
* Corresponding author: Jude Chukwura Obi 

Copyright © 2023 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0. 

A Comparative Study of Several Classification Metrics and Their Performances on 
Data  

Jude Chukwura Obi * 

Department of Statistics, Chukwuemeka Odumegwu Ojukwu University, Anambra State, Nigeria. 

World Journal of Advanced Engineering Technology and Sciences, 2023, 08(01), 308–314 

Publication history: Received on 06 January 2023; revised on 14 February 2023; accepted on 17 February 2023 

Article DOI: https://doi.org/10.30574/wjaets.2023.8.1.0054 

Abstract 

Six classification metrics namely, Accuracy, Precision, Recall (Sensitivity), Specificity, F1-Score and Area Under the 
Curve have been studied in this work. A classification model based on the Support Vector Machine, was used to obtain 
a confusion matrix, which provided the needed information for calculating the different classification metrics. Twenty 
different datasets were used to assess the performances of the classification metrics. Accuracy and Area Under the Curve 
are the two metrics that consistently gave a classification result given each dataset used in the study. Although accuracy 
appears to be marginally better that AUC, it was discovered that in some cases where sensitivity is zero, accuracy yielded 
a high correct classification result. This goes further to implying that prior to choosing accuracy as a preferred metric 
for classification, investigation should be carried out to find out what sensitivity and specificity are. Where there are 
high values for sensitivity and specificity, the study shows that a choice of accuracy as a preferred classification metric 
leads to a high percentage of correct classification result. 
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1. Introduction

Classification can be defined as the prediction of class outcome variables (Johnson et al., 2002), using a classification 
function. Notable examples of a classification functions include the Fisher’s Discriminant Analysis (FDA), Support Vector 
Machine (SVM) and the Logistic Regression, etc. A classification metric is constructed on any classification function and 
it is the outcome of discrimination. Discrimination on its part refers to the use of a set of labelled classes, otherwise 
called training set to construct a classifier (or allocation rule) that separate the predefined classes as much as possible 
(Izenman, 2008). Put differently, discrimination is concerned with the problem of class separation, whereas 
classification aims to allocate unlabeled input to a class it belongs. For instance, consider a training set 𝐷 = {(𝑥𝑖 , 𝑦𝑖)}𝑖=1

𝑛 ,
and assuming that we partition it into 𝐾 labelled classes 𝑐𝑘, where 𝑘 = 1,2, ⋯ , 𝐾. The goal of classification is to take an 
input vector 𝐱i, and assign it to one of the 𝐾 classes (Bishop, 2007). The classes are assumed to be disjoint meaning that 
each 𝐱i is assigned to one and only one class.  

The problem often encountered in classification concerns making a suitable choice of a classification metric. The success 
of a classification metric is often tied to data, because different classification metrics perform differently given different 
datasets. A classification metric can be constructed using different methods, but in most cases, the merits and demerits 
of each one is often data dependent.  

The classification metrics to be review will include the accuracy rate (conversely called the error rate), precision, recall 
(sensitivity or the true positive rate), F1-score, Specificity and the receiver operating characteristic (ROC) curve/area 
under the ROC curve.  
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Prior to reviewing these metrics, it is important to note that each of them has a connection to the confusion matrix. For 
this reason, I shall commence with reviewing what confusion matrix is. 

1.1. Confusion Matrix 

A confusion matrix is an 𝑛 × 𝑛 table with information about the predictions of a classification model, vis-à-vis the actual 
observations based on data. For a 2 × 2 table, a confusion matrix contains information about the true positive (TP), true 
negative (TN), false positive (FP) and the false negative (FN). A reference on a clearer definition of a confusion matrix 
can be found in (Wikipedia contributors, 2022a). Table 1 that follows is a schematic illustration of a confusion matrix. 

Table 1 Schematic illustration of a confusion matrix 

 Actual Values 

P N 

Predicted Values 
P TP (True Positive) FP (False Positive) 

N FN (False Negative) TN (True Negative) 

1.2. Accuracy Rate (opposite of the Error Rate) 

The accuracy rate can be defined as the number of correct classifications over the entire test set or conversely the 
fraction of correct prediction of a classifier, over the entire test set. The accuracy rate is the opposite of the error rate 
and both rates give the same information about the strength or weakness of a classifier. Symbolically, (Zaki & Wagner, 
2014) defined the rate as follows:  

 
Accuracy Rate =

1

𝑚
∑ 𝐼(𝑦𝑖 = 𝑦̂𝑖)

𝑚

𝑖=1

, (1.1) 

Where 𝐼 in an indicator function with value1 if the argument is true, otherwise it has value zero. 𝑚 is the size of the test 
set. With regards to the error rate, (1.1) will be conversely stated as: 

 
𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 =

1

𝑚
∑ 𝐼(𝑦𝑖 ≠ 𝑦̂𝑖)

𝑛

𝑖=1

   (1.2) 

One disadvantage of the error rate, as well as the accuracy rate is that it does not provide information on the 
performance of a classifier in each class separately. It rather gives information on the overall performance of a classifier 
given the entire test set. As a result, one lacks the ability to assess how a classifier has performed in each 𝑐𝑘 class.  

