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Abstract 

Recently, implementation of air magnetic suspension systems has become more challenging due to the growing demand 
for lightweight technologies, comfortable cabins, vehicle safety stability, and pollution control. Magnetic levitation, or 
Maglev, is the method of propelling a target into the air by adjusting different magnetic forces. The absence of contact 
and the avoidance of wear and friction phenomena are key considerations in the applications of magnetic levitation 
technology. Due to the high nonlinearity in the modelling process of such kind of systems, the stabilizing of magnetic 
levitation has been considered as a challenging task for many researchers in control engineering sector.  The 
computation of all stabilizing PID gains controllers for the magnetic levitation benchmark ED-4810 (Maglev) is 
demonstrated in this paper using two different scenarios. In the first one, the tuning parameters of the classical PID 
controller (KP, KI, and KD) are assumed to be the uncertain parameters. The second scenario demonstrates the 
uncertainty in the transfer function of the system by using the resistance and the inductance as uncertain parameters. 
The characteristic polynomial of the linearized uncertain model is shown to be an unstable affine polynomial using the 
Zero Exclusion Theorem and the singular frequencies technique. The parameter space approach is used to illustrate the 
values of all PID parameters in order to achieve robust stability in the two scenarios. The effectiveness of the presented 
graphical technique has been verified through MATLAB simulation to obtain robust stability for magnetic levitation 
systems. 

Keywords: Linearized model; Proportional–integral–derivative controller (PID); Robust control system; 
Characteristic polynomial; Singular frequency. 

1 Introduction 

Magnetic Levitation (Maglev) is the technique of suspending an object in the air by adjusting magnetic force which is 
used to counteract the gravitational force of the object [1]. The magnetic levitation technique is a widely advanced and 
expanding technology where the common feature in their applications is the absence of contact, which means no wear 
and friction. This enhances performance, lowers maintenance costs, and extends the system's life cycle [2]. The Maglev 
process have recently been implemented in a variety of industries such as: transportation, commercial applications, 
small and big wind turbines, and clean energy[3]. Vehicles that move like trains along a guideway using magnets to 
generate both lift and propulsion are important practical examples where frictions have been reduced to a great extent 
level which results in extremely high velocities [4].  Such systems' mathematical models have high nonlinearity and are 
unstable. Therefore, there is a significant need for research on modelling and controlling magnetic levitation systems in 
academic institutions and research centres. The linear system model and the nonlinear model are two well-known 
classification strategies for analysing systems that can be seen in the literature. For the linearized model: Proportional 
Integral control (PI), proportional–integral–derivative control (PID), Fuzzy logic controller, and linear–quadratic 
regulator (LQR) approaches are commonly applied as in [5-8].  According to [5], a magnetic levitation system (MLS) is 
a highly nonlinear open loop system which  can be controlled by a proportional integral derivative (PID) controller with 
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a derivative filter coefficient. The graphic PID development methodology for the maglev system was published in [9], 
which used the D-partition approach in the design of controller.   Sliding mode control, Lyapunov functions, and output 
feedback control are a promising techniques for nonlinear viewpoints [10-12]. Although PID is the easiest and most 
inexpensive of these controllers in develop and implement, the major drawback of PID controller is a tuning of PID gains 
(KP, KI, and KD). There are numerous ways to adjust the PID controller's parameters. The following are many examples 
of these popular strategies: the Z-N (Ziegler-Nichols) approach[13], Integral of Squared time weighted Error (ISE) 
method[14], Cohen-Coon methodology[15], Integral of Absolute Error rule (IAE)[16], and technique of gain-phase 
margin[17]. 

Actually, the suggested controller's robustness in the existence of parameter variation in the system is not taken into 
account by either of the abovementioned traditional processes. The study of complex systems with uncertainties is one 
of the most significant subfields of robust control. The characteristic polynomials for any uncertain systems include one 
or more uncertain parameters as the algebraic variables of its characteristic equation. There are different forms of 
polynomial families: polynomial coefficients, affine linear coefficients, multilinear coefficients, and interval coefficients. 
The classification is dependent on how uncertain parameters are included in the polynomial coefficients [18]. The ED-
4810 magnetic levitation system’s resulting characteristic polynomial in this study is an affine structure where the 
uncertain variables enter the characteristic polynomial coefficients linearly. There are numerous effective techniques 
used in control research literature for verifying the stability of specific plants. However, conventional approaches such 
as the Routh-Hurwitz standard and Root Locus are difficult to function in the presence of uncertainty. The Zero 
Exclusion Principle procedure is an effective tool for testing stability in an affine parameter space[19-21].  

