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Abstract 

Optimizing drug release kinetics from nanocarriers is crucial for enhancing therapeutic efficacy and minimizing 
systemic toxicity in pharmaceutical formulations. Traditional deterministic models often fail to adequately capture the 
complex, non-Fickian diffusion and stochastic variability inherent in nanoparticle-based drug delivery systems. This 
study develops and applies a Bayesian fractional stochastic model to describe drug release kinetics from liposomal, 
polymeric, and metallic nanoparticles. The model integrates fractional calculus to account for anomalous diffusion and 
memory effects, while Bayesian inference enables dynamic parameter estimation under uncertainty. Experimental drug 
release data were obtained across varying temperature and pH conditions, with additional evaluations of nanoparticle 
size and initial drug concentration effects. The proposed model achieved the lowest Root Mean Squared Error (RMSE = 
2.31) and optimal Bayesian Information Criterion (BIC = 35.6) compared to traditional models, including Higuchi, 
Korsmeyer-Peppas, Zero-Order, and Weibull models. Sensitivity analyses revealed that drug release efficiency increased 
with temperature, lower pH, smaller nanoparticle size, and higher initial drug concentration. The Bayesian approach 
enabled real-time updating of fractional order (𝛼) and release rate constant (𝑘), ensuring model adaptability under 
varying experimental conditions. These findings confirm that the Bayesian fractional stochastic model provides a 
robust, adaptive, and accurate predictive tool for optimizing drug release from nanoparticle systems. This approach 
holds substantial potential for guiding the rational design of next-generation, patient-specific drug delivery systems in 
nanomedicine.  
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1. Introduction

Nanotechnology has revolutionized drug delivery systems by enabling precise control over drug release profiles, 
enhancing therapeutic efficiency, and minimizing systemic toxicity (Torchilin, 2020; Ventola, 2017). Nanocarriers, 
including liposomes, polymeric nanoparticles, and metallic nanoparticles, offer distinct advantages such as site-specific 
delivery, prolonged circulation time, and the ability to bypass biological barriers (Zhang et al., 2018; Sercombe et al., 
2015). However, achieving optimal and predictable drug release kinetics from these carriers remains a persistent 
challenge due to the complexity of drug diffusion mechanisms and the influence of environmental factors such as 
temperature, pH, and nanoparticle size (Kumar et al., 2021; Raza et al., 2019). 

Traditional models, including zero-order, Higuchi, Korsmeyer-Peppas, and Weibull models, have long been employed 
to describe drug release kinetics (Siepmann & Siepmann, 2011). While these models provide reasonable 
approximations in certain cases, they often fail to accurately capture the non-Fickian, anomalous diffusion behavior 
observed in nanocarrier-based delivery systems (Dash et al., 2010; Peppas & Narasimhan, 2014). Anomalous diffusion 
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is characterized by the dependence of diffusion rates on time and can arise from factors such as polymer relaxation, 
nanoparticle degradation, and drug-polymer interactions (Lopes et al., 2017). Such complexities necessitate the 
development of more robust models capable of incorporating time-dependent diffusion and stochastic variability. 

Fractional calculus, which generalizes classical differentiation and integration to non-integer orders, has emerged as a 
powerful tool to describe systems exhibiting anomalous diffusion and memory effects (Sun et al., 2018). In drug delivery, 
fractional models have been increasingly adopted to represent the complex dynamics of drug release, particularly when 
traditional models fail to describe the underlying transport mechanisms adequately (Wang et al., 2019; Guo et al., 2019). 
These models capture sub-diffusion and super-diffusion behavior by introducing a fractional order parameter that 
reflects the deviation from classical Fickian diffusion. 

While fractional models provide improved flexibility, their deterministic nature often neglects the inherent variability 
in drug release processes arising from formulation inconsistencies, manufacturing variations, and physiological 
heterogeneity (Yang et al., 2020). This stochastic variability can lead to deviations between predicted and actual drug 
release profiles, emphasizing the need for adaptive models capable of updating predictions as new data become 
available. 

Bayesian inference offers a solution by providing a probabilistic framework for parameter estimation under 
uncertainty, enabling real-time updating of model parameters as additional experimental data are incorporated 
(Gelman et al., 2014; Bernardo & Smith, 2009). Bayesian methods have gained traction in pharmacokinetics and drug 
delivery due to their ability to integrate prior knowledge with observed data, enhancing the precision and robustness 
of model predictions (Nyberg et al., 2015). When combined with fractional calculus, Bayesian stochastic modeling has 
the potential to deliver an adaptive, data-driven approach for optimizing drug release kinetics. 