Based on Table 1; 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
, 

Error Rate =
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
. 

1.3. Precision 

Precision is the ratio of the true positive over all the positives observed. All the positives here include the true positives 
observed, plus some true negatives wrongly observed as positives (FP). Symbolically, 

 
Precision =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
. (1.3) 

 

Consider a model that gives a precision of 0.84, for instance; it means that the model is correct with its prediction 
(prediction of the true positive) 84% of the time. In fact, based on (1.3), precision gives a fraction of the true positive 
predicted given a classification model. It answers the question; of all the positive predictions, what fraction is truly 
positive. 
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1.4. Recall 

Recall, also known as sensitivity or the true positive rate, is the ability of a model to correctly identify the true positive. 
It is mathematically defined as: 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (1.4) 

 

Recall answers the question; of all the positives (all the positives here include the true positives plus the true positive 
wrongly observed as negatives (FN)), what percentage is truly positive? High recall means that the observed true 
positives are relatively higher than observed false negative and low recall means the opposite.  

1.5. F1-Score 

The F1-Score is the harmonic mean or the weighted average of precision and recall. By definition, it is a measure of a 
test’s accuracy, and calculated from the precision and recall of the test. As mentioned already, the precision is the 
number of correctly identified positive results divided by the number of positive results, including those not identified 
correctly, and recall is the number of correctly identified positive results divided by the number of all samples that 
should have been identified as positive (Wikipedia contributors, 2022b). For this reason, the F1-score takes both false 
positive and false negative into account. Compared to the accuracy, the F1-score is preferred particularly where cost is 
involved or uneven classes are involved. Where the false positive and false negative have similar costs, accuracy is 
preferred. Symbolically, 

 
F1 Score =

2

1
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

+
1

𝑅𝑒𝑐𝑎𝑙𝑙

=  2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (1.5) 

 

1.6. Specificity 

Specificity is used to measure the fraction of true negatives correctly predicted as negatives by a given classifier. 
Consider, for instance, a model used to classify people who have headache and those without headache (negatives). 
Typically, if there is high specificity, it means that the model is a good one, because it has the ability to isolate people 
without the disease from those with the disease. Symbolically, 

 
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (1.6) 

 

Based on (1.6), if 𝐹𝑃 → 0, 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 → 1, and the model in question is a useful one. 

1.7. Receiver Operating Characteristic (ROC) Curve/Area Under the ROC Curve 

The ROC curve is a graph that shows the performance of a classification model at all classification thresholds. The curve 
consists of the plot of True Positive Rate (TPR) versus the False Positive Rate (FPR) for all classification thresholds. Note 
that: 

 
𝑇𝑃𝑅 (𝑅𝑒𝑐𝑎𝑙𝑙) =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
,   and  

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

(1.7) 
 
 
 

(1.8) 

The Area Under the ROC Curve (AUC) gives information on the overall performance of a classification model. The least 
AUC can assume is 0, meaning that a given classification model performed woefully badly, whereas the biggest value it 
assumes is 1. In this case, we have a highest performance rate of a given classification model. Figures 1 and 2 give the 
diagrams of ROC curve and AUC respectively. 
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Figure 1 TPR vs FPR at different 
classification thresholds denoted by the 

dotted lines 
Figure 2 Area under the ROC curve 

2. Research Aim and Objectives 

The aim is to find out among the reviewed classification metrics, the one that comparatively is better. The objectives 
include the following:  

 To create awareness that the error rate or alternatively the accuracy rate is not the only metric for measuring 
the performances of a classifier. 

 To show how thorough understanding of a confusion matrix can aid in obtaining any desired classification 
metric. 

 To show some appealing properties of the ROC curve and consequently the AUC. 

3. Research Methodology 

This research will involve the use of several classification datasets. Each dataset will be split into training set (70%) and 
test set (30%). A classification model (classifier) based on the support vector machine will be constructed using the 
training set and with the test set, the classifier is evaluated. Thereafter, a unique confusion matrix will be obtained for 
each dataset, which in turn forms a basis for calculation of the classification metrics, namely the accuracy rate, F1 score 
and the area under the ROC curve. The omission of precision and recall is due to the fact that F1 score is a function of 
both. Again, with F1 score, a higher score is a reflection that the classifier concerned performs better given the dataset.  