In [22] The authors use the parameter space strategy to calculate all stabilizing PID parameters (KP, KI, and KD) for the 
magnetic levitation ED-4810 system with parametric uncertainties. The authors of this article apply the parameter 
space technique to modify parameters of the classical PID controller (KP, KI, and KD) that are considered to be uncertain 
parameters. The remainder of this article is structured as follows. The mathematical modelling of ED-4810 magnetic 
levitation and problem formulation are introduced in Section II. Section III defines the stability test approaches for 
uncertain architectures. The suggested robust PID controller is constructed and the collection of all PID stabilizing areas 
is recognized in section IV. section V's discussion of the simulation results. Finally, section VI includes final observations. 

2 Magnetic Levitation Modelling System 

Fig. 1 depicts the ED-4810 magnetic levitation system model which confirms the magnetic levitation principle of a 
suspended steel ball in the air with magnetic force. Because of the high nonlinearity in its model, this system is suitable 
for testing the effectiveness of different kinds of controllers in university laboratories [18]. 

 

Figure 1 Magnetic levitation system model 
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Where: 

m: The steel ball's weight. 
y(t): The ball's position in the middle. 
i(t): An electromagnetic coil is experiencing an electric current. 
c: The strength of magnetism. 
L: A wire's inductance. 
R: The wire's resistance. 
e(t) is the input voltage. 

Equation (1) shows the mathematical relation between the coil's current and its voltage. 

 𝑒(𝑡) = 𝑅𝑖(𝑡) + 𝐿
𝑑𝑖(𝑡)

𝑑𝑡
……………….(1) 

The combined value of the force applied on the perpendicular as shown in Fig. 1 is as follows: 

 𝑓𝑡𝑜𝑡𝑎𝑙 = 𝑓𝑔𝑟𝑎𝑣𝑖𝑡𝑦 + 𝑓𝑒𝑚……………….(2) 

Where the magnetic force of the top coil is commonly denoted 𝑓𝑒𝑚, and 𝑓𝑔𝑟𝑎𝑣𝑖𝑡𝑦  is the weight of gravity. The first order 

differential formulas listed below serve as a representation of the mathematical model of the actual system shown in 
Fig. 1.  

 𝑚𝑌̈ = 𝑚𝑔 − 𝑐
𝑖2

𝑦
……………….(3) 

 𝑥̇𝑎 = 𝑥𝑏……………….(4) 

 𝑥̇𝑏 = 𝑔 −
𝑐𝑥𝑐

2(𝑡)

𝑚𝑥𝑎
……………….(5) 

 𝑥̇𝑐 = −
𝑅

𝐿
𝑖𝑐 +

1

𝐿
𝑢(𝑡)……………….(6) 

Where, 𝑥𝑎 ≜ 𝑦(𝑡), 𝑥𝑏 ≜ 𝑦̇ ,𝑥𝑐 ≜ 𝑖(𝑡) ,𝑢(𝑡) ≜ 𝑒(𝑡). 

It is clear that the derived state formulas are nonlinear. As a result, these formulas need to be linearized in order to 
employ the proposed methodology.  

The linearization procedure will take into account the following presumptions. 

• 𝑥𝑎 = 𝑥1 = 𝑦∗, where 𝑥1 is the ball's distance and 𝑦∗ is the ball's center of equilibrium.  
• 𝑥𝑏 = 𝑥2 = 0 is represented as the ball's speed. 
• The ball's acceleration is represented by the equation 𝑥̇𝑏 = 0.  
• the current 𝑖(𝑡) is defined as is 𝑥𝑐 = 𝑥3  and 𝑥̇𝑐 = 0.  

As a result, equation 3 can be used to determine the value of 𝑥𝑐  as follows: 

 
𝑥𝑐 = 𝑥3 = 𝑖∗ = √

𝑚𝑔𝑦∗

𝑐
……………..(7) 

The  common linearization techniques have been described by [23]. The final linearized state-space model is specified 
by the following equation: 

 

[

𝑥̇𝑎

𝑥̇𝑏

𝑥̇𝑐
] =

[
 
 
 
 
 
0 1 0
𝑔

𝑦∗ 0   
−2

𝑦∗ √
𝑐𝑔

𝑚

0 0 −
𝑅

𝐿

]
 
 
 
 
 

