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Abstract 

The appearance of Power Quality Disturbances can cause serious damage to the utility grid. Their detection and 
identification are two of the major problems related to the improvement of Power Quality.  This paper presents an 
evaluation of different combinations of wavelet-based features for the detection and classification of eight types of 
Single Power Quality Disturbances. A set of disturbances was generated in MATLAB through their mathematical models. 
The detection stage was performed using Multiresolution Analysis. The extracted features were normalized by Z-score 
to serve as input to four different classifiers: Multilayer Perceptron, K-Nearest Neighbors, Probabilistic Neural Network, 
and Decision Tree. The combination of Shannon Entropy and Log-Energy Entropy was found the best with the highest 
accuracy in all cases. Furthermore, the normalization stage has an impact on classification as it improves accuracy 
regardless of the classifier used. This fact makes it possible to reduce the computational expense by using only two types 
of features without compromising the accuracy. 
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1. Introduction

Power Quality improvement is one of the major concerns nowadays. The term Power Quality refers to the set of 
parameters and properties that describes power supply in terms of magnitude, continuity, symmetry, frequency and 
waveform. The interest over this topic has led to the development of new equipment and electronic devices for its 
measurement and control [1].  

Among the main factors that affect Power Quality are the recent population growth, which implies an increase in supply 
demand, as well as the use of traditional and obsolete utility grids [2]. Some other causes can include the incorporation 
of renewable energies, the use of new switching devices and non-linear loads, aside from environmental factors [3]. 

One of the main consequences of poor Power Quality is the appearance of disturbances in the waveform of power supply 
signals known as Power Quality Disturbances (PQD). The detection and identification of these disturbances is vital in 
order to determine many of the possible anomalies in equipment and systems before any decisions are made [4]. This 
process can be divided into three main stages: signal processing, feature extraction and classification [5]. 

Several techniques and methods have been proposed for the detection of PQDs. Most of them involve the use of 
mathematical tools in order to obtain some information from their waveform such as Stockwell Transform, Wavelet 
Transform, Kalman Filters, Hybrid Techniques, among others. This information is generally optimized by feature 
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extraction methods in order to reduce it dimensionally so that it can serve as optimal input for a classifier, e.g., Neural 
Networks, Support Vector Machines, Bayesian Classifiers, Fuzzy Logic, and some others [6]. 

Wavelet Transform has been described as an appropriate tool for the analysis of signals with small discontinuities and 
abrupt changes in their waveforms, as is the case of PQDs [7]. Most of the related works involve the use of a large set of 
features for classification purposes, however, the selection of a suitable subset of features, both in terms of accuracy 
and computational performance, remains a research challenge [8]. 

This paper presents an evaluation of different combinations of wavelet-based features for detection and classification 
of eight types of Single Power Quality Disturbances including: Sag, Swell, Interrupt, Harmonics, Flicker, Notching, 
Oscillatory Transients and Impulsive Transients. A set of disturbances was generated in MATLAB through their 
mathematical models. Detection stage was performed using Multiresolution Analysis (MRA). The mother wavelet used 
was Daubechies 4 (db4) at nine resolution levels. Feature vector formation was performed using different feature 
extraction methods such as Energy, Mean, Standard Deviation, Skewness, Shannon Entropy, RMS, Kurtosis, Log-Energy 
Entropy and Peaks Difference. These vectors served as inputs to four kinds of classifiers: Multilayer Perceptron (MLP), 
K-Nearest Neighbors (KNN), Probabilistic Neural Network (PNN) and Decision Tree (DT), in order to find an appropriate 
combination of features in terms of accuracy and computational expense. 