This study aims to develop a Bayesian fractional stochastic model to describe the release kinetics of drugs from 
nanocarriers, incorporating fractional calculus for anomalous diffusion and Bayesian inference for stochastic parameter 
estimation. Experimental validation is conducted using liposomal, polymeric, and metallic nanoparticles under varying 
temperature, pH, nanoparticle size, and initial drug concentration conditions. The proposed model is compared against 
traditional kinetic models, with a focus on evaluating its predictive accuracy and adaptability to environmental 
variations. This approach seeks to provide a robust computational tool for optimizing nanocarrier-based drug delivery 
systems, supporting the development of precision medicine formulations. 

2. Methodology 

This study presents a novel modeling framework that integrates fractional calculus, stochastic processes, and Bayesian 
inference to accurately predict drug release kinetics from various nanocarriers. This approach addresses the limitations 
of traditional models by capturing the complex, memory-dependent, and stochastic nature of drug release at the 
nanoscale. 

2.1. Model Formulation 

We developed a fractional-order stochastic differential equation (FSDE) to model the drug release kinetics from 
nanocarriers. The FSDE incorporates a fractional derivative to account for the memory effects inherent in the drug 
release process. The general form of the FSDE is expressed as: 

𝐷𝑡
𝛼𝐶(𝑡) = −𝑘𝐶(𝑡) + 𝛽𝑊(𝑡) 

where 𝐷𝑡
𝑎  denotes the Caputo fractional derivative of order α (0 < α ≤ 1), 𝐶(𝑡) represents the drug concentration at time 

𝑡, 𝑘 is the release rate constant, 𝛽 is the intensity of the stochastic perturbation, and 𝑊(𝑡) signifies a standard Wiener 
process modeling the stochastic behavior. 

The Caputo fractional derivative is defined as: 

𝐷𝑡
𝑎𝑓(𝑡) =

1

𝛤(𝑛 − 𝑎)
∫

𝑓(𝑛)(𝜏)

(𝑡 − 𝜏)𝑎−𝑛+1
𝑑𝜏

𝑡

0

 

where n=[α] = and Γ denotes the Gamma function. This formulation allows the model to capture the anomalous diffusion 
and long-memory characteristics observed in drug release from nanocarriers. Fractional-order models have been 
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shown to better describe certain pharmacokinetic processes compared to traditional integer-order models (Magin et 
al., 2018). 

2.2. Parameter Estimation via Bayesian Inference 

To estimate the model parameters (α, 𝑘, and 𝛽), we employed a Bayesian inference approach. This method integrates 
prior knowledge with experimental data to update the probability distributions of the parameters iteratively. The 
likelihood function was constructed based on the assumption that the observed drug concentrations are subject to 
Gaussian noise. Markov Chain Monte Carlo (MCMC) sampling techniques were utilized to approximate the posterior 
distributions of the parameters, providing a comprehensive understanding of their uncertainties and correlations. 
Bayesian methods offer the advantage of incorporating prior information and adapting the model as new data becomes 
available, which is particularly useful in complex biological systems (FDA, 2023). 

2.3. Experimental Validation 

We conducted drug release experiments using three types of nanocarriers: liposomal, polymeric, and metallic 
nanoparticles. Each nanocarrier was loaded with a model drug, and the release profiles were monitored over time under 
varying environmental conditions, including different pH levels and temperatures. The drug concentrations were 
measured at non-uniform time intervals to capture the dynamic release behavior accurately. This experimental design 
allows for the assessment of the model's robustness under physiologically relevant conditions. 

2.4. Model Comparison 

To evaluate the performance of the proposed FSDE model, we compared it with traditional kinetic models, including 
the Higuchi, Korsmeyer-Peppas, zero-order, and Weibull models. The comparison was based on metrics such as the 
Root Mean Square Error (RMSE) and the Bayesian Information Criterion (BIC), which assess the goodness-of-fit and 
model complexity, respectively. Fractional-order models have been shown to better describe certain pharmacokinetic 
processes compared to traditional integer-order models (Magin et al., 2018). 

By integrating fractional calculus, stochastic processes, and Bayesian inference, this methodology provides a robust 
framework for modeling drug release kinetics from nanocarriers, addressing the limitations of traditional models and 
offering enhanced predictive capabilities. 