[

𝑥𝑎

𝑥𝑏

𝑥𝑐
] +

[
 
 
 
0
0
1

𝐿

]
 
 
 

𝑢(𝑡)………….(8) 
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𝑦(𝑡) = [1 0 0] [

𝑥𝑎

𝑥𝑏

𝑥𝑐
]…………..…(9) 

The resulting transfer function of the linear system model is: 

 
𝐺(𝑠) =

√
4𝑦𝑐𝑔

𝑚

−𝐿𝑦𝑆3−𝑅𝑦𝑆2+𝐿𝑔𝑆+𝑔𝑅
……….(10) 

R and L were both chosen as the uncertain variables in this investigation.  Table 1 shows the values of the other 
constants. 

The transfer function will be as follows by replacing the values in equation 10 from table 1: 

𝐺(𝑠) =
42

−3𝐿𝑆3−3𝑅𝑆2+980𝐿𝑆+980𝑅
……….. (11) 

Table 1 Specific ED-4810 magnetically levitated system specifications and their values [23] 

Parameters Values Units 

m 2 2Kg 

g 9.8 m/𝑠2 

c 0.3 - 

𝑦∗ 0.03 m 

𝑖∗ 1.44 A 

 

The transfer function’s characteristic polynomial in equation 11 is: 

𝑃(𝑆, 𝑅, 𝐿) = −3𝐿𝑆3 − 3𝑅𝑆2 + 980𝐿𝑆 + 980𝑅…………..(12) 

The aforementioned polynomial family falls within the category of affine polynomials, where the polynomial 
components are linearly entered by the uncertain variables R and L so that 𝑅 ∈ [45,55], 𝐿 ∈ [0.15,0.25]. In robust theory 
the uncertain quantities are represented by the letter 𝑞  i.e: 𝑞1 ≜ 𝑅  , 𝑞2 ≜ 𝐿 .  As a result, we may rewrite the 
characteristic equation as:  

𝑃(𝑆, 𝑞1, 𝑞2) = −3𝑞2𝑆
3 − 3𝑞1𝑆

2 + 980𝑞2𝑆 + 980𝑞1………….(13) 

3 Stability Test 

An important consideration in control system theory is stability. The stability of linear plants can be tested for specific 
systems using numerous well-known techniques, such the Routh-Hurwitz, Root locus, and Nyquist plot, among others. 
However, it’s likely that these strategies won’t work if the system model has uncertainties. Actually, it is hard to quickly 
and generally determine whether a particular uncertain system is stable or not. For special circumstances, there are 
many different techniques and theorems that can be useful. Singular frequencies and the Zero Exclusion Theorem are 
effective methods for assessing the stability of affine polynomial families. The system is considered robustly stable if 
and only if all component of the value set of the system represented by uncertain parameters is stable. [18]. The 
parameter box is the collection of all possible values for a parameter vector created from interval parameters. Fig. 2 in 
this study illustrates the parameter box for the two uncertain variables mentioned in the preceding section.  

3.1 Zero Exclusion Theorem 

The affine polynomial family is robustly stable if and only if the value set of the polynomial family excludes the origin 
for every 𝜔 > 0, according to the concept of Zero Exclusion Theorem. The polynomial family’s value set at a certain 
frequency is defined as:  
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𝑃(𝑗𝜔. 𝑄) ≜ [𝑃𝑐(𝑗𝜔, 𝑞) ∈ 𝑐|𝑞 ∈ 𝑄]…………..(14) 

 

Figure 2 Parameter box for the ED-4810 system 

There is at least one value for 𝜔 in unstable systems in which the origin is shown on the value set graph (pole at 𝑗𝜔). 
When the crossover to the imaginary axis only occurred place at a single frequency. It is challenging to show that the 
polynomial series is unstable by manually gridding the imaginary poles and applying the Zero Exclusion Principle to all 
resulting candidate singular frequencies. Singular frequencies should therefore be carefully investigated as candidate 
frequency for instability tests. However, the Jacobi approach can be used to find singularity of frequencies  as illustrated 
below [21]: 

To begin, the original polynomial family 𝑃(𝑆, 𝑞1, 𝑞2) is divided into even and odd polynomials as follows:  

𝑃(𝑗𝜔, 𝑞)𝑒𝑣𝑒𝑛 = −3𝑞1𝜔
2 + 980𝑞1…………..(15) 

     𝑃(𝑗𝜔, 𝑞)𝑜𝑑𝑑 = −3𝑞2𝜔
3 + 980𝑞2𝜔…………..(16) 

