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Abstract 

Software security is one of the most critical concerns in modern software development, especially in safety-critical 
systems whose failure can lead to environmental damage, substantial property, or loss of human lives. In addition, 
flawed applications have been shown to exhibit unpredictable behavior while software products with numerous 
vulnerabilities present attack vectors that can be exploited by attackers. To address some of these problems, 
vulnerability prediction has been deployed for early detection of security risks in the software development lifecycle 
(SDLC). This can potentially facilitate decision making during the SDLC, resulting in the production of more secure 
software. Prioritizing security during SDLC permits developers and stakeholders to identify and resolve possible 
security concerns early on in the process. The aim of this paper is therefore to offer some in-depth review of software 
systems security issues. In addition, the various measures that have been put in place to mitigate security issues during 
SDLC are discussed. 
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1. Introduction

The concept of being free from harm or threat constitutes security [1]. On the other hand, software security deals with 
the utilization of various techniques and methods to analyze defend and mitigate effects of vulnerabilities that may be 
inherent in software systems. Therefore, security is an essential component of the software application [2]. This is more 
pronounced in safety-critical systems, which are systems whose failure may result in environmental damage, 
substantial property, or endangerment or loss of human lives [3]. Therefore, it is critical that reliability confidentiality, 
and integrity of software used in these systems be secured. However, the authors in [4] explain that software security 
and durability (SSD) in the development cycle of software have continued to present new challenges for developers. In 
this perspective, various factors characterize security [5] and durability include usability, dependability, 
trustworthiness and human trust. As explained in [6], security and durability collectively depict convenience and there 
is always a trade-off between these two concepts. The evaluation of SSD is a dynamic process and as such, multi-criteria 
decision making (MCDM) strategy is always utilized. The authors in [7] explain that MCDM techniques can be deployed 
in several contexts, such as software and frameworks. Here, MCDM procedures allow the software developers to choose 
options among various conflicting choices. 

Software security is one of the most critical concerns in modern software development [8]. This is because flawed 
applications have been shown to exhibit unpredictable behavior. In addition, software with many vulnerabilities 
presents attack vectors that can be exploited by malicious entities. As pointed out in [9], the efficient utilization of 
software in quantum computing calls for security enhancements so that new security threats can be neutralized. The 
authors in [10] point out that software security and its durability in quantum computer existence will improve human 
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trust and buyer’s dependability. As explained in [11], the advent of quantum computing together with improvements in 
programming have generated the necessity of building effective security mechanisms [12] in the initial stages of 
software development itself. However, there is always trade-offs between ease-of-use and security. Another significant 
aspect of software systems is trust, which deals with the normal operation of the software product while preserving 
information security and optimal usability [13]. 

As explained in [14], software developers encounter several challenges that impede their operations. Such issues 
include limitations in improvements due to high costs, time-to-market necessities, profitability sway and consumer 
loyalty concerns. All these challenges lead to compromise in secure programming. Basically, market demands call for 
frequent software releases. However, traditional software development methods tend to be sequential and rigid, and 
hence are not well-suited for the demands of the market [15], [16]. In addition, modifications to software due to frequent 
changes in software requirements are time consuming and costly, hence cannot be effectively [17] handled by the 
traditional methods [18]. Most of the small and medium-sized Enterprises (SMEs) focus on providing specific solutions 
for particular needs of their customers. As such, they normally base their software development methods on agile 
principles [19]. Due to highly competitive pressure faced by such enterprises, their solutions must rely on highly 
adaptable and cost-efficient frameworks which offer solutions that meet their needs. As discussed in [20] and [21], agile 
software development methods such as Scrum and eXtreme Programming have been developed to overcome the 
shortcomings of traditional methods. Most of the agile methods lean on software development iterations and 
increments [22], self-organizing teams, face-to-face daily communications among team members, and short feedback 
loops with customers [23], [24]. These features are among the key reason why agile methods offer a highly adaptable, 
efficient [25], [26], [27], and fast software development process. They have therefore become the most popular 
paradigms for software development today [28]. 

Despite the fact that the developers invest many resources in resolving security concerns throughout the initial phase 
of software development, no consideration is given to the life span of the software [29]. Although there is a growing 
demand for secure software, developers are encountering new challenges in meeting users’ demands while developing 
the product. To this end, this paper makes the following contributions:  

 Various sources of software quality and security issues are described in detail 
 Rationale for the increasing need for software security is discussed; 
 Numerous techniques and approaches to software security enhancement are highlighted. 

The rest of this article is structured as follows: Part 2 discusses the Sources of software quality and security issues while 
Part 3 describes the need for software security. On the other hand, Part 4 presents the techniques and approaches to 
software security while Part 5 highlights some of the research gaps. At the end, Part 6 concludes this article and gives 
some future research scope. 

2. Sources of software quality and security issues 

There are numerous sources of software vulnerabilities, compromises, threats and attacks. the authors in [30] explain 
that the primary reason why software development teams do not implement security is due to a lack of knowledge and 
experience in different types of vulnerabilities. This is supported by the authors in [31], who point out that datamany 
competent software development teams still do not implement secure, privacy-preserving software, even though 
techniques to do so are now well-known. The major cause of this is lack of priority and resources for security. In 
addition, security and performance (SAP) verification operations are often neglected when the software development 
project’s timeframe or budget is shortened. This leads to reduction in the system’s quality since the product owner may 
terminate the verification process before all activities are completed, reducing the verification coverage [32], [33]. On 
the other hand, a strong correlation has been found in [34] between the financial records of the software development 
enterprises (such as sales and financial performance) and the number of vulnerabilities that their products may contain. 
As discussed in [35], organizations’ security efforts are less effective when developers perceive a disinterest in adopting 
software security practices. This usually occurs when there are no perceived negative consequences to the customers 
or the business from the lack of security in the SDLC. 

