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Abstract 

In this paper, we present some new explicit identities of matrix powers of matrix and their proofs. For instance, 𝐴𝐶+𝐷 =

𝐴𝐶 + 𝐴𝐷 and (𝐴𝐵)𝑇 = 𝐴𝐵𝑇
for some matrices 𝐴, 𝐵 and 𝐶.
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1. Introduction

The exponential of matrix A is defined via its Taylor series, 𝑒𝐴 = 𝐼 + ∑
1

𝑛!
𝐴𝑛

𝑛≥1  [1], and the matrix logarithmic is defined 

by log (𝐴) = ∑
(−1)𝑛−1

𝑛
(𝐴 − 𝐼)𝑛 , where ‖𝐴 − 𝐼‖ < 1 [2].𝑛≥1  The principal matrix power 𝐴𝛼 for a matrix 𝐴 ∈ ℂ𝑛×𝑛 and a 

real number 𝛼 ∈ ℝ  is defined by 𝐴𝛼  = exp(𝛼 𝑙𝑜𝑔(𝐴))  [3]. The matrix power of 𝐴  to 𝐵  is defined by 𝐴𝐵 =
exp(𝐵 log(𝐴)) [4].  In this paper, first present the properties of matrix exponential, and matrix logarithm. Finally, prove 
the explicit identities of matrix powers of matrix. 

1.1. Properties of matrix exponential for more detail in [5] 

 Let 𝐴, 𝐵 ∈ 𝑀𝑛(𝕜). 

(i) exp(0𝑛×𝑛) = 𝐼𝑛×𝑛. 

(ii) 𝐵exp(𝐴) = exp(𝐴)𝐵, if 𝐴𝐵 = 𝐵𝐴. 

(iii) exp(𝐴 + 𝐵) = exp(𝐴) + exp(𝐵), if 𝐴𝐵 = 𝐵𝐴. 

(iv) exp(𝐴−1) = (exp(𝐴))−1 

(v) exp(𝐴𝑇) = (exp(𝐴))𝑇 

(vi) exp(𝐴) = 𝑈exp(𝐷)𝑈−1, where 𝐴 = 𝑈𝐷𝑈−1. 

1.2. Properties of matrix logarithm [6] 

Let 𝐴, 𝐵 ∈ 𝑁𝑀𝑛(𝕜)(𝐼, 1), where 𝑁𝑀𝑛(𝕜)(𝐼, 1) = {𝐴 ∈ 𝑀𝑛(𝕜)|‖𝐴 − 𝐼‖ < 1}.

(i) log(𝐴𝐵) = log(𝐴) + log(𝐵), if 𝐴𝐵 = 𝐵𝐴. 

(ii) 𝐵log(𝐴) = log(𝐴)B, if 𝐴𝐵 = 𝐵𝐴 and ‖𝐵‖ < 1. 

(iii) log(𝐴−1) = −log(𝐴). 

(iv) log(𝐴) = 𝑈log(𝐷)𝑈−1,  where 𝐴 = 𝑈𝐷𝑈−1. 

(v) log(𝐴𝑇) = (log(𝐴))𝑇. 
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Results (i), (iii), (iv) and (v) are well known [6]. Proof of the result (ii) is given below. 

Proof of (ii): Suppose 𝐵𝐶 = 𝐶𝐵 and ‖𝐵‖ < 1. Since ‖𝐵‖ < 1, 𝐵log(𝐴) = ∑ 𝐵
(−1)𝑛−1

𝑛
(𝐴 − 𝐼)𝑛 ,𝑛≥1  and by mathematical 

induction 𝐵(𝐴 − 𝐼)𝑛 = (𝐴 − 𝐼)𝑛𝐵. Hence, (∑
(−1)𝑛−1

𝑛
(𝐴 − 𝐼)𝑛

𝑛≥1 ) 𝐵 = log(𝐴) 𝐵. ∎ 

1.3. The functions exp and log satisfy the following two properties [2] 

(i) If ‖𝐴 − 𝐼‖ < 1, then exp(log(𝐴)) = 𝐴 and; 

(ii) If ‖exp 𝐵 − 𝐼‖ < 1, then log (exp(𝐵)) = 𝐵. 