The Jacobian matrix 𝐽(𝜔, 𝑞) can be defined as: 

𝐽(𝜔, 𝑞) ≜

[
 
 
 
𝑑𝑃(𝑗𝜔,𝑞)𝑒𝑣𝑒𝑛

𝑑𝑞1

𝑑𝑃(𝑗𝜔,𝑞)𝑒𝑣𝑒𝑛

𝑑𝑞2

𝑑𝑃(𝑗𝜔,𝑞)𝑜𝑑𝑑

𝑑𝑞1

𝑑𝑃(𝑗𝜔,𝑞)𝑜𝑑𝑑

𝑑𝑞2

]
 
 
 

………..(17) 

Accordingly, using equations 15 and 16, the polynomial family’s resulting Jacobian matrix can be created as follows:  

𝐽(𝜔, 𝑞) = [
−3𝜔2 + 980 0
0 −3𝜔3 + 980𝜔]……….(18) 

When the determinant of J(𝜔,q) vanishes, the singularity occurs: 

|𝐽(𝜔, 𝑞)| = (−3𝜔3 + 980𝜔)(−3𝜔2 + 980) = 0………..(19) 
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The candidate singular frequencies obtained by solving equation 19 are: 𝜔𝑠1 = 0 , 𝜔𝑠2 = −√980/3, 𝜔𝑠3 = −√980/3, 

𝜔𝑠4 = √980/3, and 𝜔𝑠5 = √980/3. Neglect is established of the two negative frequencies, 𝜔𝑠2 and 𝜔𝑠3. For 𝜔𝑠1 = 0 , the 

second condition is violated 𝑝(0, 𝑞)𝑒𝑣𝑒𝑛 = 980𝑞1 ≠ 0 . Hence, this candidate frequency 𝜔𝑠1 = 0  is not singular 
frequency. By graphing, Fig. 3 shows that the 𝜔𝑠1 = 0 candidate singular frequency  which excludes the origin at this 
frequency  is not singular. 

 

Figure 3 Value set at ω_s1=0 

For 𝜔𝑠4,5 = √980/3  , The 2nd and 3rd prerequisites have both been fulfilled. i.e 𝑝(√980/3, 𝑞)𝑜𝑑𝑑 = 0  and 

𝑝(√980/3, 𝑞)𝑒𝑣𝑒𝑛 = 0. Hence, 𝜔𝑠4,5 = √980/3 are replicated points with singular frequencies. Actively planning the 

polynomial's value set at this frequency demonstrates the statistical evidence for this assertion., which includes the 
origin which is shown by Fig. 4. 

 The Mikhailov plot is depicted by Fig. 5, in which the value set of the polynomial series for 0 < 𝜔 < 20 rad/sec is 
conveyed. Based on the Zero Exclusion Principle and vanishing frequency technique, the polynomial combination in 
equation 13 is hence unstable.  
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Figure 4 Value set at  𝝎𝒔𝟒,𝟓 = √
𝟗𝟖𝟎

𝟑
 

4 Robust PID Controller Design 

PID controllers have been tuned using a variety of methods, such as the Ziegler-Nichols and Nyquist approaches. 
However by adopting these conventional methods, the developers will only obtain a single collection of (𝐾𝑃 , 𝐾𝐼 , and 𝐾𝐷) 
design variables. However, the parameter space methodology provides a graphical strategy that can be used to find all 
PID stability zones and is regarded as a vital tool for challenging robust stability. Equation 20 displays the open - loop 
system unknown transfer function that was generated in equation 11 except with 𝑞1, 𝑞2 in instead of R and L for resistor 
and inductor , respectfully. 

𝐺(𝑠) =
42

−3𝑞2𝑠
3 − 3𝑞1𝑠

2 + 980𝑞2𝑠 + 980𝑞1

… …… … . (20) 

Where,𝑞1 ∈ [45,55], 𝑞2 ∈ [0.15,0.25]. 