Software performance issues are often introduced by engineers who are unaware of their existence. In some cases, 
problems are not obvious because they are not caused by the code itself but by how the code responds to something 
else [36]. No matter how enthusiastic a software development team may be about security, if they do not have 
appropriate knowledge, time and resources (both financial and otherwise) to make their software secure, they are 
unlikely to be effective at achieving it [37]. On their part, authors in [38] explain that organizations usually employ 
traditional training resources and methods that developers do not feel are practical and actionable. For instance, most 
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of these learning resources focus on policies and protocols [39], reading, watching videos, or office conversation by 
either internal teams or external parties. In some cases, secure software development can be inspired by other security-
centric development contexts [40]. Some literature has pointed out that software developers are responsible for many 
of the software vulnerabilities which occur when developers face pressure to meet customer requirements and deliver 
features quickly. In most cases, developers treat security as a non-functional requirement that is less critical than 
delivering features, unless employers or application users impose security compliance [41]. Unfortunately, the delayed 
consideration of security issues renders it more challenging and expensive to address them in later stages [42]. 

Technical Debt (TD) is one interesting software related factor that may indicate software security risks. TD is used to 
quantify long-term software quality problems which are caused by quality compromises that provide short-term 
benefits. Basically, it is used to quantify the effort that is required for fixing design and code quality issues (such as code 
smells and violations of coding rules and best practices), which are introduced by the developers due to sacrifices they 
make to the quality of the code they produce, normally in an attempt to meet strict production deadlines. Therefore, a 
large TD value indicates that the corresponding software product contains an increased number of quality issues, which 
in turn indicates poor overall quality. As such, several researchers have started theoretically examining the feasibility 
of using TD as an indicator of security risk [43], [44]; [45] [46], [47],[ [48]. On the other hand, lack of security culture in 
teams and organizations has been identified in [49] and [50] as a significant deterrent to the adoption of security. In 
addition, organizations that do not provide the necessary resources have been noted to prevent developers from 
implementing security [42]. For instance, when managers see security as a resource conflict with feature development, 
developers also perceive implementing security as not worth the time and energy. 

Based on some established standards security can be one of the key features of any software product [51]. Here, 
software is considered secure when it is adequately resistant to the alterations during intentional or unintentional 
attacks [52], [53]. Although heavily utilized, agile software development method is poorly suited for secure software 
development [54]. This is because they predominantly focus on functional requirements of the developed software 
while security is often neglected [55], [56]. On the other hand, the specificities of SMEs are pronounced in enterprises 
practicing the DevOps concept, since the DevOps teams are customarily heavily loaded. Such load usually results in 
software deliverables’ degradation, quality decrease, and minimization of the efficiency of the DevOps teams [57]. 
Several studies have pointed out the need to investigate the behavioral aspects of security adoption. In particular, 
developers’ motivations and attitudes towards security [49], [50], [58], [35] is a hot topic. However, despite the 
availability of these many resources, developers continue to introduce security vulnerabilities in source code, and 
organizations lack proper guidelines for designing strategies to mitigate poor security. For instance, despite receiving a 
tailored security checklist as a reminder during code reviews, developers are unable to find more vulnerabilities than 
when are just instructed to focus on security issues [59]. Table 1 presents a summary of these sources of software 
quality and security issues. 

Table 1 Sources of software quality and security issues 

Author (s) Software quality and security sources 

[30] Explain that the primary reason why software development teams do not implement security is due 
to a lack of knowledge and experience in different types of vulnerabilities. 

[31] Point out that datamany competent software development teams still do not implement secure, 
privacy-preserving software, even though techniques to do so are now well-known. 

[32], [33] The authors observed that, apart from lack of priority and resources for security, security and 
performance (SAP) verification operations are often neglected when the software development 
project’s timeframe or budget is shortened, leading to reduction in the system’s quality since the 
product owner may terminate the verification process earlier, reducing the verification coverage.  

[34] Noted a strong correlation between the financial records of the software development enterprises 
(such as sales and financial performance) and the number of vulnerabilities that their products may 
contain.  

[35] Found out that organizations’ security efforts are less effective when developers perceive a 
disinterest in adopting software security practices whenever they perceive no negative consequences 
to the customers or the business from the lack of security in the SDLC. 

[36] Observed that software performance issues are often introduced by engineers who are unaware of 
their existence.  
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[37] Found out that a software development team, without appropriate knowledge, time and resources 
(both financial and otherwise) to make their software secure nay not achieve its security. 

[38]  Explain that organizations usually employ traditional training resources and methods that 
developers do not feel are practical and actionable.  

[39] The author states thatmost of the learning resources focus on policies and protocols, reading, 
watching videos, or office conversation by either internal teams or external parties 

[40] State that secure software development can be inspired by other security-centric development 
contexts. 

[41] Found out that, in most cases, developers treat security as a non-functional requirement that is less 
critical than delivering features, unless employers or application users impose security compliance  

[42] Pointed out that the delayed consideration of software security issues renders it more challenging 
and expensive when addressed in later stages.  