1.4. Explicit identites of matrix power matrix 

Let 𝐴 ∈ 𝑁𝑀𝑛(𝕜)(𝐼, 1) and 𝐵, 𝐶 ∈ 𝐺𝐿𝑛(𝕜), where 𝕜 = ℝ, the real numbers, or 𝕜 =  ℂ, the  

complex numbers. 

(i) 𝐴0𝑛×𝑛 = 𝐼𝑛×𝑛. 

(ii) 𝐴𝐵+𝐶 = 𝐴𝐵𝐴𝐶 , if 𝐵𝐶 = 𝐶𝐵, 𝐵𝐴 = 𝐴𝐵 and ‖𝐵‖ < 1. 

(iii) 𝐴−𝐼 = (𝐴−1)𝐼. 

(iv) 𝐴𝐵𝑇
= (𝐴𝐵)𝑇, if 𝐴 is symmetric, 𝐵𝐶 = 𝐶𝐵 and ‖𝐵‖ < 1. .  

(v) 𝐴𝐵 = 𝑈𝐷𝐵𝑈−1, where 𝐷 = 𝑈𝐴𝑈−1. 

Proof of (i): 

                        𝐴0𝑛×𝑛 = exp(0𝑛×𝑛 log(𝐴)) 

                                    = exp(0𝑛×𝑛) 

                                    = 𝐼𝑛×𝑛. ∎ 

Proof of (ii):  

                        Suppose 𝐵𝐶 = 𝐶𝐵 and ‖𝐵‖ < 1. 

                                      𝐴𝐵+𝐶 = exp((𝐵 + 𝐶) log(𝐴)). 

                                                 = exp (𝐵 log(𝐴) + 𝐶 log(𝐴)). 

                                                 = exp (𝐵 log(𝐴)) . exp(𝐶 log(𝐴)). ( by 1. (ii) and 2. (ii) ) 

                                                 = 𝐴𝐵𝐴𝐶 . ∎ 

Proof of (iii): 

                         𝐴−𝐼 = exp ((−𝐼) log(𝐴)). 

                                 = exp (𝐼(− log(𝐴))). 

                                 = exp (𝐼 log(𝐴−1)). (by 2. (iii)) 

                                 = (𝐴−1)𝐼.∎ 

Proof of (iv):  

                          Suppose 𝐴 is symmetric, 𝐵𝐶 = 𝐶𝐵 and ‖𝐵‖ < 1.  

                                                                         𝐴𝐵𝑇
= exp(𝐵𝑇 log(𝐴)). 
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                                                                                = exp(𝐵𝑇 log(𝐴𝑇)). 

                                                                                = exp(𝐵𝑇(log(𝐴))𝑇). (by 2. (v)) 

                                                                                = exp(((log(𝐴))𝐵)𝑇). 

                                                                                = exp((𝐵(log(𝐴)))𝑇). (by 2. (ii)) 

                                                                                = (exp(𝐵 log (𝐴)))𝑇 . (by 1. (v)) 

                                                                                = (𝐴𝐵)𝑇 . ∎ 

Proof of (v):  

                         Suppose 𝐵𝑈 = 𝑈𝐵. 

                                           𝐴𝐵 = 𝑒𝑥𝑝(𝐵𝑙𝑜𝑔(𝐴)). 

                                                 = 𝑒𝑥𝑝(𝐵𝑙𝑜𝑔(𝑈𝐷𝑈−1)). 

                                                 = 𝑒𝑥𝑝(𝐵(𝑈𝑙𝑜𝑔(𝐷)𝑈−1)). 

                                                 = 𝑒𝑥𝑝(𝑈(𝐵𝑙𝑜𝑔(𝐷))𝑈−1). 

                                                 = 𝑒𝑥𝑝(𝑈( 𝒟)𝑈−1), where 𝒟 = 𝐵𝑙𝑜𝑔(𝐷). 

                                                 = 𝑈(𝑒𝑥𝑝( 𝒟) )𝑈−1 where 𝒟 = 𝐵𝑙𝑜𝑔(𝐷). 

                                                 = 𝑈(𝑒𝑥𝑝( 𝐵𝑙𝑜𝑔(𝐷))𝑈−1. 

                                                 = 𝑈𝐷𝐵𝑈−1. ∎ 

2. Conclusion 

In this work, we show that some matices rules and indeces rules are hold for the matrix powers of matrix. 
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