 

Figure 5 Plot of Mikhailov for 0<ω<20 rad/sec 
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The following is the transfer function for the conventional PID controller:  

𝐺(𝑠) =
𝐾𝐷𝑆2+𝐾𝑃𝑆+𝐾𝐼

𝑆
……………..(21) 

The open - loop system transfer function for the magnetic levitation system. when 𝑅 and 𝐿 are selected 50Ω and 0.2𝐻 
respectively is: 

𝐺(𝑠) =
−70

𝑆3 + 250𝑆2 − 326.67𝑆 − 81666.67
…… …… … . . (22) 

  
Fig. 6 shows the closed-loop with PID controller for the electromagnetic levitation system. If the PID parameter blocks 
have the following values: 𝐾𝑃 = −2018, 𝐾𝐷 = −250 and 𝐾𝐼 = −45180. They have been obtained through a number of 
trials in order to obtain the good results. Fig. 7 demonstrated the step response for the system when this PID controller 
is used. However, this PID controller is established at the nominal values of the uncertain parameters 𝑅 = 50Ω and 𝐿 =
0.2𝐻, but if this values are change into 𝑅 = 55Ω and 𝐿 = 0.25𝐻 the system will be unstable as shown in Fig. 8. As a result, 
it has been demonstrated that this controller is not robust. In fact, a PID controller is considered a robust controller 
when it guarantees system stability for all values of uncertain parameters. This is lead to use the parameter space 
approach in the two following subsections to determine all PID parameter stability areas which is regarded as a 
wonderful instrument for sturdy stabilizing challenges. 

 

Figure 6 The closed-loop PID control of the magnetically levitated device  

 

 

Figure 7 The magnetic levitation system's step response using a PID controller at nominal values for the uncertain 
parameters R=50Ω and L=0.2H 
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4.1 Hurwitz Stabilizing PID Controller 

The closed-loop control scheme for the linear system is shown in Fig. 6. 50Ω  and 0.2𝐻  are chosen for 𝑅  and 𝐿 , 
respectively. The polynomial with closed - loop system characteristics is so as follows:   

𝑃(𝑆, 𝐾𝐷 , 𝐾𝑃, 𝐾𝐼) = −3𝑆4 − 750𝑆3 + (210KD + 980)S2 + (210𝐾𝑃 + 245000)𝑆 + 210𝐾𝐼 … . . (23) 

 

Figure 8 The magnetic levitation system's step response using a PID controller at nominal values for the uncertain 
parameters R=55Ω and L=0.25H 

In the mapping of the stability border to the variables space, the parameter space technique may be used to discover 
the stability zones in the space [18]. For 𝑃(𝑆, 𝐾𝐷 , 𝐾𝑃 , 𝐾𝐼) the real and imaginary components are: 

𝑅𝑒𝑎𝑙 = 210𝐾𝐼 − 210𝜔2𝐾𝐷 − 3𝜔4 − 980𝜔2………….(24) 

𝐼𝑚𝑔 = 750𝜔3 + (245000 + 210𝐾𝑃)𝜔………………(25) 

The matrix representation of equations (24) and (25) is described as the following: 

[
210 −210𝜔2

0 0 ] [
𝐾𝐼

𝐾𝐷] + [
−3𝜔4 − 980𝜔2

750𝜔3 + (245000 + 210𝐾𝑝)𝜔] = 0…… …(26) 

The parameter space methodology performs well enough when only two factors are being assessed. Another solution 
for displaying stabilization zones when there are more than two factors in the dimensional space is to reset all factors 
other than two. There is a particular instance of PID control system where it is simple to establish that the stabilization 
zones for a specific 𝐾𝑃  quantity have polygon pattern[18]. The formulation of equation 26 is 𝐴𝑥 + 𝑏 = 0  which is 
straightforward. The determinant of A matrix should not exceed 0 in sequence to have a solution. The determinant of A 
matrix in this scenario is:  

𝐷𝑒𝑡(𝐴) = |
210 −210𝜔2

0 0 |………… . (27) 

The aforementioned determinant drops for any 𝜔. As a consequence, in equations 24 and 25, 𝐾𝐼  and 𝐾𝐷's graphically 
solutions seem to be either equivalent or parallel curves in the parametric plane instead of a point. The definition of the 
parameter 𝐾𝑃  must be declared inside a range in order to preserve similarity between the two curves. 
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0

210
=

0

210𝜔2
=

750𝜔3 + (245000 + 210𝐾𝑃)𝜔

−3𝜔4 − 980𝜔2
…… … . . (28) 

Then, 

𝜔2 = −
245000 + 210𝐾𝑃

750
… …… . . (29) 

 

Figure 9 Kp as function of ω for P(s) 

Considering that the frequencies have to be higher than zero, the 𝐾𝑝  is chosen to provide the result (245000 +

210𝐾𝑃) ≤ 0. The requirement to guarantee the similarity of the curves in equations 24 and 25 is 𝐾𝑃 < −1166.7. When 

𝐾𝑃 = − 1173.8 is utilized, the value of 𝜔 is equal to √2, as shown in equation 29 or Fig. 9, which graphically illustrates 
the link between 𝐾𝑃  and 𝜔.  