[43], [44]; 
[45] [46], 
[47], [48]. 

Examined the feasibility of using TD as an indicator of security risk. 

[49] and [50] Identified lack of security culture in teams and organizations as a significant deterrent to the adoption 
of security. 

[51]. Stated that, based on some established standards security is a key features of any software product. 

[52], [53] Conclude that software is considered secure when it is adequately resistant to the alterations during 
intentional or unintentional attacks.  

[54]. Noted that, although heavily utilized, agile software development method is poorly suited for secure 
software development  

[55], [56] Observed that focus on functional requirements of the developed software is predominant while 
security is often neglected.  

[57] Found out that the specificities of SMEs are pronounced in enterprises practicing the DevOps concept, 
since the DevOps teams are customarily heavily loaded, resulting in software deliverables’ 
degradation, quality decrease, and minimization of the efficiency of the DevOps teams.  

[49], [50], 
[58], [35]  

Pointed out the need to investigate the behavioral aspects of security adoption, in particular, 
developers’ motivations and attitudes towards security.  

[59] Found that despite receiving a tailored security checklist as a reminder during code reviews, 
developers are unable to find more vulnerabilities than when are just instructed to focus on security 
issues. 

3. The need for software security 

Software security entails the usage of methods and techniques to analyze, mitigate, and defend software systems against 
vulnerabilities. These methods guarantee that software continues to operate and is protected against threats [60]. 
Security considerations must be made at every level of the software development process, where the primary objective 
is to find faults and problems as early as feasible. Security and performance (SAP) are two critical Non-functional 
requirements (NFRs) that affect the successful completion of software projects [61]. Therefore, organizations need to 
follow the practices that are vital to SAP verification. These practices must be incorporated into the software 
development process to identify SAP-related defects and avoid failures after deployment. Although security and 
performance are two different NFRs, they are in some way related to each other. Essentially, security is a performance 
indicator that is affected by threats which impact the performance of individual components of software during service 
rendering [62], [63]. In a nutshell, both security and performance are indicative of the software’s efficiency, implying 
that performance and security are indicators of the software’s development level. 

As discussed in [64], it is critical to use secure channels to share valuable information since it is not always possible to 
ensure the trustworthiness of individuals or groups. This is crucial when working with unfamiliar people or entities. 
The exploitation of a single vulnerability may lead to far-reaching consequences, including financial losses and 
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reputation damages. In this scenario, blockchain systems comprising of data protection solutions can be used to 
safeguard data against attacks. For instance, a blockchain-based data provenance framework for the cloud has been 
proposed in [65]. This framework is based on the identified challenges concerning security and performance in adopting 
the proof-of-work (PoW) consensus protocols for data attribution on a cloud-based platform. The relevance of software 
systems to modern civilization generates exceptional concerns about several essential software quality attributes, 
which are described as Non-functional requirements (NFRs). Here, security, performance, reliability, maintainability, 
usability, and scalability are all defined by NFRs [66], [67]. All these NFRs constrain the system’s design across backlogs 
and are vital as functional requirements. This is because they ensure that the system is useful and effective [68]. Systems 
that fail to fulfill any of these requirements may fail to meet internal business, user, or market expectations [69]. In 
addition, these NFRs may result in substantial legal penalties if they are not adhered to. 

TD has been established to be closely related to the maintainability quality attribute in [70], [71], [72], [73], especially 
in distributed software applications. These applications are one of the most important applications currently deployed. 
The increasing demand has led to a rapid increase in the number and complexity of distributed software applications. 
However, such applications are more vulnerable to different types of attacks due to their distributed nature [74], [75]. 
Code smells are code or design patterns that often violate one, or more than one programming principle [76]. Therefore, 
they potentially cause deeper problems in further development and maintenance of the software. As discussed in [77], 
various studies have explored the involvement of code smells in the presence of TD. The code smell problems can 
impede the software maintenance process and impose the need for code refactoring. In addition, the various static code 
analyzers used to identify TD through source code analysis aim to locate bugs or violations that can cause quality decay 
[78], [79], [80]. These code-level issues need to be eliminated typically through the application of code refactoring. The 
authors in [81] and [82] point out that distributed systems have superior reliability, availability and incremental scaling 
potential compared to centralized systems. Essentially, component based distributed systems deploy constituent 
components across multiple hosts and regions to deliver services over the internet. Unfortunately, validating the 
security of such applications is challenging because they are exposed to different kinds of attacks [83], [84]. Table 2 
gives a summary of the various needs for software security. 

Table 2 Need for software security 

 

4. Techniques and approaches to software security 

The researchers in industry and academia have developed numerous techniques to enhance software security. For 
instance, adherence to some software development method, such as using the right practices, tools, and techniques can 
makes the process of developing software more manageable and efficient, resulting in greater competitiveness and 
success [85]. However, some researchers have recognized the importance of awareness of the social perception of 
security adoption. For instance, when the whole team is responsible for security, the motivation for adopting and 
implementing security could have a snowball effect and lead to motivating more team members to acknowledge the 
value of adopting security [41], [35]. There is also need for software systems to adhere to SAP [86]. This can be achieved 
by having the software development companies incorporating quality assurance activities throughout the product life 
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cycle to analyze these qualities, hence avoiding SAP difficulties after software release. Based on a task-based study, the 
authors in [87] established that developers tend to see only the activity of writing code to be security-relevant. 
Therefore, the authors suggested a need for a stronger focus on the tasks and activities surrounding coding. On their 
part, the authors in [75] have developed a new mechanism that uses blockchain technology [88] to devise a security 
testing mechanism to detect attacks on distributed software applications. This technique can detect several categories 
of attacks, such as denial-of-service attacks, malware and others. 

