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Abstract 

In this paper, the motions of two-mass systems with two-degree-of-freedom are investigated by using an analytical 
approach. The masses are connected by linear and nonlinear springs. The motions of systems are described by systems 
of two coupled strong nonlinear differential equations. Nonlinear differential equations are transferred into a single 
equation by using some intermediate variables. An analytical method, the equivalent linearization method, is employed 
to analyze the free nonlinear vibration of systems. The oscillation systems with different values of the parameters are 
investigated in this paper. In order to verify the accuracy of the obtained results, the present solutions are compared 
with those achieved by the Hamiltonian approach and the exact solutions. The comparison results show that the 
obtained solutions are more accurate than those obtained by the Hamiltonian approach.  
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1. Introduction

The motion of nonlinear two-degree-of-freedom (TDOF) oscillation system has been widely investigated in the past few 
decades [1, 2, 3, 4, 5, 6]. TDOF systems are important in engineering because many practical engineering components 
consist of coupled vibrating systems that can be modeled by using TDOF systems such as elastic beams supported by 
two springs and vibration of a milling machine. The equations of motion of nonlinear TDOF system consist of two 
second-order differential equations with cubic nonlinearities.  

Due to limitation of existing exact solutions, many analytical approaches have been developed such as the harmonic 
balance method [7], the Hamiltionian Approach [8], the Parametrized Perturbation method [9], the Variational Iteration 
method [10], the Homotopy Perturbation method [11], the Energy Balance method [12 , 13] and the linearization 
equivalent method [14, 15]. These analytical methods are useful techniques for quantitative analysis of nonlinear 
oscillation systems. 

The advantage of the linearization equivalent method [14, 15] is that this method is very simple and convenient to apply. 
The obtained results are normally accepted for oscillators with weak nonlinerity. Nevertheless, the accuracy of the 
Equivalent Linearization Method with conventional averaging value normally reduces for middle or strong nonlinear 
systems [14, 15, 16, 17]. A reason is that some terms will vanish in the averaging process, for example, the averaging 
value of the functions sin(t) and cos(t) over one period is equal to zero. Recently, Anh [18] proposed a new way for 
determining the averaging values, instead of using the conventional averaging process, the author introduced weighted 
coefficient functions, and by this manner the averaging value is so-called the weighted averaging value. Anh’s proposed 
method has been effectively applied to analyse some strongly nonlinear oscillations [19]. 
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In this paper, the equivalent linearization method with a weighted averaging value is used to achieve the periodic 
solutions for the motions of two-mass systems with linear and nonlinear springs. The solutions are compared with the 
ones given by Bayat and Pakar using the Hamiltionian Approach [1]. The results show accuracy of the present method 
for the considered nonlinear oscillating systems. 

2. Review of the equivalent linearization method  

To introduce an overview of the Equivalent Linearization method, one considers the oscillation described by following 
nonlinear differential equation: 

( ) 0, (0) , (0) 0X g X X A X    ………………………(1) 

where g(X) is a nonlinear function of X and A is the initial amplitude. 

The idea of the Equivalent Linearization method is to replace the nonlinear term g(X) in Eq. (1) by the linear term as 
follows: 

    ( )g X X   …………………………(2) 

By this manner, the linearized equation of Eq. (1) is given by: 

0X X   ……………….(3) 

where the cofficient α of the linear term is determined by using the mean-square criterion: 

( ) ( )e X g X X Min


     ……………………(4) 

Thus, from: 

2 ( )
0

e X







 

yields: 

2

( )g X X

X
 

 

 …………………… (5) 

In Eq. (5), the symbol  donotes the time-averaging operator in classical meaning [14]: 

.

0

1
( ) lim ( )

T

T
f t f t dt

T
  …………………..(6) 

For a ω-frequency function f(ωt), the averaging process is taken during one period T: 

2

0 0

1 1
( ) ( ) ( ) ,

2

T

f t f t dt f d t
T



     


    …………………….(7) 

The everaging values in Eqs. (6) and (7) are called the classical or conventional averaging values. They often give 
incorrect results, especially for some periodic functions such as sine or cosine ones.  
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In this paper, the weighted averaging value proposed by Anh [18] is used to calculate averaging values in Eq. (5) instead 
of the conventional averaging values in Eq. (6) or Eq. (7). The idea of the proposed method as follows [18]: replacing 
the constant coefficient 1/T in Eq. (6) by a weighted coefficient function h(t). Thus, the averaging value is called a 
weighted averaging value: 

0
( ) ( ) ( )

T

x t h t x t dt   …………………(8) 

where h(t) satisfies the condition: 

0
( ) 1

T

h t dt    ………………. (9) 

In the Ref. [18], Anh has proposed a weighted function as follows: 

2 2( ) , 0s th t s te s    ………………. (10) 

where s is constant. 