By adjusting the 𝐾𝑃  quantity in equations 24 and 25 we get:  

𝑅𝑒𝑎𝑙 = 210𝐾𝐼 − 210𝜔2𝐾𝐷 − 3𝜔4 − 980𝜔2…………(30) 

𝐼𝑚𝑔 = 750𝜔3 − 1500𝜔…………..(31) 

Fig. 10 exemplifies the stability zones of both 𝐾𝐼  and 𝐾𝐷 for 𝑃(𝑠) where: (RRB)  Real root boundary at 𝜔 = 0 is 𝐾𝐼 = 0, 

(IRB) Infinity root boundary at 𝜔 = ∞ does not exist, and  (CRB)  Complex root boundary at 𝜔 = √2 : 

210𝐾𝐼 − 420𝐾𝐷 = 1972………… . (32) 



World Journal of Advanced Engineering Technology and Sciences, 2023, 08(02), 135–151 

145 

 

Figure 10 𝑲𝑰 − 𝑲𝑫 plane for 𝑷(𝒔) 

The plot is divided into four discrete sections by curves in Fig. 10. According to the Boundary Crossing Principle, when 
any of these zones has a stable equation, then the remainder of the zone must also contain stable polynomials. The 
polynomials in the other zones must likewise be unstable if one of these zones contains an unstable polynomial. As a 
consequence, by selecting single polynomial and confirming its stability for each region, the collection of stability zones 
may be fully described. There is only one stable zone is evident when this approach is used on the graph in Fig. 10. 

4.2 Robust Stabilization PID Controller 

The closed - loop control scheme for the indeterminate electromagnetic levitation system where R and L are undefined 
variables is shown by Fig. 11. Thus, the following is the characteristic equation: 

𝑃(𝑆, 𝑞1, 𝑞2) = −3𝑞2𝑆
4 − 3𝑞1𝑆

3 + (980𝑞2 + 42𝐾𝐷)𝑆2 + (980𝑞1 + 42𝐾𝑃)𝑆 + 42𝐾𝐼 … … . . (33) 

 

Figure 11 The looped Control scheme of the uncertain electromagnetic levitation system 

To use Khartinov's argument for stability, the polynomial series should belong to the interval category[21]. The 
coefficients may be over limited in the affine polynomial transformation to interval. This could be performed by 
assuming that the affine polynomial's variables are independent[18]. This strategy works despite being a little 
conservative. Exactly two polynomials need to be checked to guarantee stability in the sense of Khartinov's argument 
because the closed - loop system polynomial series in equation 33 is of degree 4. [18]: 



World Journal of Advanced Engineering Technology and Sciences, 2023, 08(02), 135–151 

146 

𝑃+− = 𝑎0
+ + 𝑎1

−𝑆 + 𝑎2
−𝑆2 + 𝑎3

+𝑆3 + 𝑎4
+𝑆4 … …… …(34)  

𝑃++ = 𝑎0
+ + 𝑎1

+𝑆 + 𝑎2
−𝑆2 + 𝑎3

−𝑆3 + 𝑎4
+𝑆4………………(35)  

In equations 34 and 35, the required parameters can be used to find the necessary polynomials to evaluate the stability: 

𝑃+− = −0.45𝑆4 − 135𝑆3 + (147 + 42𝐾𝐷)𝑆2 + (44100 + 42𝐾𝐷)𝑆 + 42𝐾𝐼………………..(36) 

𝑃++ = −0.45𝑆4 − 165𝑆3 + (147 + 42𝐾𝐷)𝑆2 + 43900 + 42𝐾𝑃)𝑆 + 42𝐾𝐼…………………..(37) 

To discover the stability areas for the two aforementioned polynomials the procedure of parameter space is employed. 
For 𝑃+− the real and imaginary components are: 

𝑃𝑅𝑒𝑎𝑙
+− = −0.45𝜔4 − (147 + 42𝐾𝐷)𝜔2 + 42𝐾𝐼……..(38)  

𝑃𝐼𝑚𝑔
+− = 135𝜔3 + (44100 + 42𝐾𝑃)𝜔………………….(39)  

The matrix representation of the two equations previously is described as the following: 

 

[
42 −42𝜔4

0 0 ] [
𝐾𝐼

𝐾𝐷] + [
−0.45𝜔4 − 147𝜔2

135𝜔3 + (44100 + 42𝐾𝑝)𝜔] = 0……….(40) 

Instead of a point in equations 38 and 39, 𝐾𝐼  and 𝐾𝐷 's graphical solutions are either identical in the parameter plane or 
parallel lines. The  𝐾𝑃  parameter's must be set within a varies so that the two lines' symmetry can be guaranteed. 