As explained in [89], vulnerability prediction can enable early detection of security risks in the software development 
lifecycle (SDLC). The focus here is on analyzing the ability of particular software related factors such as software metrics 
to detect vulnerabilities in software. It also involves the development of vulnerability prediction models based on these 
factors [90], [91]. This process facilitates decision making during the SDLC, leading to the production of more secure 
software. On the other hand, the authors in [92] have developed a comprehensive empirical evaluation of automated 
security analysis tools for detecting vulnerabilities. Other studies have pointed out the need for the business alignment 
of software security. For instance, the authors in [93] have used case studies to explain the need for the alignment of 
security goals [94] with business goals. Similarly, the authors in [95] have identified a frequently used approach for 
developer teams of ‘product negotiation’, which advocates for the involvement of product managers and other 
stakeholders in security discussions. On the other hand, the studies in [96], [97], [98], [99], [100], [101] have proposed 
using blockchain technology to build a security testing mechanism [102] to detect attacks, more so those targeting 
distributed software applications. 

The authors in [103] and [104] have explained that security should be a priority throughout the SDLC. This allows 
developers and stakeholders to identify and resolve possible security concerns early on in the process.As such, it is 
necessary to adopt the concept of secure software development lifecycle (SSDLC), as shown in Figure 1. In this regard, 
SSDLC involves the incorporation of security best practices into an existing SDLC for achieving secure software. This 
demands concerted effort at each level of the SDLC, from requirement collection through deployment and maintenance 
[105]. In this way, security vulnerabilities are addressed in the SDLC pipeline long before deployment to production 
with a dedicated effort. This serves to minimize the possibility of detecting security vulnerabilities in the deployed 
software and seeks to lessen the consequences if detected [106].Basically, the goal of SSDLC is not to replace 
conventional security checks but rather to integrate security into software development duties and empower them to 
build safe applications from the start. As shown in Figure 1, organizations need to adopt SSDLC practices during 
development. This includes security requirement analysis, security design, security implementation, security testing, as 
well as operation and maintenance. Once software development is complete, security verification must be carried out 
before release. This may involve the application of essential security verification techniques.  

 

Figure 1 Security verification [61] 

In a nutshell, security verification deals with the technical validation of the software application before its 
deployment.Its goal is to identify security breaches and to ensure that the developed application meets security 
requirements [107], [108], [109]. In order to establish security requirements, there is need for organizations to first 
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understand the threat and risk modeling techniques and process. Figure 2 presents the threat modeling process, which 
is geared towards better identification of risks and their corresponding severity. 

 

Figure 2 Threat modeling process [61] 

The commonly used security verification techniques include log inspection, penetration testing, static code analysis and 
interactive application security testing (IAST). Here, log inspection encompasses the systematic process that consists of 
seven activities, as shown in Figure 1. These activities include planning the inspection, holding kick-off meetings, 
performing individual checking, conducting log meetings, editing the document, verifying corrections, and inspection 
closure [110]. On the other hand, penetration test is normally performed using a failure-based approach, with test cases 
designed to investigate known flaws found in popular security vulnerability repositories. Another penetration test 
approach is experience based, in which a security expert plays the role of a malicious user attempting to access the 
system [111], [112]. As evidenced in Figure 1, this is a systematic process consisting of six steps. This penetration testing 
is executed either manually or with the help of automated tools such as Arachni, SQL Injection ME, OWASP ZAP, XSS ME, 
Meta Exploit, NMAP, Burp Suite, and Whatweb. 

Authors in [113] explain that static code analysis (SCA) before executing a program is a debugging method in which one 
must compare a code set to one or more sets of coding rules. It essentially resolves source code flaws that might lead to 
vulnerabilities. This analysis can be performed manually through the examination of each line of code or automatically 
using automated techniques. In most cases, SCA is performed in an automated using tools such as HP Fortify SCA and 
Brakeman. On the other hand, IAST solutions help organizations to uncover and manage security risks associated with 
runtime application vulnerabilities. IAST uses software instrumentation to monitor an application’s behavior and 
performance. These solutions put agents and sensors in operating applications and analyze all application interactions 
to find vulnerabilities in real-time. In this environment, vulnerability prediction facilitates the development of secure 
software through the identification and mitigation of security risks early enough in the software development lifecycle 
[114]. On the other hand, other researchers have suggested the application of blockchain technology and specific criteria 
to address data-related issues, such as dependability, security and trust [115], [116]. 

Some researchers have identifies four essential drivers that influence developers in the adoption of security practices. 
These drivers include provision of security education; having non-technical skills;creation and participation in 
communities of practice; and fostering hands-on learning, self-teaching, and osmosis. For example, the authors in [117] 
have pointed out that security-related workshops facilitated by managers are more effective compared with those 
facilitated by developers or security specialists. On the other hand, the authors in [118] have evaluated whether security 
patterns might be an effective intervention to improve secure development in teams of student software developers. 
Although the results suggested a benefit, they were statistically inconclusive. On their part, the authors in [119] have 
pointed out the importance of blockchain for IoT security, privacy and management. An architectural framework for 
analyzing the performance deterioration of software caused by security measures has been developed in [120]. 
Basically, this framework introduces a collection of UML models that describe security mechanisms which may be used 
with performance-annotated UML application models to build SAP-critical systems. 