It is seen that the weighted coefficient (10), obtained as a product of the optimistic weighted coefficient t and the 

pessimistic weighted coefficient e– sωt, has one maximal value at max 1/ ( )t s , and then decreases to zero as t  . If 

one requires that the time tmax is equal to T/n=2π/(nω) where n is a natural number or zero, we get s=n/(2π). So the 
meaning of s can be specified as follows: for n = 1, s=1/(2π) the weighted coefficient (10) has maximal value after one 
period, and for n=4, s=4/(2π) the weighted coefficient (10) has maximal value after quarter period, and for n=0, s=0 the 
weighted coefficient (10) has maximal value at infinity, this case corresponds to the conventional averaging value. The 
detailed properties of the weighted function h(t) in Eq. (10) can be viewed in Refs. [18, 19].  

With the priodic solution of linearized equation (3), the averaging values in Eq. (5) can be calculated by using Eq. (8). 

3. Nonlinear two-degree-of-freedom oscillator system cases 

3.1. Case 1 

Figure 1 represents a two mass system connected by linear and nonlinear springs. The governing equation of motion is 
given as [1, 2]: 

3

1 2

3

1 2

( ) ( ) 0

( ) ( ) 0

mx k x y k x y

my k y x k y x

    

    
,………………. (11) 

with initial conditions 

0

0

(0) , (0) 0

(0) , (0) 0

x x x

y y y

 

 
 , ……………(12) 

where k1 and k2 are the stiffnesses of the linear and nonlinear springs, respectively.  
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Figure 1 Two mass system connected by linear and nonlinear springs 

Here, the new variables are introducted as follows:  

X x y  , ……………..(13) 

Y x y  . …………………..(14) 

Transforming Eqs. (11) by using the new variables in Eqs. (13) and (14) yields: 

32 2 0X X X    ,……………..(15) 

0Y  , ………..(16) 

with intial conditions 

0 0(0) (0) (0) , (0) (0) (0) 0X x y x y A X x y        , ……………(17) 

0 0(0) (0) (0) , (0) (0) (0) 0Y x y x y B Y x y        , ………………..(18) 

and parameters 

     
1 2/ , /k m k m   . 

It can be observed that Eq. (15) is the cubic Duffing equation, Eq. (16) can be solved independently. Now, one will apply 
the method introduced in the section 2 to solve Eq. (15), then we will find the solution of Eq. (16). 

Firstly, the linearized equation of Eq. (15) is introduced as follows: 

2 0X X  ………………(19) 

The equation error between the two oscillators given in Eq. (15) and Eq. (19) is:  

3 2( ) 2 2e X X X X      

where ω2 is determined by using the mean square error criterion. 

Thus, from:  

2

2
0e







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yields:  

2 4

2

2

2 2X X

X

 



 ……………(20) 

The periodic solution of the linearized equation (25) is: 

cos( )X A t . ………..(21) 

With the solution in Eq. (21) and the weighted coefficient in Eq. (10), we will calculate 
2X  and 

4X  by using Eq. 

(8): 

4 2
2 2 2 2

2 2

2 8
cos ( )

( 4)

s s
X A t A

s







  , ……………….(22) 

4 2 6
4

8

2 2 2

4

2

4 4 248 416 153
os

6 28

( 4) ( 16)

s s s s
X A c t

s
A

s


  

 



 . …………….(23) 

Substituting Eqs. (22) and (23) into Eq. (20), we obtain the approximate frequency: 

4 2 6 8
2

4 2 2 2

248 416 1536 28
2 2

( 2 8)( 16)

s s s s
A

s s s
  

   
 

  
. ……………….(24) 

With the parameter s is chosen equal to 2, the approximate frequency will be: 

2 29216
2 2 2 1.44

12800
A A        . ……….(25) 

Therefore, the approximate solution for X(t) can be found: 

 2cos 2 1.44X A A t   .  ……………(26) 

Now, we will find the solution of Eq. (16). The solution of Eq. (16) has the form: 

1 2Y C t C  .  ……………….(27) 