 0

42
=

0

42𝜔2 =
135𝜔3+(44100+42𝐾𝑃)𝜔

−0.45𝜔4−147𝜔2 …………… (41) 

Then, 

𝜔2 = −
44100 + 42𝐾𝑃

135
…… … . . (42) 

The actually gets of 𝐾𝑃  is (44100 + 42𝐾𝑃) ≤ 0. The need to guarantee the identical of the curves in equations 38 and 39 
is indeed 𝐾𝑃 < −1050. According to equations 42 or Fig. 12 which graphically illustrates the connection between 𝐾𝑃  
and 𝜔. The value of 𝜔 is comparable to 35.1 when 𝐾𝑃 = −5000. 

 

Figure 12 𝐾𝑃  as function of ω for P+- 
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By Changing the value of 𝐾𝑃  in equations 38 and 39, we obtain:  

 𝑃𝑅𝑒𝑎𝑙
+− = −0.45𝜔4 − (147 + 42𝐾𝐷)𝜔2 + 42𝐾𝐼……….(43) 

 𝑃𝐼𝑚𝑔
+− = 135𝜔3 − 2160𝜔………….(44) 

Figure 13 demonstrates the stable zones of both 𝑘𝐼 and 𝐾𝐷 for 𝑃+− for P(+-): (RRB)  Real root boundary at 𝜔 = 0 is 𝐾𝐼 =
0, (IRB) Infinity root boundary at 𝜔 = ∞ does not exist , and (CRB)  Complex root boundary at 𝜔 = 35.1: 

 42𝐾𝐼 − 51744.42𝐾𝐷 = 864137.36………………..(45) 

 

Figure 13 𝑲𝑰 and 𝑲𝑫 Plane for 𝑷+− 

The graph in Fig. 13 illustrates one stable zone. The steps described above ought to be repeated for the 𝑃++ family of 
polynomials where:  

 𝑃𝑅𝑒𝑎𝑙
++ = −0.45𝜔4 − (147 + 42𝐾𝐷)𝜔2 + 42𝐾𝐼 … …….(46) 

 𝑃𝐼𝑚𝑔
++ = 165𝜔3 + (43900 + 42𝐾𝑃)𝜔………………………(47) 

These two equations have a matrix form: 

[
42 −42𝜔4

0 0 ] [
𝐾𝐼

𝐾𝐷] + [
−0.45𝜔4 − 147𝜔2

165𝜔3 + (43900 + 42𝐾𝑃)𝜔] = 0……… (48) 

Fig. 14 exemplifies the relationship 𝐾𝑃  with 𝜔 For both 𝑃++ and 𝑃+−. For 𝑃++, 𝐾𝑃  should have a magnitude less than 
−1045 . As a result, we picked 𝐾𝑃 = −5000  as the quantity of 𝐾𝑃  to satisfy both 𝑃++  and 𝑃+−  conditions, with the 
resulting 𝜔 for 𝑃++ equivalent to 31.77.  Hence, by altering the magnitude of 𝐾𝑃  as follows, equations 46 and 47 can be 
restructured: 

𝑃𝑅𝑒𝑎𝑙
++ = −0.45𝜔4 − (147 + 42𝐾𝐷)𝜔2 + 42𝐾𝐼………..(49) 

𝑃𝐼𝑚𝑔
++ = 165𝜔3 − 2360𝜔………………………………….…..(50) 
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Figure 14 𝑲𝑷 as function of ω for both 𝑷++ and 𝑷+− 

The Stability zones of 𝐾𝐼  and 𝐾𝐷 for 𝑃++ are depicted in Fig. 15 where: (RRB)  Real root boundary at 𝜔 = 0 is 𝐾𝐼 = 0, 
(IRB) Infinity root boundary at 𝜔 = ∞ does not exist, and (CRB) Complex root boundary at 𝜔 = 31.77: 

 42𝐾𝐼 − 42391.98𝐾𝐷 = 606810.74……..(51) 

As can be seen in Fig. 15, the "𝐾𝐼 − 𝐾𝐷" space was split into four new sections by the 𝑃++ RRB and CRB curves. As a 
result, it is possible to locate the stable zone of 𝑃++ in the same manner as in the earlier scenario. By comparing the 
stability zones for 𝑃+− and 𝑃++ in Fig.16 we can conclude that the stability zone for 𝑃++ is a subset of the one for 𝑃+−. 
As a result, the stability region of 𝑃++ ensures the stability zone for the system polynomial family .  