According to [121], traditional approaches to security prioritization include business impact analysis, continuous 
aligning of business and security goals, security goals’ identification [122], [123] on predominantly strategic levels, 
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security triage [124], introduction of more security controls [125], security intention recap meetings [126], and the 
identification of architectural security requirements on the operational level. Using blockchain technology and smart 
contracts, authors in [92] have performed an empirical evaluation of automated security testing tools to detect security 
vulnerabilities. To encourage developer security, there is a need to raise developers’ security awareness [127]. This was 
achieved using playful workshops [128]. However, awareness is only the first step [129], as individuals need to be 
supported through training to have the ability to perform the expected behavior. As pointed out in [41], developers feel 
motivated to adopt security practices when they are aware of similar software (to the one they work on) suffering a 
security breach [130]. This is because this situation becomes an eye-opener for them. To improve the security of the 
network, authors in [131] and [132] have deployed the quantum key movement approach. On the other hand, a 
DistBlockNet distributed IoT network architecture using blockchain has been developed in [133] to offer scalability, 
flexibility and communication security between different smart device categories. 

A taxonomy of twenty assurance techniques has been developed in [134] based on a survey of security specialists, while 
the relevance of having interpersonal skills such as communication skills for dealing with all stakeholders involved in a 
security issue has been emphasized in [135]. According to [136], the key to enabling good security behavior [137] is 
good motivators. This may include feedback, situations or rewards that encourage the behavior. On their part, the 
authors in [138] have investigated whether open-source software products’ popularity can be used as an indicator of 
their security level. The results indicate that popularity may not constitute a reliable security indicator. A study in [139] 
offers support for developers and tool recommendations, containing much valuable practitioner experience, but little 
objective assessment of the advice provided. On the other hand, seven considerations(categories) that organizations 
and stakeholdersneed to pay attention to in order to foster the adoption of software security practices by developers 
have been highlighted in [8]. Figure 3 shows this list of these seven categories. 

However, at time individuals may feel that they are not well equipped for security or, disillusioned to the benefit of 
promoting security. When this happens, motivators will be perceived as a nuisance and may reinforce archetypal 
behaviors [140]. On the other hand, traditional activities associated with risk management such as risk identification, 
risk analysis, risk assessment, and their variations have been proposed in [141], [142], [143]. Knowledge sharing has 
been noted to be crucial for learning security practices. For example, developers can learn the best from talking to other 
people in their teams as they can learn more technical skills while applying existing knowledge [38]. Similarly, peer-
based learning has been identified as an effective method to learn security practices [144]. According to [117], 
developers usually perceive mentoring as an effective way to understand the rationale behind threats and techniques 
to mitigate them. However, no previous studies have pointed out the essential role of using security practices as learning 
tools. The authors in [145] have explained that fuzzy analytic hierarchy process (AHP) procedures offer assessment and 
weighting of the security factors in the selected software security. 

 

 

Figure 3 Consideration to foster the adoption of software security practices [8] 

In order to better understand SSDLC, there is need to analyze the existing SSDLC models. These models include System 
security engineering capability maturity model (SSE-CMM), Microsoft security development lifecycle (MS- SDL) and 
Software assurance maturity model (SAMM). Here, SSE-CMM denotes a process-oriented paradigm used to create safe 
systems and is divided into processes and stages of maturity. Generally, the procedures specify what the security 
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engineering process must do, and the maturity levels classify how well the process achieves its objectives. On its part, 
Microsoft’s SDL incorporates stringent security standards, industry-specific tools, and required procedures into the 
creation and maintenance of all software products. However, SAMM is an open framework designed to assist businesses 
in developing and implementing a software security strategy appropriate to the unique threats they face. Table 3 
provides a comparison of these models. 

Table 3 Comparison of existing SSDLC 

Security Practices SSE-CMM MS-SDL SAMM 

Threat modeling √ √ √ 

Security architecture √ √ √ 

Physical security √ × × 

Following all applicable laws, policies,and procedures √ × √ 

Logical security √ × × 

Risk analysis √ √ √ 

Definition of security requirements √ √ √ 

Secure configuration management √ × × 

Source code analysis × √ √ 

Security verification √ √ √ 

Security training and awareness √ √ √ 

Vulnerability analysis √ √ √ 

Secure design √ √ √ 

Secure development techniques and applications √ √ √ 

Secure delivery √ × √ 

Vulnerability management √ √ √ 

Security in an active operating environment √ √ √ 

Secure integration with peripheral √ √ √ 

As explained in [146], regression models such as logistic regression have demonstrated sufficient performance in 
vulnerability prediction. On the other hand, some attempts have been made in [90] to built text mining-based 
vulnerability predictors with sufficient predictive performance. According to [147], there is a shift towards adopting 
deep learning to improve the predictive performance of text mining-based vulnerability predictors [147]. The ability of 
software metrics to be utilized as vulnerability indicators (predictors) has been supported by numerous studies [148], 
[149], [150], [151]. Along with common complexity [152], coupling, and cohesion (CCC) metrics, these studies 
investigated additional software metrics. As explained in [153], another viable solution is the altering of the product 
backlog through the introduction of security-related user stories, such as abuser stories and generic security user 
stories. These are basically security-related user stories, which is a set of possible scenarios and threats to the end 
product. 