With the intial conditions (18), we find that 

  
1 20,C C B  . ……………..(28) 

Thus, the solution of Eq. (16) is 

Y B .  …………..(29) 

Substituting approximate solutions in Eqs. (26) and (28) into Eqs. (13) and (14), the approximate solutions x(t) and y(t) 
are: 
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 2cos 2 1.44
2 2

A B
X A t    , ………………(30) 

 2cos 2 1.44
2 2

A B
Y A t     . ……………….(31) 

3.2. Case 2 

Figure 2 represents a two mass system with linear and nonlinear springs connections fixed to the body. The governing 
equation of motion is [1, 3]: 

3

1 2 3

3

1 2 3

( ) ( ) 0,

( ) ( ) 0.

mx k x k x y k x y

my k y k y x k y x

     

     
 ……………..(32) 

with initial conditions: 

0

0

(0) , (0) 0

(0) , (0) 0

x x x

y y y

 

 
 ……………….(33) 

where k1 and k2 are the stiffnesses of the linear springs, and k3 is the stiffness of nonlinear spring. 

 

Figure 2 Two mass fixed-body-system with linear and nonlinear springs 

As in Case 1, transforming Eqs. (32) by using the new variables in Eqs. (13) and (14) yields: 

3( 2 ) 2 0,X X X        …………………(34) 

0.Y Y   ……………….(35) 

with intial conditions: 

0 0(0) (0) (0) , (0) (0) (0) 0,X x y x y A X x y        …………….. (36) 

0 0(0) (0) (0) , (0) (0) (0) 0.Y x y x y B Y x y         ……………. (37) 

and parameters: 

1 2 3/ , / , / .k m k m k m      

It is similar to Case 1, we will solve Eq. (34), and then find solution of Eq. (35). 

The equivalent linear equation of Eq. (34) is given as follows: 
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2 0.X X    …………………(38) 

By using the mean square error criterion, we get: 

2 4

2

2

( 2 ) 2
.

X X

X

  


 
  ……………………(39) 

The periodic solution of the equivalent linear equation (38) is: 

cos( ).X A t  ……………….(40) 

With the solution in Eq. (40) and the weighted coefficient in Eq. (10), we can calcualate 
2X  and 

4X  by using Eq. 

(8). The approximate frequency can be obtained: 

4 2 6 8
2

4 2 2 2

248 416 1536 28
( 2 ) 2 .

( 2 8)( 16)

s s s s
A

s s s
   

   
  

  
 ………………..(41) 

With the parameter s is chosen equal to 2, the approximate frequency will be: 

2 29216
( 2 ) 2 ( 2 ) 1.44 .

12800
A A             …………………..(42) 

Therefore, the approximate solution for X(t) is: 

 2cos ( 2 ) 1.44 .X A A t      ……………………….(43) 

And now, we will find the solution of Eq. (35). The solution of Eq. (35) has the form: 

   1 2cos sin .Y C t C t    …………(44) 

With the intial conditions (37), we find that: 

1 2, 0.C B C   ………………… (45) 

Thus, the approximate solution for Y(t) is: 

 cos ,Y B t   ……………..(46) 

Finally, the approximate solutions x(t) and y(t) can be obtained as: 

 

 

2

2

( ) cos ( 2 ) 1.44 cos( ),
2 2

( ) cos ( 2 ) 1.44 cos( ).
2 2

A B
x t A t t

A B
y t A t t

   

   

   

    

………………(47) 
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4. Discusion cases 

To illustrate and verify accuracy of the proposed method used in this work, the obtained solutions are compared with 
the published data and exact solutions. The exact frequency ωe for a dynamical system governed by equation  

3 0.X X X     

can be derived as shown in Eq. (48) as follows [6]: 

12 /2

0

0 2

0

( )
2 1 sin

e

X dt
X

m t

  




 
  

 
 ……………….(48) 

where: 

2

0

2

0

.
2( )

X
m

X



 



 …………….(49) 

The approximate frequency ωHA using the Hamiltionian Approach (HA) [1] is given as follows: 

21
8 6 ,

2
HA A     ………………(50) 

for Case 1, and 

21
4 8 6 .

2
HA A       …………………..(51) 

for Case 2. 

Table 1 and Table 2 provide comparisons of the present results and the HA results [1] with the exact ones for different 
values of m, k1, k2, k3 and initial conditions x0, y0. The maximum relative error between the present results and the exact 
results is 0.4782%; while with the HA, the maximum relative error is 2.2124%. It is showed that the accuracy of the 
solutions obtained by the present method compared with the HA.  