2. Detection and classification 

2.1. Data set generation 

Power Quality Disturbances are deviations in the waveform of power supply signals, i.e., any variation in the magnitude 
of both current and voltage within a given time interval regarding to their nominal values [6]. This topic has been a 
concern in power grids over the last decades and nowadays with the incorporation of new smart girds and smart meters 
[4].  The appearance of PQDs involves a momentary increase or decrease in magnitude, presence of harmonics, 
interruptions, and transients, among others. PQDs can be classified as single or complex depending on the number of 
disturbances present in the signal, as well as short-term, long-term or stationary if they are present over the entire time. 
The main single disturbances that affect Power Quality are Sag, Swell, Interrupt, Harmonics, Flicker, Notching, and 
Oscillatory Transient and Impulsive Transient, from which the other complex disturbances are made [8]. Their behavior 
can be described through mathematical models, such as those shown in Table 1 [9].  Also, their typical parameters are 
regulated by the IEEE 1159-2009 standard [10]. 

For this work, a data set of synthetic disturbances was generated in MATLAB. The signals have a sampling frequency of 
10 kHz, with a duration of 0.5 s, considering a line frequency of 60 Hz. The amplitude of the signals is represented in 
per-unit values (PU) and the time in seconds (s). Each type of disturbance has 500 examples, whose parameters were 
randomly determined, so the data set consist of 4,000 examples stored as a comma-separated value file, in which each 
row represents a different PQD, and the columns correspond to the samples of such signal. 

2.2. Wavelet transform and multiresolution analysis 

The Wavelet Transform (WT) is a signal processing technique that can provide local information about a signal in both 
the time and frequency domains. It can be applied on signals in steady-state, as well as non-steady-state with sudden 
changes, abrupt contours, and discontinuities [11], as is the case of Power Quality Disturbances. 

Wavelet Transform engages both the Discrete Wavelet Transform (DWT) and the Continuous Wavelet Transform 
(CWT), however, the latter provides inefficient and redundant information, so the use of DWT is more appropriate as it 
decrease the computational expense. The DWT can be represented though equation (1), where 𝑚 and 𝑛 are known as 
scale and translation factors, respectively. On the other hand, 𝑓(𝑘) is the discrete version from a continuous signal, and 
𝜓 is the mother wavelet to use [12]. 

𝐷𝑊𝑇(𝑚, 𝑛) = 𝑎0
−𝑚/2 ∑ 𝑓(𝑘)𝜓 (

𝑛−𝑘𝑏0𝑎0
𝑚

𝑎0
𝑚 )𝑘 ……….(1) 
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Table 1 Main Disturbances, Their Mathematical Models and Typical Parameters 

PQD Mathematical Model Parameters 

Ideal 𝑉(𝜔𝑡) = 𝐴𝑠𝑖𝑛(𝜔𝑡) 
𝜔 = 2𝜋𝑓 

𝑓 = line frequency 

Sag 𝑉(𝜔𝑡) = 𝐴 (1 − 𝛼(𝑢(𝑡 − 𝑡1) − 𝑢(𝑡 − 𝑡2))) sin (𝜔𝑡) 
0.1 ≤ 𝛼 ≤ 0.9 
𝑇 < 𝑡2 − 𝑡1 < 9𝑇 

Swell 𝑉(𝜔𝑡) = 𝐴 (1 + 𝛼(𝑢(𝑡 − 𝑡1) − 𝑢(𝑡 − 𝑡2))) sin (𝜔𝑡) 
0.1 ≤ 𝛼 ≤ 0.8 
𝑇 < 𝑡2 − 𝑡1 < 9𝑇 

Interrupt 𝑉(𝜔𝑡) = 𝐴 (1 − 𝛼(𝑢(𝑡 − 𝑡1) − 𝑢(𝑡 − 𝑡2))) sin (𝜔𝑡) 
0.9 ≤ 𝛼 ≤ 1 
𝑇 < 𝑡2 − 𝑡1 < 9𝑇 

Harmonics 𝑉(𝜔𝑡) = 𝐴 (sin(𝜔𝑡) + ∑ 𝛼2𝑛+1sin (𝑛𝜔𝑡) 

3

𝑛=1

) 

0.05 ≤ 𝛼3 ≤ 0.15 
0.05 ≤ 𝛼5 ≤ 0.15 
0.05 ≤ 𝛼7 ≤ 0.15 
∑𝛼𝑖

2 = 1 

Flicker 𝑉(𝜔𝑡) = 𝐴(1 + 𝛼 sin(𝛽𝑡)) sin(𝜔𝑡) 
0.1 ≤ 𝛼 ≤ 0.2 
𝛽 = 2𝜋𝑓𝑐 
5𝐻𝑧 ≤ 𝑓𝑐 ≤ 10𝐻𝑧 