Recently, they have been attempts in examining the feasibility of quantifying software security indirectly through the 
notion of TD. The authors in [44], [46] have offered guidelines on how the concept of TD can be extended to support 
software security. On the other hand, the authors in [45] and [48] have presented ways for prioritizing security bugs as 
TD items (quality issues). However, these studies only offer theoretical evaluation of the feasibility of TD [154]-[158] to 
be used as a security indicator [159], without providing empirical evidence for the relationship between TD and 
software security. On their part, authors in [160] have advocated the incorporation of misuse or abuse cases into the 
development process as an independent element. This can potentially help developers vie the software from the 
attackers’ perspective. The relationship between Software Quality Assessment based on Lifecycle Expectations (SQALE) 
Index and software security risk has been carried out in [161]. The results indicate a statistically significant relationship 
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between these two constructs. As discussed in [41], developers who care about their users’ security and privacy feel 
encouraged to adopt security practices. In addition, security-conscious software development can be enhanced by the 
incorporation of security tags within security repositories and user stories. Security tags may be included in the form 
of S-Tags and S-Marks as highlighted in [24] or as security keywords [162]. 

The authors in [114] have examined the predictive performance of TD indicators in envisaging software security risks 
both at project level and at class level of granularity. This was facilitated by building different machine learning (ML) 
models [163]-[166]. On the other hand, by several experts in the field have identified some close relationship between 
TD and software security [44], [46]], [45], [48]. In addition, previous researches have attempted to identify software 
security risk indicators. This involves the ability of software related factors to predict the existence of potential 
vulnerabilities in software products or components. These factors are identified either from actual vulnerability reports, 
or through static analysis [90], [147], [91]. Although threat modeling approaches are valuable in software security, they 
require considerable knowledge of possible technical threats and support from a professional with a detailed 
understanding of both the industry sector and current cyber threats to it [167]. As such, it may not be a viable solution. 
In addition, much attention has been given to information retrieved directly from source code, either through static 
analysis or through text mining. In static analysis, a close correlation may exist between the static analysis alerts density 
and the actual vulnerabilities that a program contains. This observation is supported by the results of recent empirical 
studies in [168], [169]. For class-level vulnerability prediction models [170]-[172], Random Forest was has been found 
to be the best performing ML model [91], [173], [174]. 

To help software developers understand decision making around security, the authors in [175] have used a facilitated 
game, Agile App Security Game based on the game Decisions Disruptions. This game is now utilized extensively in the UK 
in the management of cyber security training [176]. Static analysis is a software testing mechanism that does not require 
code execution (unlike dynamic analysis). This enables its early application in the software development [177], [178], 
[179], [180], [181]. As pointed out in [134], the process of identifying specific kinds of security issues for a given project 
is an important assurance technique for security. As such, the authors in [8] have proposed DASP, a framework for 
diagnosing and driving the adoption of software security practices among developers. Table 4 gives a summary of these 
techniques and their associated weaknesses. 

Table 4 Techniques and approaches to software security 

Author (s) Approach/technique Gap 

[32] 

[33] 

[61] 

[86] 

Security and Performance (SAP) is an activity that 
needs to be incorporated in every system software. It 
enables verification and validation of development 
process to minimize bugs, errors, mistakes and 
optimize accuracy and computation cost 

SAP verification activities not well planned 
[200] 

Lack of awareness on SAP verification 
activities, should be included in 
development process. 

It is not clear how individual security 
components contribute overall to software 
security 

[87] The software developers have a perception that 
writing of code has some elements of security 
(validation of inputs, use of security mechanisms) 

Programmers explicitly depend on 
conventional security checks such as use of 
passwords or biometric for login, validation 
of input fields, abstraction, access modifiers, 
exception handling 

These may not be reliable to attacks such as 
insider threats? 

[85] The author empathizes need to adopt appropriate 
tools, practices and techniques in order to efficiently 
manage the process of software development for 
better results  

However the article has not addressed how 
the process of getting quality tools or 
techniques that can guaranteebest and 
trustable secure software 

[41] 

[35] 

Encourages every team member (both technical and 
non-technical) to play a role in security of software 
from preliminary stages to implementation 
maintenance and evaluation 

More people may gather knowledge of 
existing vulnerabilities in the software 

There is no accepted methodology for 
security in the literature 
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[75] Detects denial-of-service attacks and other malwares 
in blockchain 

The challenge with this concept is that it 
doesn’t explicitly address, detection of DoS 
and malware in other architectures such as 
Client-Server, federated databases etc. 

[89] 

[90] 

[91] 

[103] 

[104] 

[105] 

[106] 

software development lifecycle (SDLC) can be used to 
identify vulnerabilities and risks during development 
of system 

it also describes learning models for prediction of 
vulnerabilities  

SSDLC complements existing conventional security 
checks during development 

Comparison of SSDLC models i.e. System security 
engineering capability maturity model (SSE-
CMM),Microsoft security development lifecycle (MS- 
SDL) and Software assurance maturity model (SAMM). 

Some vulnerabilities may still exists due to 
integration with other systems which you 
may not have control  

Therefore security guru or penetration 
tester should be included in the 
development team [194] 

[92] Empirically qualify security tool as a way of managing 
security in software 

Specific to a type of attack (it cannot provide 
a general solution) 

[93] 

[94]  

[95] 

Emphasis through use of case studies is on the need to 
align business objectives with security objectives  

Example; how do you incorporate security in product 
negotiation? 