5 Results and Simulation 

The preceding section outlined the necessary tasks to identify every region of trying to stabilize PID gain parameters 
for the ED-4810 magnetic levitation system with parametric uncertainties. To ensure that the results are stable, we will 
select many sites inside these zones in this phase. For instance, if the given point is picked beyond the stabilization 
zones: 𝐾𝑃 = −1174, 𝐾𝐼 = 1, 𝐾𝐷 = 1, 𝑞1 = 50Ω and 𝑞2 = 0.2ℎ then the characteristic equation that results will now be 
𝑝(𝑠) = (−3𝑆4 − 750𝑆3 + 1190𝑆2 − 1500𝑆 + 210) which is unstable in the sense of the conventional Routh–Hurwitz 
technique to examine the stability. However, if we pick any values for PID parameters that are inside the stable range, 
the system that results will be stable for any variables inside of the provided regions: 45 < 𝑞1 = 𝑅 < 55 and 0.15 <
𝑞2 = 𝐿 < 0.25. 

Table 2 compares the performance of the given system when 𝐾𝑃 = −5000, 𝐾𝐼 = −8000, and  𝐾𝐷 = −850 are selected 
as well as different values for uncertain parameters. Performance is shown in terms of overshot, rising time, settling 
time, and peak time. Because the all PID parameters are negative, their values can be inverted by placing an inverting 
operational amplifier to modify the negative values of the PID parameters [𝐾𝑝, 𝐾𝑑 , 𝐾𝑖] into positive values. 
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Figure 15 𝑲𝑰 and 𝑲𝑫 Plane for 𝑷++ 

Table 2 Response values for 𝑲𝑷 = −𝟓𝟎𝟎𝟎, 𝑲𝑰 = −𝟖𝟎𝟎𝟎, and  𝑲𝑫 = −𝟖𝟓𝟎   

Uncertain Parameters Values Tr (sec) Tp (sec) O.S % Ts (sec) 

q1 = 45Ω, q2 = 0.15h 0.006 0.014 20 1.21 

q1 = 48Ω, q2 = 0.2h 0.007 0.016 23.6 1.21 

q1 = 50Ω, q2 = 0.18h 0.006 0.316 21 1.21 

q1 = 50Ω, q2 = 0.2h 0.007 0.016 22.1 1.21 

q1 = 52Ω, q2 = 0.22h 0.007 0.016 22.6 1.21 

q1 = 45Ω, q2 = 0.25h 0.007 0.016 31.3 1.21 

 

 

Figure 16 𝐾𝐼  and 𝐾𝐷 Plane for 𝑃+− and 𝑃++ 

Furthermore, Fig. 17 shows sample step responses for various PID Parameter values within the stability range as well 
as various locations within the specified parametric uncertainty bounds 𝑞1 and 𝑞2. 
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Figure 17 Step Response of Maglev for various PID Parameter Values 

6 Conclusion 

In this research, two scenarios were used to estimate all stabilization PID gains for the ED-4810 magnetically levitated 
system (Maglev). The tuning parameters of the classical PID controller (KP, KI, and KD) which are considered to be 
uncertain parameters is demonstrated by first scenario. The second scenario illustrates the uncertainty in the system's 
transfer function by using resistance and inductance as uncertain parameters. The Zero Exclusion Principle (ZET) and 
the singular frequencies methodology are first used to investigate the stability of the uncertain open-loop system and it 
is observed that the corresponding polynomial series has an unstable affine structure. All stabilizing PID parameter 
ranges are then established using the graphical parameter space technique. The outcomes of the MATLAB simulation 
demonstrate the flexibility in choosing the stabilization PID gains that generate a robustly stable ED-4810 magnetically 
levitated system with parameter variation in both R and L. When the PID gains are chosen to be within this range of 
stability, the designer has more freedom to determine the required step response based on the performance index. As 
a result, the optimization problem might be used to determine the optimal solution in the future. 
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