Notching 

𝑉(𝜔𝑡) = 𝐴(sin(𝜔𝑡)

− 𝑠𝑖𝑔𝑛(sin(𝜔𝑡)) ∑ 𝑘 (𝑢(𝑡 − (𝑡1 − 0.02𝑛))

9

𝑛=0

− 𝑢(𝑡 − (𝑡2 − 0.02𝑛))) 

0.1 ≤ 𝑘 ≤ 0.4 
0 < 𝑡1, 𝑡2 < 5𝑇 

0.01𝑇 ≤ 𝑡2 − 𝑡1 ≤ 0.05𝑇 

Oscillatory 
Transient 

𝑉(𝜔𝑡) = 𝐴𝑠𝑖𝑛(𝜔𝑡)

+ (𝛼𝑒
𝑡−𝑡1

𝜏
 (𝑢(𝑡 − 𝑡1) − 𝑢(𝑡 − 𝑡2))) sin (𝜔𝑛𝑡) 

0.1 ≤ 𝛼 ≤ 0.8 
0.5𝑇 ≤ 𝑡2 − 𝑡1 ≤ 3𝑇 
8 𝑚𝑠 ≤ 𝜏 ≤ 40 𝑚𝑠 

𝜔𝑛 = 2𝜋𝑓𝑛 
300 𝐻𝑧 ≤ 𝑓𝑛 ≤ 900 𝐻𝑧 

Impulsive 
Transient 

𝑉(𝜔𝑡) = 𝐴 (1 + ∑ 𝛼 (𝑢(𝑡 − (𝑡1 + 𝑇 ∗ 𝑛))

𝑘

𝑛=1

− 𝑢(𝑡 − (𝑡2 + 𝑇 ∗ 𝑛)))) sin(𝜔𝑡) 

𝑘 =  number of impulses 
0.1 ≤ 𝛼 ≤ 1 

0.05𝑇 ≤ 𝑡2 − 𝑡1 ≤ 0.06𝑇 

 

DWT can be interpreted as a decomposition of a given signal into two different signals, a detailed and a smoothed 
version. This concept is known as Multiresolution Analysis (MRA), in which the original signal is passed through a pair 
of complementary high-pass and low-pass filters, so that the information about its high and low-frequency components 
is stored into a series of coefficients called detail and approximation coefficients, 𝑐𝐷 and 𝑐𝐴, respectively [13]. MRA can 
be applied multiple times as shown in figure 1, the first decomposition is applied over the original signal, 𝑆, while the 
subsequent decompositions are applied over the previous approximation coefficients. Each decomposition is called a 
resolution level. The detail and approximation coefficients of the first resolution level are designated as 𝑐𝐷1 and 𝑐𝐴1, in 
this way, the detail and approximation coefficients of the n-th resolution level are designated as 𝑐𝐷𝑛 and 𝑐𝐴𝑛. 

WT also represents how closely a given signal resembles to a specific wavelet function, so the choice of the latter is a 
very important aspect. There are several wavelet families and functions, so different approaches can be performed using 
different wavelets. In this sense, Daubechies 4 function (db4) is one of the most widely used functions because it shares 
several of the characteristics that PQDs also present [6], so it was chosen for this work. 

Since each resolution level contains information about a certain frequency range, then the greater the number of 
resolution levels, the more information that can be obtained, but this also implies the increase of the computational 
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expense [14]. So, the key is decomposing the signals into a large enough number of levels to obtain relevant information, 
without affecting computational performance. For this work, the signals were decomposed into nine resolution levels. 

 

Figure 1 Multiresolution Analysis Process (Taken and modified from [12]) 

2.3. Wavelet-based feature extraction 

The coefficients obtained from the MRA contain relevant information from the analysis of the waveform of the signals, 
however, they can be impractical, so the objective is to reduce it dimensionally by using feature extraction methods 
preserving its distinctive characteristics [15]. 