3. Results 

3.1. Bayesian Posterior Distributions of Model Parameters 

 

Figure 1 Bayesian Posterior Distributions of Model Parameters. The distributions of 𝜶, 𝒌, 𝜷, and σ2 confirm strong 
convergence and accurate model parameter estimation 

To validate the Bayesian fractional stochastic model, we estimated the posterior distributions of key parameters—
fractional order (𝛼), release rate constant (𝑘), memory effect parameter (𝛽), and noise variance (σ2)—using Markov 
Chain Monte Carlo (MCMC) sampling. Figure 1 illustrates these distributions, confirming strong convergence and 
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unimodal behavior across all parameters, ensuring model stability. The fractional order parameter (𝛼) varied between 
0.65 and 1.02, indicating anomalous diffusion, while the release rate constant (𝑘) was narrowly distributed, reinforcing 
the model’s predictive reliability. 

3.2. Drug Release Profiles from Different Nanocarriers 

Drug release kinetics were experimentally evaluated for liposomal, polymeric, and metallic nanoparticles over a 72-
hour period. Table 1 summarizes the release profiles, highlighting distinct behaviors across nanocarriers. Liposomal 
nanoparticles showed gradual, sustained release, polymeric nanoparticles exhibited moderate release, while metallic 
nanoparticles displayed burst release kinetics. These differences emphasize nanocarrier-dependent drug diffusion 
mechanisms. 

Table 1 Drug Release Data for Different Nanocarriers 

Time (hours) Liposomal Release (%) Polymeric Release (%) Metallic Release (%) 

1 5.2 3.4 7.8 

3 12.5 8.7 15.6 

5 18.3 14.1 23.9 

8 24.8 19.5 32.4 

12 32.1 26.3 45.3 

24 51.7 40.8 68.1 

36 64.2 53.9 82.5 

48 72.5 61.7 91.2 

72 89.6 78.9 97.6 

In addition, Figure 2 visualizes these trends, showing that metallic nanoparticles exhibit rapid initial release, whereas 
liposomal nanoparticles sustain drug delivery over time, supporting their suitability for extended therapeutic 
applications. 

 

Figure 2 Drug Release Rate Over Time for Different Nanocarriers. Different nanocarrier materials lead to distinct drug 
release patterns 

3.3. Comparison of Model Fit and Predictive Performance 

The predictive accuracy of the Bayesian fractional stochastic model was compared against traditional kinetic models, 
including Higuchi, Korsmeyer-Peppas, Zero-Order, and Weibull models. As shown in Table 2, the Bayesian model 
achieved the lowest RMSE (2.31) and best BIC value (35.6), significantly outperforming classical models in predictive 
accuracy. 
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Table 2 Model Performance Metrics – RMSE and BIC 

Model RMSE BIC 

Bayesian Fractional Stochastic 2.31 35.6 

Higuchi 4.82 54.7 

Korsmeyer-Peppas 5.19 60.2 

Zero-Order 6.34 73.1 

Figure 3 highlights how Bayesian inference dynamically updates model parameters over time, refining predictions as 
new data become available. This adaptability enhances real-time precision in drug release modeling. 

 

Figure 3 Bayesian Updating of Model Parameters Over Time. Bayesian inference enables real-time model refinement, 
improving predictive accuracy 

3.4. Effects of Environmental Factors on Drug Release 

Environmental conditions, particularly temperature and pH, significantly influenced drug release rates. Figure 4 
illustrates that higher temperatures enhance molecular mobility, accelerating drug diffusion. This finding suggests that 
nanoparticle-based drug formulations may require temperature-sensitive adjustments for optimal therapeutic 
performance. 

 

Figure 4 Influence of Temperature on Drug Release Efficiency. Drug release increases at higher temperatures due to 
enhanced molecular mobility 
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Similarly, pH-dependent release behavior was analyzed, revealing that acidic conditions facilitated faster drug release, 
while basic conditions exhibited slower release kinetics. Table 3 quantifies these effects across nanocarriers. 

Table 3 Comparison of Drug Release Kinetics Across Different pH Conditions 

pH Condition Liposomal Release (%) Polymeric Release (%) Metallic Release (%) 

Acidic (pH 5.5) 78.3 85.6 91.2 

Neutral (pH 7.4) 64.2 53.9 82.5 

Basic (pH 9.0) 49.7 32.1 59.4 

Figure 5 further emphasizes this trend, where lower pH conditions lead to enhanced drug diffusion, potentially 
benefiting applications requiring pH-sensitive drug release. 

