The increasing availability 
of remotely sensed soil moisture data increased the possibility of using soil moisture as a wildfire danger prediction 
variable. However, there is a lack of remote sensors capable of capturing soil moisture data across large spatiotemporal 
domains [64]. Improving the availability of higher-resolution soil moisture data could help improve the prediction 
accuracy of wildfire danger. The LST was the third most important variable in predicting fires, with variable importance 
of 634.35 (Table 5). Adding LST to SM and DMP combination improved the prediction accuracy by 3.61%. The results 
from the RF model agree with those found by Bisquert et al. [68], indicating LST to be an essential factor in forest fire 
danger prediction using Artificial Neural networks (ANN) and Logistic Regression (LR). Adding the day of the year 
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improved the performance of LST in fire prediction by separating high summer temperatures from winter [68]. Other 
studies have also applied the LST and LST anomalies in wildfire studies, arguing that higher LST and LST anomalies 
could indicate vegetation stress, which is a crucial indicator of fire danger and ignition [30, 69, 70]. The strong 
performance of LST in this study could be attributed to the fact that most fires occur after winter with increasing 
temperatures in the spring and summer seasons while, at the same time, the vegetation is generally dry. The high surface 
temperature during fire season could account for the increase in the purity of the decision tree nodes (MDG= 10,169.40) 
when LST is added.  

Results from the RF model also indicated that live fuel moisture content was the fourth important variable, with a mean 
decrease accuracy of 600.28, showing a lower increase in misclassification if LFMC is removed. On the other hand, DFMC 
had a minor contribution to fire prediction by the RF model, with the lowest MDA of 478.43 (Table 5). However, adding 
DFMC to SM and DMP combination slightly improved prediction accuracy by 4.43%, while LFMC had a negative effect 
on the prediction accuracy. Fuel moisture content is the most used and studied fuel characteristic in wildfire danger 
rating systems and studies [60, 71]. This study applied the model proposed by Chuvieco et al. [47] to estimate LFMC 
using LST and NDVI. The low contribution of LFMC compared to DMP and SM could be attributed to the fact that the 
fraction of the day of the year in the proposed model is specific to Mediterranean areas, which somehow vary differently 
in the FMC across the year. Therefore, field studies are necessary to map fuel moisture contents to improve their 
performance in detecting wildfires in the study area. 

4. Conclusion 

Potential remotely sensed variables that could be used to predict forest fires were investigated using a Random Forest 
classifier based on VIIRS data from 2015 to 2021. The model exhibited excellent accuracy (OOB accuracy rate of 90.09%, 
Kappa of 80.3, and overall accuracy of 90.15%) in classifying fire and non-fire points. The RF model showed that DMP 
and SM are strong in predicting rangeland fires with MDA of 1,055.20 and 828.39 and MDG of 9.328.62 and 15,745, 

respectively. In contrast, LFMC and DFMC were weak in predicting rangeland fires, with MDA of 600.28 and 478.43 

and MDG of 9,208.96 and 9480.72, respectively. The order of variable importance for predicting fire points was 
DMP> SM> LST> LFMC> DFMC with variable importance of 999.744, 753.415, 634.351, 503.436, and 484.285, 
respectively. The results of this study provide a possibility of using satellite-derived environmental variables to predict 
rangeland fire occurrence in the Kgalagadi District. It is recommended that field-based calibration and validation of fuel 
moisture content be carried out to improve their contribution to accurate fire prediction.  
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