There are several feature extraction methods from the detail and approximation coefficients resulting from the 
application of the DWT to the signals. These features are kwon as wavelet-based features [16]. Table 2 shows some of 
these methods, as well as their mathematical definition, where 𝐶𝑖,𝑗 are the 𝑁 coefficients of the 𝑖-th resolution level. 

Using only two or three features is enough to obtain a good accuracy in the classification [17], so for this work a 
combination of two different features was carried out, which gives 20 data for the classification, i.e., 10 for each one, 
corresponding to the 9 levels of detail coefficients and the last level of approximation coefficients. 

Feature selection was performed by checking all the possible combinations, with the combination of Shannon Entropy 
and Log-Energy Entropy being the one that obtained the highest accuracy. The equations (2) and (3) show the data for 
the classification, where 𝐹1𝑐𝐷𝑛

, 𝐹1𝑐𝐴𝑛
 and 𝐹2𝑐𝐷𝑛

, 𝐹2𝑐𝐴𝑛
 represent two different extracted features of the detail and 

approximation coefficients, respectively. 

𝐹1𝑃𝑄𝐷 = [𝐹1𝑐𝐴𝑛
, 𝐹1𝑐𝐷𝑛

, . . . , 𝐹1𝑐𝐷2
, 𝐹1𝑐𝐷1

] ………..(2) 

𝐹2𝑃𝑄𝐷 = [𝐹2𝑐𝐴𝑛
, 𝐹2𝑐𝐷𝑛

, . . . , 𝐹2𝑐𝐷2
, 𝐹2𝑐𝐷1

]………….(3) 

Due to the training data has a large variation, the feature vector of each disturbance was extracted using the features of 
an ideal sinusoidal signal as reference, as shown in equation (4), where 𝐹1𝑆𝑖𝑛  and 𝐹2𝑆𝑖𝑛  correspond to the extracted 
features of this ideal signal. 

Δ𝑃𝑄𝐷 = [𝐹1𝑃𝑄𝐷 , 𝐹2𝑃𝑄𝐷] − [𝐹1𝑆𝑖𝑛 , 𝐹2𝑆𝑖𝑛]……….(4) 
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Table 2 Wavelet-Based Feature Extraction Methods 

Energy 𝐸𝑖 = ∑|𝐶𝑖,𝑗|
2

𝑁

𝑗=1

 

Mean 𝜇𝑖 =
1

𝑁
∑ 𝐶𝑖,𝑗

𝑁

𝑗=1

 

Standard Deviation 𝜎𝑖 = √
1

𝑁
∑(𝐶𝑖,𝑗 − 𝜇𝑖)

2
  

𝑁

𝑗=1

 

Skewness 𝑆𝐾𝑖 = √
1

6𝑁
∑ (

𝐶𝑖,𝑗 − 𝜇𝑖

𝜎𝑖

)
3𝑁

𝑗=1

 

Shannon Entropy 𝑆𝐸𝑖 = − ∑ 𝐶𝑖,𝑗
2 log(𝐶𝑖,𝑗)

2
𝑁

𝑗=1

 

RMS 𝑅𝑀𝑆𝑖 = √
1

𝑁
∑ 𝐶𝑖,𝑗

2

𝑁

𝑗=1

 

Kurtosis 
𝐾𝑅𝑇𝑖 =

𝑁

24
(

1

𝑁
∑ (

𝐶𝑖,𝑗 − 𝜇𝑖

𝜎𝑖

)
4

− 3  

𝑁

𝑗=1

) 

 

Log-Energy Entropy 𝐿𝑂𝐸𝑖 = ∑ log(𝐶𝑖,𝑗
2 )

𝑁

𝑗=1

 

Peaks Difference 𝑃𝐾𝑖 = max(𝐶𝑖,𝑗) − min(𝐶𝑖,𝑗) 

 

The feature vector of each disturbance was normalized by Z-score in order to obtain a new range of values closer to 
each other, which in turn improves the classification process [18]. The normalization through Z-score is shown in the 
equation (5), where 𝜒  corresponds to the data to normalize, 𝜇  to its mean and 𝜎  to its standard deviation. This 
normalization provides to the data the properties of a normal distribution, i.e., a mean of zero and a standard deviation 
equal to one [19]. 