 

Figure 5 Influence of pH on Drug Release Efficiency. Acidic environments enhance drug release, likely due to polymer 
degradation and solubility effects 

3.5. Sensitivity Analysis of Model to Nanoparticle Size and Initial Drug Concentration 

The final sensitivity analysis examined how nanoparticle size and initial drug concentration impact release kinetics. 
Figure 6 shows that smaller nanoparticles release drugs more efficiently due to their higher surface-area-to-volume 
ratio, which promotes diffusion. 

 

Figure 6 Relationship Between Nanoparticle Size and Drug Release Efficiency. Smaller nanoparticles facilitate faster 
drug release compared to larger counterparts 
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Additionally, Table 4 quantifies how higher initial drug concentrations increase both the fractional order (α) and release 
rate constant (k), influencing the release dynamics. 

Table 4 Sensitivity Analysis of Bayesian Model to Initial Drug Concentration 

Initial Drug Concentration α Variability k Variability 

5 mg/mL 0.78 0.035 

10 mg/mL 0.85 0.040 

20 mg/mL 0.91 0.046 

4. Discussion 

This study presents a comprehensive analysis of drug release kinetics from various nanocarriers using a Bayesian 
fractional stochastic model, offering significant insights into the complex mechanisms governing drug delivery systems. 

The posterior distributions of key parameters—fractional order (α), release rate constant (𝑘), memory effect parameter 
( 𝛽 ), and noise variance ( 𝜎 2)—demonstrated strong convergence and unimodal behavior. The fractional order 
parameter (α) ranged between 0.65 and 1.02, indicating anomalous diffusion. This observation aligns with recent 
studies that have employed fractional calculus to model drug kinetics, capturing the memory effects inherent in 
biological systems (Grigoletto et al., 2017). 

Distinct release profiles were observed among liposomal, polymeric, and metallic nanoparticles. Liposomal carriers 
exhibited gradual, sustained release, consistent with their design for controlled drug delivery. Polymeric nanoparticles 
showed moderate release rates, while metallic nanoparticles displayed burst release kinetics. These variations 
underscore the influence of nanocarrier composition on drug diffusion, corroborating findings from recent research 
(Siepmann & Siepmann, 2012). 

The Bayesian fractional stochastic model outperformed traditional kinetic models, including the Higuchi, Korsmeyer-
Peppas, Zero-Order, and Weibull models, achieving the lowest RMSE (2.31) and best BIC value (35.6). This superior 
performance highlights the model's capacity to capture the complexities of drug release kinetics more effectively than 
classical approaches (Zhang et al., 2022). 

Environmental conditions, particularly temperature and pH, significantly influenced drug release rates. Elevated 
temperatures accelerated drug diffusion, leading to increased release rates, a phenomenon attributed to enhanced 
molecular mobility. Similarly, acidic conditions facilitated faster drug release, while basic conditions resulted in slower 
kinetics. These findings align with previous studies that have reported pH-dependent release behaviors in nanoparticle 
systems (Bajpai et al., 2016). 

Sensitivity analyses revealed that smaller nanoparticles exhibited higher release efficiency, likely due to their increased 
surface-area-to-volume ratios enhancing diffusion rates. Additionally, higher initial drug concentrations led to 
increased fractional order (𝛼 ) and release rate constant (𝑘 ), indicating dose-dependent release dynamics. These 
observations are consistent with prior research emphasizing the critical role of nanoparticle size and drug loading in 
release kinetics (Vasir & Labhasetwar, 2007). 

The integration of fractional calculus with stochastic modeling provides a comprehensive framework for understanding 
drug release mechanisms. Fractional calculus effectively captures the memory effects and anomalous diffusion observed 
in biological systems, while stochastic modeling accounts for inherent randomness and variability. This combined 
approach offers a more accurate representation of drug kinetics compared to traditional deterministic models (Magin 
et al., 2008). 

The insights gained from this study have significant implications for the design of drug delivery systems. Understanding 
the influence of nanocarrier composition, environmental factors, and initial drug loading on release kinetics can inform 
the development of tailored delivery platforms. The Bayesian fractional stochastic model serves as a valuable tool for 
predicting and optimizing drug release profiles, facilitating the creation of more effective and personalized therapeutic 
strategies (Macheras & Iliadis, 2016). 
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While the model demonstrates robust performance, it is essential to acknowledge potential limitations. The applicability 
of the model across a broader range of drug compounds and nanocarrier types warrants further investigation. Future 
studies should explore the model's adaptability to various therapeutic agents and delivery platforms. Additionally, 
incorporating patient-specific factors into the model could enhance its predictive accuracy, paving the way for 
personalized medicine applications (Zhang et al., 2022)  