Some business goals may not be completely 
mapped to security goals 

[96] 

[97] 

[98] 

[99] 

[100] 

[101] 

The articles discussed ways in which blockchain 
technology can be used to detect attacks in distributed 
environment 

Need to consider other architectures like 
client-server and federated environment 

[107] 

[108] 

[109] 

Technical validation should be conducted on the 
software before its implemented for usage in order to 
be compliant to security standards 

 

Formal security standards may require 
certification and continual improvements 
and updates which might affect overall 
performance of software 

61 Subject the software against risk and threat modeling 
techniques; 

interactive application security testing (IAST) 

Penetration testing; Uses failure-based approach to 
identify known flaws in software 

log inspection[110] 

There are security biases because the 
mechanisms, intention and drive of the 
offenders are diverse 

[111] 

[112] 

 

Experienced based testing can be applied by experts 
Tools like Arachni, SQL Injection ME, OWASP ZAP, XSS 
ME, Meta Exploit, NMAP, Burp Suite, and Whatweb can 
be used by experts acting as malicious attacker in order 
to identify a flaw in software 

Most of these tools do not provide security 
trust in emerging technologies 

[113] Requires code analysis to be conducted in order to 
identify violation of coding rules  

Analysis can be manual of through HP Fortify SCA and 
Brakeman 

Some semantic errors may not be easily 
detectable such as division by zero that can 
lead to continuous loop 

The code rules passed may be independent 
of process flows 

Need to create security awareness for 
developers [127] 
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[114] Points out importance of testing software at run-time 
in order to predict security risks and vulnerabilities 
early enough 

Use of IAST may have security biases inform 
of data being used for testing 

[115], 

[116] 

[119] 

[126] 

Articles discuss how trust, dependability and security 
is achieved through blockchain in order to address data 
issues 

The study is specific to blockchain 
technology 

[117] 

[118] 

Researchers support the argument that security 
management requires some level of education, self-
teaching, osmosis, hands-on learning etc 

No empirical evidence to support the 
argument 

[120] Developed a framework to identify performance 
deterioration with respect to security 

A number of software metrics would need to 
be considered in determining performance 
of software security [148], [149], [150], 
[151] 

[130] Training of developers is encouraged especially on 
areas they feel comfortable in or areas where security 
breach is identified 

 

Agile methods or through gamification 
would be used 

[131] 

[132] 

The studies implemented quantum key movement 
technique to improve network security  

Movement of key could require additional 
overhead 

[133] The study develop DistBlockNet for distributed IoT 
network architecture in blockchain in order to improve 
performance in terms of scalability, secure 
communication and flexibility among devices 

No empirical evidence on validity of these 
technique in security of software over 
distributed network 

[135] 

[136] 

[137] 

Behavior has some role to play in managing security 
especially to the one motivating security issues 

May not be supported as security method in 
the literature 

[138]  This author [138] argue that the popularity of open-
source software could be an indicator of security 
reliability  

But results shows that the popularity of open-source is 
not an indication on security  

Need to follow SAP verification activities 
which are not well planned 

[8] Provides seven considerations that organizations and 
other parties need to focus on for software security 

Building security culture 

Adoption of software security by programmers 

Understanding risks, trade-off and benefits 

Provide information for developers to write secure 
code 

Tools and process constraints 

Provide cognitive support for developers 

Facilitate specific developers security trainings 

Lack of this may promote unwanted 
behavior especially on developers side 
concerning security issues [140] 

[141] 

[142] 

[143] 

Proposed risk management strategies such as risk 
identification, risk assessment and analysis 

 

[38]  

[144] 

According to the author, developing security skills is 
through sharing of knowledge and talking to each 
other. 

This has not been considered as a tool in 
security practice 
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Peer-based learning [144] 

[145] Security factors can be assessed and weighted using 
fuzzy analytic hierarchy process (AHP) 

The assessment can only apply in selected 
software security 

[146] Used logistic regression to predict vulnerability.  

 

Current literature lacks balanced and 
reliable vulnerability dataset 

[90] Developed models to predict vulnerabilities through 
text mining 

There is no evidence of validation of the 
predictor against others 

[147] The author alludes to the fact that there is a shift 
towards deep learning for vulnerability predictors 

[148], [149], [150], [151] support the idea of having 
more software metric for vulnerability predictors 

However there are certain computation and 
performance trade-offs 

5. Research gaps 

The literature reviewed has yielded a number of research gaps that need to be addressed. For instance, although several 
factors have been studied for their ability to indicate software security risk, very limited attention has been given to TD. 
This is despite its potential relevance to software security. There is therefore need to investigate the ability of common 
TD indicators to indicate security risks in software products, both at project level and at class level of granularity. 
Similarly, the authors in [182] have focused on the DevSecOps framework in a multi-vocal literature survey. However, 
the attempt made is only to consolidate the definition of the framework rather than identify potential security elements 
that could be included in the framework or existing secure software development methods. 