Ζ =
𝜒−𝜇

𝜎
…………(5) 

Each of the normalized vectors are finally the inputs for the classifiers, in addition, a binary coded target matrix was 
used, so that a value of 1 means that it belongs to the class and 0 the opposite case. 

2.4. Classification 

 For the classification, four types of classifiers were trained. The parameters of each classifier were iteratively 
evaluated in order to choose those that provided the best performance in the classification. The classifiers used 
were: 

 Multilayer Perceptron (MLP) with 12 neurons in the hidden layer and Softmax as the activation function. 
 K-Nearest Neighbors (KNN) with 𝐾 = 3. 
 Probabilistic Neural Network (PNN) with a spread of the radial basis function (smoothing factor 𝜎) equal to 

0.002. 
 Decision Tree (DT). 
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The validation was performed by using K-Fold cross validation method, in which the data is separated randomly in 𝐾 
subsets such that one of them is used for the validation whereas the remaining 𝐾 − 1 subsets are used for training. The 
performance is subsequently evaluated based on the accuracy average after 𝐾 rounds of training and validation [20]. 
For this work 𝐾 = 10 was taken, so of the 4,000 available examples, 3,600 were used for training and 400 for validation 
in each round. The accuracy was obtained from the equation (6). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑜.  𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎
× 100%........(6) 

3. Results  

The proposed method was proved in simulation using the synthetic disturbances generated as a comma-separated 
values file and evaluating its performance through K-Fold. Table 3 shows the accuracy of each classifier regarding a 
specific combination of features, in such way that all possible combinations were checked. All combinations were 
normalized by Z-score. The highest accuracy was obtained from the combination of Shannon Entropy and Log-Energy 
Entropy. Table 4 shows the accuracy of classifiers in each round for that specific combination, the last row represents 
the average after all rounds. The KNN, PNN and DT classifiers presented a very similar performance, with an accuracy 
greater than or equal to 99% in each round. On the other hand, MLP classifier presented the lowest accuracy.  

 A comparison of the results obtained in other literature works and the proposed method is shown in Table 5. In all 
cases, the detection is based on MRA at different resolution levels. In the same way, the table shows the feature 
extraction method as well as the classifier used for the classification of different types of PQDs and their respective 
accuracy in simulation. 

For example, in [17] different combinations of features were analyzed for the detection and classification of 8 types of 
single and 2 types of complex disturbances from the application of MRA at 6 resolution levels in MATLAB. Such 
combinations include the use from 1 to 9 different features including: Energy, Mean, Standard Deviation, Skewness, 
Shannon Entropy, RMS, Kurtosis, Log-Energy Entropy and Norm-Entropy. All combinations were tested through various 
classifiers such as Support Vector Machine (SVM), Decision Tree (DT) and Random Forest (RF). The results suggest that 
using a combination of 2 or 3 features is enough to obtain a good result in the classification, thus, for the case of 2 
features, the combination of Shannon Entropy and Log-Energy Entropy provided a high accuracy for the SVM and RF 
classifiers, being 97.24% and 98.38%, respectively, whereas for DT classifier, the combination of Energy and Log-Energy 
Entropy was the one that provided the highest accuracy with 97.40%. 

In [21] the use of Mean, Maximum and Minimum values, Variance, Standard Deviation, Mode, Median, Kurtosis, Shannon 
Entropy and Energy was proposed for the classification of 5 types of single disturbances. For this, the signals were 
decomposed into 7 resolution levels through MRA. For the classification, two types of classifiers were trained, a K-
Nearest Neighbors (KNN) and Naïve Bayesian classifier (NB) in MATLAB. The results show an accuracy of 97.91% and 
92.22% for the KNN and NB classifiers, respectively. 