5. Conclusion 

This study has demonstrated the effectiveness of the Bayesian fractional stochastic model in capturing the complex, 
dynamic, and memory-dependent nature of drug release kinetics from nanocarriers. By integrating fractional calculus 
to account for anomalous diffusion and stochastic processes to model inherent uncertainties, the proposed approach 
has shown superior predictive accuracy compared to traditional deterministic models such as the Higuchi, Korsmeyer-
Peppas, Zero-Order, and Weibull models. The Bayesian inference framework employed in this study enabled iterative 
refinement of parameter estimations, leading to a robust model that adapts to diverse experimental conditions. 

Experimental validation confirmed significant variations in drug release behavior across different nanocarrier types. 
Liposomal nanoparticles exhibited sustained release, polymeric nanoparticles demonstrated moderate release, while 
metallic nanoparticles followed burst release kinetics. These findings underscore the critical role of nanocarrier 
composition in drug release mechanisms, reaffirming prior studies on nanotechnology-driven controlled drug delivery 
(Siepmann & Siepmann, 2012; Zhang et al., 2022). The model’s ability to predict these variations with high accuracy 
strengthens its potential for practical applications in the pharmaceutical industry. 

Furthermore, environmental factors such as temperature and pH were shown to significantly influence drug release 
rates. Higher temperatures facilitated faster release, attributed to increased molecular mobility, while acidic 
environments enhanced drug diffusion, consistent with the degradation behavior of many nanoparticle systems in 
physiological conditions (Bajpai et al., 2016). The sensitivity analysis of nanoparticle size and initial drug concentration 
further reinforced the model’s adaptability, revealing that smaller nanoparticles exhibited higher release efficiencies 
due to their larger surface-area-to-volume ratios, and that higher drug concentrations altered release rate kinetics, 
necessitating dose-specific optimizations for enhanced therapeutic efficacy. 

The integration of fractional calculus and Bayesian stochastic modeling presents a powerful and adaptable framework 
for optimizing drug release kinetics in real-world applications. This approach provides pharmaceutical scientists with 
a predictive tool for designing personalized drug delivery systems, ensuring optimal therapeutic outcomes across 
diverse patient populations. Future research should explore expanding the model's application to other types of 
nanocarriers, such as dendrimers and micelles, and incorporating biological variability to move closer to precision 
medicine applications. 

While this study has provided a strong foundation, challenges remain in extending this approach to a broader range of 
therapeutic compounds and ensuring regulatory acceptance of Bayesian-driven pharmacokinetic modeling. Further 
refinement of real-time updating capabilities and validation across large-scale clinical datasets could pave the way for 
the implementation of this model in personalized medicine and drug formulation strategies. 

In conclusion, the Bayesian fractional stochastic model is a significant advancement in the field of pharmaceutical 
modeling and drug delivery. By bridging theoretical innovation with experimental validation, this study not only 
expands our understanding of drug release kinetics but also lays the groundwork for more efficient, adaptive, and 
individualized drug delivery systems. 

5.1. Practical implications 

The findings of this study have substantial implications for precision medicine, controlled drug delivery, and 
pharmaceutical manufacturing. By accurately modeling drug release kinetics under varying physiological conditions, 
the Bayesian fractional stochastic model can serve as a predictive tool for optimizing drug formulations before clinical 
trials, reducing time and cost in pharmaceutical development. 

The model's ability to account for nanoparticle properties, temperature, and pH variations suggests its application in 
tumor-targeted drug delivery, where controlled release is critical for minimizing systemic toxicity while enhancing local 
drug accumulation (Bajpai et al., 2016). Moreover, chronic disease treatments, such as diabetes and neurodegenerative 
disorders, could benefit from the model’s ability to design long-acting drug delivery systems, ensuring steady-state drug 
levels with fewer dosing intervals. 
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From a regulatory standpoint, the use of Bayesian inference offers a data-driven approach for optimizing drug release 
predictions, potentially aiding in risk assessment during regulatory submissions. Given the model’s adaptability, 
pharmaceutical industries could integrate it into quality-by-design (QbD) frameworks, enhancing drug stability 
predictions under different environmental conditions. 

Despite these promising applications, widespread clinical adoption of Bayesian-driven fractional models requires 
extensive validation. Future studies should focus on incorporating patient-specific variables (e.g., metabolism rates, 
disease state variations) to improve the predictive power of personalized medicine approaches  
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