Further discussions in this section will include the datasets to be used in this study, a classification model based on the 
support vector machine, and some inferential procedures.  

3.1. Datasets 

The datasets to be used include Appendicitis, Australia, Coil2000, Handheight, Heart, Heberman, Hepatitis, HVWN, 
Ionosphere, Magic, Mammographic, Parkinsons, Ringnorm, Saheart and WDBC. Detailed descriptions of the dataset are 
contained in (Jude, 2019). Additional datasets to use are Colon, Gisette, Prostate, Sonar and Twonorm.  

3.1.1. Colon 

Colon is a gene expression dataset from the microarray experiments of colon tissue samples (Alon et al., 1999). The 
dataset consists of 62 samples and 2000 genes (features). It has two classes namely tumour tissue with 40 samples, and 
normal tissue with 22 samples. It is contained in plsgenomics package in R.  

3.1.2. Gisette 

The dataset is one of five datasets used in the NIPS 2003 feature selection challenge, and was put together by (Guyon, 
2003). It is also contained in the UCI Machine Learning repository. 
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3.1.3. Prostrate 

Prostrate dataset is a gene expression dataset (Singh et al., 2002). The dataset is contained in R package spls and consists 
of two classes namely, 52 prostrate tumour and 50 normal classes. The number of genes involved is 6033.  

3.1.4. Sonar 

This dataset contains signals obtained from a variety of different aspect angles, spanning 90 degrees for mines and 180 
degrees for rocks. Each pattern is a set of 60 numbers in the range 0.0 to 1.0, where each number represents the energy 
within a particular frequency band, integrated over a certain period of time. The output attribute contains the letter +1 
if the object is a rock and −1 if it is a mine (metal cylinder). The source is UCI Machine Learning Repository. 

3.1.5. Twonorm 

This dataset is 20 dimensional, and consists of 2 classes. Each class is drawn from a multivariate normal distribution. 
Class +1 has mean (a, a, ..a) while Class −1 has mean (−a, −a, .. − a)..a = 2/sqrt(20). The dataset is contained in the KEEL 
dataset repository. 

3.2. Support Vector Machine (SVM) 

The support vector machine (Cortes and Vapnik, 1995) is a binary classifier from the field of machine learning. It has a 
strong geometric appeal, with a concept based on the hyperplane. A hyperplane is a set of points ℎ(𝑥) (Zaki and Wagner 
Meira, 2014), where ℎ(𝑥) is a function of the hyperplane defined by 

 ℎ(𝑥) = W𝑇x + 𝑤0 (3.1) 
Note that W is a p-dimensional weight vector and 𝑤0 is a scalar. The SVM is implemented in R via the use of e1071 
package. The function svm contained in the package is used to construct a svm model, which subsequently is used for 
classes allocations.  

3.3. Some Inferential Procedures 

The SVM will be used to construct a classification model for each dataset used in the study. With such model, a confusion 
matrix is obtained, which in turn helps to work out the three needed classification metrics on each dataset. Over all the 
datasets used in the study, efforts will be made to find out if there are differences among the results of the classification 
metrices or whether they are all essentially the same.  

4. Results 

4.1. Data Analysis/Result Presentation  

The output of six classification metrics on twenty different datasets is contained on Table 1. The R codes used for data 
analysis is shown in the Appendix. Based on Table 1, the use of accuracy and AUC consistently output a result. With 
majority of the datasets, it seems that the output of accuracy is relatively higher, followed by AUC and both sensitivity 
and specificity appear to tally in output. It is possible to observe a direct dependence of Precision, Recall (sensitivity) 
and F1-Score on the TP prediction. If a model is not able to predict the TP, sensitivity will be zero, and there is no output 
for both Precision and F1-Score.  

Apart from the dataset Hepatitis, it seems that whenever sensitivity is zero, the output of accuracy is small. Of all the 
datasets examined, the one that presented appealing output given all the classification metrics is Twonorm. Here, there 
is high output from all the classification metrices. This result may not be surprising because the dataset particularly 
follows a normal distribution, since it was simulated under a multivariate normal condition.  