Table 3 Accuracy for Each Combination of Features 

Combination 
Accuracy 

MLP KNN PNN DT 

Energy Mean 89.4% 92.7% 88.825% 92.125% 

Energy Std. Deviation 88.85% 93.2% 88.925% 92.85% 

Energy Skewness 90% 90.625% 80.3% 90.35% 

Energy Shannon Ent. 94.25% 97.225% 88.3% 96.675% 

Energy RMS 89.775% 93.175% 88.625% 92.7% 

Energy Kurtosis 91.05% 88.275% 85.675% 88.675% 

Energy Log-Energy Ent. 96.175% 99.25% 85.675% 88.675% 

Energy Peaks Diff. 90.6% 93.375% 87.375% 92.125% 

Mean Std. Deviation 93.875% 93.025% 70.075% 90.925% 
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Mean Skewness 63.775% 63.275% 61.6% 67.875% 

Mean Shannon Ent. 84.85% 93.025% 87.375% 93.3% 

Mean RMS 93.9% 92.95% 69.425% 91.775% 

Mean Kurtosis 71.05% 70.375% 69.85% 73.75% 

Mean Log-Energy Ent. 90.775% 95.325% 95.175% 95.275% 

Mean Peaks Diff. 91.325% 89.875% 74.2% 88.925% 

Std. Deviation Skewness 79.1% 69.675% 67.6% 76.4% 

Std. Deviation Shannon Ent. 85.2% 92.85% 87.225% 93.55% 

Std. Deviation RMS 92.65% 92% 76.375% 91.7% 

Std. Deviation Kurtosis 73.4% 71.375% 70.475% 78.8% 

Std. Deviation Log-Energy Ent. 90.65% 95.475% 95.075% 94.85% 

Std. Deviation Peaks Diff. 94.1% 92.55% 75.375% 91.75% 

Skewness Shannon Ent. 87.375% 91.925% 81.95% 91.425% 

Skewness RMS 79.775% 69.825% 67.475% 76.325% 

Skewness Kurtosis 72.675% 71.375% 69.65% 75.275% 

Skewness Log-Energy Ent. 90.875% 95.65% 95.225% 95.2% 

Skewness Peaks Diff. 88.45% 77.55% 74.6% 81.2% 

Shannon Ent. RMS 85.65% 92.825% 87.325% 93.2% 

Shannon Ent. Kurtosis 92.55% 90.35% 86.835% 90.65% 

Shannon Ent. Log-Energy Ent. 98.25% 99.65% 99.6% 99.475% 

Shannon Ent. Peaks Diff. 85.475% 93.55% 86.7% 93.725% 

RMS Kurtosis 73.25% 71.4% 70.2% 78.35% 

RMS Log-Energy Ent. 90.25% 95.45% 95.225% 94.925% 

RMS Peaks Diff. 94.25% 92.075% 75.425% 91.75% 

Kurtosis Log-Energy Ent. 94.2% 96.525% 96% 94.875% 

Kurtosis Peaks Diff. 80.4% 72.15% 72.05% 81.325% 

Log-Energy Ent. Peaks Diff. 90.375% 95.55% 95.35% 96.025% 

 

On the other hand, in [22] a feature selection algorithm known as Artificial Bee Colony (ABC) was proposed for the 
detection and classification of 7 types of single and 6 types of complex disturbances based on Energy, Shannon Entropy, 
Standard Deviation, Kurtosis, Skewness and RMS extraction at 8 resolution levels. The algorithm focuses on the selection 
of optimal features for the classification from a larger set of them, at the same time that it allows establishing the optimal 
spread parameter for a Probabilistic Neural Network (PNN). The results of PNN classifier were compared with other 
classifiers such as Multilayer Perceptron (MLP) and Radial-Basis Function Neural Network (RBF), obtaining and 
accuracy of 98.25%, 95.25% and 96.625% in each case. The selected features were normalized by Min-Max method and 
the ABC algorithm was carried out in simulation through PSCAD. 