Table 1 Comparison of the frequencies of the system (Case 1) 

Constant parameters Exact solution HA solution Present solution 

m k1 k2 x0 y0 ωex ωHA Error (%) ωpresent Error (%) 

1 2 3 1 2 2.8983 2.9155 0.5941 2.8844 0.4782 

1 4 5 1 3 6.0823 6.1644 1.3501 6.0663 0.2631 

2 5 3 -1 4 7.6838 7.8262 1.8534 7.6811 0.0345 

2 8 6 -4 4 16.8517 17.2047 2.0946 16.8665 0.0880 

5 5 5 5 15 12.0683 12.3288 2.1587 12.0830 0.1222 

5 10 15 -5 10 31.1957 31.8826 2.2019 31.2410 0.1452 

10 15 20 10 30 33.9348 34.6843 2.2087 33.9853 0.1488 

20 40 50 15 40 47.4048 48.4536 2.2124 47.4763 0.1508 

50 100 50 -20 10 36.0023 36.7967 2.2065 36.0555 0.1478 



World Journal of Advanced Engineering Technology and Sciences, 2023, 08(02), 293–304 

301 

Table 2 Comparison of the frequencies of the system (Case 2) 

Constant parameters Exact solution HA solution Present solution 

m k1 k2 k3 x0 y0 ωex ωHA Error (%) ωpresent Error (%) 

1 0.5 0.5 0.5 1 2 1.4965 1.5000 0.2331 1.4900 0.4366 

1 1 1 2 -1 1 3.8200 3.8730 1.3879 3.8105 0.2484 

2 2 1 4 5 1 6.9300 7.0711 2.0357 6.9340 0.0573 

2 4 3 5 -3 2 9.7436 9.9373 1.9882 9.7468 0.0328 

5 10 5 10 2 10 13.7087 14.0000 2.1250 13.7230 0.1041 

5 5 20 10 -15 -5 17.2194 17.5784 2.0850 17.2337 0.0830 

10 10 20 5 5 20 12.9120 13.1814 2.0866 12.9228 0.0840 

10 20 30 10 -10 15 30.0928 30.7490 2.1806 30.1330 0.1337 

20 40 50 20 -20 10 36.0459 36.8375 2.1961 36.0971 0.1420 

  
To further illustrate and verify accuracy of this new approximate analytical approach, comparisons of the time history 
of oscillatory displacement responses for the two masses with exact solutions are presented in Figures 3 and 4 (for Case 
1) and Figures 5 and 6 (for Case 2). These figures show the time history of displacement responses of the systems with 
exact results for different parameters of the systems. The exact solution using Jacobian elliptic function developed by 
Cveticanin [3]. Apparently, it is confirmed that the present analytical approximations show excellent agreement with 
the exact solution using Jacobi elliptic function. 

 

Figure 3 Comparison of the analytical approximate solutions with the exact solution for m=1, k1=1, k2=2, x0=-1, y0=1, 
(Case 1) 
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Figure 4 Comparison of the analytical approximate solutions with the exact solution for m=1, k1=1, k2=2, x0=-3, y0=-1, 
(Case 1) 

 

Figure 5 Comparison of the analytical approximate solutions with the exact solution for m=1, k1=1, k2=1, k3=2, x0=2, 
y0=4, (Case 2) 

 

Figure 6 Comparison of the analytical approximate solutions with the exact solution for m=1, k1=1, k2=1, k3=2, x0=-5, 
y0=-1, (Case 2)  
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5. Conclusion 

In this paper, a new analytical method is developed for analysing the motions of the nonlinear two-degree-of-freedom 
oscillation systems having linear and nonlinear stiffnesses. Two practical examples of two-mass systems with free and 
fixed ends and with linear and nonlinear stiffensses are presented and discussed. The present solutions are compared 
with the ones achieved by using the HA. The maximum relative error of the HA results is 2.2124%, while the maximum 
relative error of the present method is only 0.4782%. The effects of different parameters on the response of the systems 
are shown graphically and numerically discussions. The proposed technique is considered as the combination of the 
classical equivalent linearization method with the weighted averaging concept. The results show the reliability of this 
method. Futhermore, this method can be applied for investigating other kinds of engineering oscillation in future 
researches.  
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