It is noteworthy that in as much as accuracy appears to be a better metric by virtue of its output, caution should be 
applied using it. For instance, with datasets Australia, Hepatitis, WDBC and Gisette; TP is zero, meaning that sensitivity 
is zero, yet there is output for accuracy. Now, the big question is, to what extent do we rely on a metric that could possibly 
not predict the TP at some times? For this reason, my view is that prior to considering accuracy as a choice metric, it 
may be necessary to know what sensitivity and specificity are. A model that outputs zero sensitivity may never be 
considered as a better model irrespective of its level of accuracy.  
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 Table 1 Output of six classification metrics on twenty different datasets 

S/No. Dataset Dim Accuracy Precision Sensitivity Specificity F1 Score AUC 

1 Appendicitis 106 × 8 0.76 0.76 1.0 0.0 0.86 0.5 

2 Austraria 482 × 15 0.56 NaN 0.0 1.0 NaN 0.5 

3 Coil2000 6875 × 86 0.92 0.14 0.05 0.98 0.07 0.51 

4 Handheight 117 × 3 0.86 1.0 0.74 1.0 0.85 0.87 

5 Heart 176 × 14 0.55 0.55 1.0 0.0 0.71 0.5 

6 Heberman 215 × 4 0.69 0.75 0.13 0.98 0.22 0.55 

7 Hepatitis 44 × 20 0.79 NaN 0.0 1.0 NaN 0.5 

8 HVWN 606 × 101 0.52 0.74 0.2 0.91 0.31 0.56 

9 Ionosphere 245 × 33 0.96 1.0 0.89 1.0 0.94 0.94 

10 Magic 13314 × 11 0.66 0.90 0.02 1.0 0.04 0.51 

11 Mammographic 581 × 6 0.77 0.79 0.78 0.76 0.79 0.77 

12 Parkinsons 137 × 23 0.83 0.67 0.25 0.97 0.36 0.61 

13 Ringnorm 5180 ×  21 0.51 0.51 1.0 0.0 0.67 0.5 

14 Saheart 323 × 10 0.59 0.59 1.0 0.0 0.74 0.5 

15 WDBC 398 × 31 0.65 NaN 0.0 1.0 NaN 0.5 

16 Colon 43 × 2001 0.71 0.71 1.0 0.0 0.83 0.5 

17 Gisette 6000 ×  5001 0.49 NaN 0.0 1.0 NaN 0.5 

18 Prostate 71 ×  6034 0.9 1.0 0.8 1.0 0.89 0.9 

19 Sonar 146 ×  61 0.69 0.67 0.87 0.47 0.75 0.67 

20 Twonorm 5180 × 21 0.98 0.97 0.98 0.97 0.98 0.98 

5. Conclusion 

I have so far considered six classification metrics, namely Accuracy, Precision, Sensitivity, Specificity, F1-Score and the 
AUC. I have equally demonstrated how the computation of each of the metrics is dependent on information from the 
confusion matrix. In other words, the moment the confusion matrix is obtained, any of the six given classification metrics 
can easily be calculated.  

The accuracy appeared to have shown improved performance over AUC, although the two metrics consistently outputs 
a result even on datasets where others could not give any result. In spite of this marginal gain over AUC, caution is still 
advised prior to using it. The reason is because in some cases where sensitivity is zero, we still see accuracy outputting 
a higher classification result, and example here is with the dataset Hepatitis. Now, if you consider that with this dataset, 
the classification model could not predict any positive case (those individuals who have Hepatitis), but only predicted 
majority of those without the disease, you cannot claim that such model is entirely a good one. 

Based on this information, I am of the view that prior to choosing accuracy as a preferred classification metric, it is 
important to know what sensitivity and specificity of the given classification problem are. If there is high correct 
classification result with both sensitivity and specificity, accuracy can be adjudged a preferred metric. Example here is 
seen with the dataset Twonorm, because here, we have high correct classification result with sensitivity and specificity, 
and accuracy also gave a high correct classification result of 98%. 
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Appendix 

 rm(list = ls()) 
 load(file.choose()) 
 ls() 
 df[1:3, ] 
 names(df)[1] = "Class" 
 set.seed(1) 
 sample = sample(c(TRUE, FALSE), nrow(df), replace=TRUE, prob=c(0.7,0.3)) 
 train = df[sample, ] 
 test = df[!sample, ] 
 library(e1071) 
 Svm.Mod = svm(Class ~ ., data = train, type = "C-classification",  
 scale = FALSE, kernel = "radial", cost = 5) 
 Pred = predict(Svm.Mod, test) 
 CM = table(Prediction = Pred, Actual = test$Class); CM 
 accuracy = sum(CM[1], CM[4])/sum(CM[1:4]); accuracy 
 precision = CM[1]/sum(CM[1], CM[3]); precision 
 sensitivity = CM[1]/sum(CM[1], CM[2]); sensitivity 
 specificity = CM[4]/sum(CM[4], CM[3]); specificity 
 f1score = (2 * (sensitivity * precision))/(sensitivity + precision); f1score 
 ## Calculate Area Under the Curve 
 ## https://www.projectpro.io/recipes/calculate-area-under-curve-r 
 library(pROC) 
 PredN = as.numeric(levels(Pred))[Pred] 
 AUC_Mod = roc(test$Class, PredN) 
 auc(AUC_Mod) 
 dim(df) 