In [23] a comparison of the performance of different classifiers such as K-Nearest Neighbors (KNN), Decision Tree (DT), 
Support Vector Machine (SVM), Naïve Bayesian classifier (NB) and Random Forest (RF) is proposed from the extraction 
of Mean, Standard Deviation, Skewness, Kurtosis, Crest and Form Factors, Shannon and Log-Energy Entropy of 8 types 
of single disturbances decomposed into 9 resolution levels through MRA in MATLAB. Despite obtaining a low accuracy, 
the results suggest that additional feature selection methods could improve the classification. 
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Table 4 Accuracy for Each Round K 

Round MLP KNN PNN DT 

1 97.5% 99% 99% 99% 

2 99% 99.75% 99.75% 100% 

3 98.25% 100% 100% 100% 

4 97.25% 99.75% 100% 99.5% 

5 98.5% 99.75% 99.25% 99.25% 

6 98.75% 100% 99.75% 99% 

7 98.25% 99.75% 99.75% 100% 

8 98.5% 99.75% 99.75% 99.25% 

9 97.5% 99.25% 99.25% 99.5% 

10 978.5% 99.5% 99.5% 99.25% 

Average 98.25% 99.65% 99.6% 99.475% 

 

With the proposed method it can be evidenced that, from the decomposition of the signals into 9 resolution levels, the 
extraction of Shannon and Log-Energy Entropy results in an appropriate combination for the classification of 8 different 
types of single disturbances. Furthermore, data normalization has an impact on classification as it provides a higher 
accuracy regardless of the classifier used. This fact makes it possible to reduce the computational expense by using only 
two different types of features without compromising accuracy. 

Table 5 Comparison with Other Proposed Works 
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[17] DWT/MRA 6 𝐸, 𝑆𝐸, 𝐿𝑂𝐸 ‒ 
SVM 
DT 
RF 

Synthetic 
8 single and 
2 complex 

Simulation 
97.24% 

  97.40% 
  98.30% 

[21] DWT/MRA 7 
𝜇, 𝜎2, 𝜎, 𝐾𝑅𝑇, 𝑆𝐸, 𝐸, 

𝑀𝑎𝑥, 𝑀𝑖𝑛, 𝑀𝑜𝑑𝑒, 𝑀𝑒𝑑𝑖𝑎𝑛 
‒ 

KNN 
NB 

Synthetic 5 single Simulation 
97.91%  

  97.22% 

[22] DWT/MRA 8 
𝐸, 𝑆𝐸, 

𝜎, 𝐾𝑅𝑇, 
𝑆𝐾, 𝑅𝑀𝑆 

Min-Max 
PNN 
MLP 
RBF 

Synthetic 
7 single and 
6 complex 

Simulation 
98.625% 
 95.25%  

 96.625% 

[23] DWT/MRA 9 

 
𝜇, 𝜎, 

𝑆𝐾, 𝐶𝑟𝑒𝑠𝑡 𝐹𝑎𝑐𝑡𝑜𝑟, 
𝐾𝑅𝑇, 𝐹𝑜𝑟𝑚 𝐹𝑎𝑐𝑡𝑜𝑟, 

𝑆𝐸, 𝐿𝑂𝐸 

‒ 

KNN 
DA 
NB 
DT 

SVM 
RF 

Synthetic 8 single Simulation 

76.32% 
  72.45% 
  75.13% 
  78.13% 
  79.13% 
  81.75% 

Proposed DWT/MRA 9 𝑆𝐸, 𝐿𝑂𝐸 Z-score 

MLP 
KNN 
PNN 
DT 

Synthetic 8 single Simulation 

98.25% 
  99.65% 
  99.6% 

  99.475% 
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4. Conclusion 

In this work, a methodology for the evaluation of different combinations of wavelet-based features for the detection and 
classification of eight types of simple disturbances was proposed. The combination of Shannon Entropy and Log-Energy 
Entropy was the one that provided the highest accuracy. The fact of using only two different features allows to reduce 
the computational expense required, likewise, data normalization by Z-score significantly improves the classification 
results, providing them the attributes of a normal distribution. In this sense, the classifiers that obtained the highest 
accuracies were PNN and KNN, which shows that these classifiers are particularly effective for this type of application. 
Then the DWT results in a powerful tool for the analysis of anomalous signals with sudden changes in their waveform, 
as is the case of Power Quality Disturbances. 
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