 Numerous and diverse software related factors have been empirically examined for their ability to indicate software 
security risk. These factors include software metrics [149], text features [90], [147], [91], product popularity [138] and 
the firm’s financial records [34]. However, very limited attention has been given on technical debt. Although agile 
methods have become popular, they lack complete overview of security issues. There is therefore need for security 
planning and modeling [184], [184], including security prioritization, monitoring activities and risk management 
activities. Similarly, vast research endeavours have been directed towards vulnerability prediction [90], [149]; [148], 
[150], [151], [174]. However, current literature lacks a balanced and reliable vulnerability dataset. Similarly, Building 
Security In Maturity Model (BSIMM) [185] offers an extensive overview of SSD activities but some roles and artifacts 
proposed in the literature are not included in this model 

Some attempts have been made in defining the concept of Security Debt [44], [46], [45], [48]. In addition, there is a 
potential shift towards extending the concepts of TD into the security realm. Unfortunately, the literature in the field of 
software security lacks a well accepted methodology for assessing software security [186], [187], [188], [189]. Similarly, 
majority of proposed software development approaches remain fully theoretical. This lack of empirical evidence raises 
concerns about their security enhancing potential, associated costs and suitability for agile methods. To create more 
effective software security, the association between durability, its attributes, and security for secure SSD needs to be 
examined. 

As pointed out in [190], agile methods have gained popularity and became globally widespread. However, developing 
secure software with agile methods remains a challenge. As such, gamification elements have been used to incorporate 
security into agile software development. This has been achieved through the implementation of a variation of Planning 
Poker as Protection Poker and Threat Poker [191]. On the flip side, motivation is not necessarily achieved through 
gamification. Although software engineering literature has provided various security elements, there are some key 
research gaps that hinder the ability to provide secure software. For instance, it is unclear how individual security 
elements contribute to software security. In addition, it is not clear how these elements impact the agility and costs of 
software development. The authors in [192] have discussed the existence of various security oriented software 
development methods following both traditional and agile software development paradigms. The main challenge of 
these traditional methods is the additional overhead they require, which hinders rapid software development and 
adaptability to new requirements. As such, it is unclear how secure software development can be executed with agile 
methods without compromising their agility [193]. 

Analyzing and reviewing the code for security issues, as well as security testing are vital groups of security elements. 
Security auditing, code analyses and security tests may be performed continuously within the project cycle. However, 
different approaches require particular specialized knowledge within the development team. As such, some authors 
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have proposed the involvement and incorporation of at least one new subject (role) into the existing methodology. In 
most cases, this is in addition to security guru, security engineers, security masters, security-matter expert and security 
experts. Therefore, in addition to these roles, a security developer or a penetration tester [194] may be included in the 
process. The goal of this additional role is to introduce expert knowledge into the development team. This is through 
the identification of the features that have a security risk based on the security principles, documenting risks in the 
security backlog, mitigating the identified risks, as well as performing security testing for selected features. Although 
several approaches are found in literature in which several security elements are proposed, only a fraction of these 
approaches have been tested in industrial settings. Therefore, little is known about their direct impact on agility and 
costs. A few of these studies have reported on cost increases and a possible compromise of agility of some elements. 
However, there is no systematic evaluation of all security elements [195] or their corresponding security element 
groups regarding their impact on the agility of the software development process and costs of their implementation. 

It has been noted that industry practitioners, security tool providers, and researchers have offered standard security 
guidelines and sophisticated security development tools to ensure a secure software development pipeline. 
Unfortunately, there continues to be an increase in the number of vulnerabilities that can be exploited by malicious 
entities. As such, there is need to understand why developers still introduce security vulnerabilities into their 
applications. In addition, a need arises to understand what can be done to motivate them to write more secure code. 
According to [196], several technical approaches to prioritization have been developed, some of which prioritize non-
functional requirements such as security against functional ones [197]. Unfortunately, there is no evidence in the 
literature that software product managers have used them in practice. The authors in [75] have also highlighted that 
the detection and addressing of attacks is an open issue concerning distributed software applications. There is therefore 
need for organizations to follow the practices that are vital to SAP verification [198]. For enhanced efficiency, these 
practices must be incorporated into the software development process to identify SAP related defects and avoid failures 
after deployment. This is only possible when organizations are fully aware of SAP verification activities and 
appropriately include them in the software development process [199]. However, there is a lack of awareness on the 
factors that influence SAP verification. This makes it difficult for businesses to improve their verification efforts and 
ensure that the released software meets these requirements. There is therefore need to identify the mediating factors 
influencing SAP verification and the actions to promote them. Unfortunately, SAP verification is normally not well 
planned, and hence the software team must reprioritize verification activities multiple times [200]. This increases the 
required time and effort. The planning phase includes requirement prioritization, dependency identification, and time 
and budget for performing SAP verification activities. Therefore, a well-planned and transparent methodology for 
performing SAP verification is required to smoothly execute the verification process. 

6. Conclusion 

Software security involves the utilization of various techniques and methods to analyze, defend and mitigate effects of 
vulnerabilities that may be inherent in software systems. It is therefore important that quality attributes such as 
reliability, confidentiality, and integrity of software used in these systems be secured. However, it has been shown that 
software security and durability in the development cycle of software still continue to present new challenges for 
developers. It has also been revealed that software developers face numerous challenges which hinder their operations. 
Such problems have been identified as limitations in improvements due to high costs, time-to-market necessities, 
profitability sway and consumer loyalty concerns. Past research has shown that traditional software development 
techniques are sequential and rigid. As such, they are not well-suited for the market demands. Although many factors 
have been studied for their ability to indicate software security risk, very limited attention has been given to issues such 
as technical debt. The literature has shown that great research endeavours have been directed towards vulnerability 
prediction. However, there is lack of some balanced and reliable vulnerability datasets. Some authors have pointed out 
that agile methods have gained popularity and became globally widespread during software development. However, 
developing secure software with agile methods remains a challenge. Future research work will involve the development 
of novel mechanisms of addressing some of these software security issues during the SDLC procedures. 
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