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Abstract 

The recommended random noise test for analogue to digital converters (ADCs), as stated in the IEEE 1057 Standard for 
Digitizing Waveform Recorders, suggests the utilization of a triangular signal as the stimulus for the ADC under 
examination. However, we will demonstrate that an alternative option of employing a sinusoidal stimulus signal is 
equally feasible. This substitution provides enhanced flexibility during the testing process and enables the utilization of 
sine fitting algorithms. 
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1. Introduction

The measurement of the standard deviation of random noise in an analogue-to-digital converter (ADC) holds significant 
importance as it serves as a crucial parameter for evaluating ADC performance [1]-[4] and selecting the appropriate 
ADC for a specific application. Additionally, understanding the noise standard deviation in a test configuration is 
necessary for conducting other ADC tests, such as the Standard Static Test [1], the Standard Histogram Test [5]-[10], 
Small-wave Histogram Test [11] or the Sine-fitting Test [12]. These tests are used to estimate the error and precision of 
ADC parameters, and accurate knowledge of the noise standard deviation is instrumental in obtaining reliable results 
from these tests. There are other tests that focus on other non-ideal phenomena like jitter [13]-[14] and harmonic 
distortion. 

The precision of the estimates derived from this test was analysed in [15]. Furthermore, [15] proposed an expression 
to determine the minimum number of samples necessary to ensure a specific level of uncertainty in the results. This 
calculation is crucial for minimizing the test duration as it enables the determination of the optimal number of samples 
required. 

The test described in section 8.6.2 of [1] involves the synchronous acquisition of two sets of samples, each comprising 
a certain number (M) of samples. The noise standard deviation (σ) is then estimated by calculating the root mean square 
of the difference (msd) between the output codes of these two sets. If the noise standard deviation is sufficiently high, 
the test can be performed using a null input voltage. However, if the noise standard deviation is lower, a triangular 
stimulus signal should be employed instead. 

Here it is claimed that a sinusoidal stimulus signal can also be used, which introduces enhanced flexibility to the test 
methodology. The primary advantage of this approach lies in its compatibility with conventional sine fitting algorithms, 
enabling the determination of the initial phase of the two data records. It is important to note that two records must be 
acquired for subsequent subtraction of sample values, aiming to eliminate systematic errors such as ADC non-linearity, 
gain and offset error, and stimulus signal distortion. Consequently, only random effects like random additive noise 
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remain. It is worth mentioning that other random errors, such as amplitude or phase noise in the stimulus signal or 
jitter in the ADC, will contribute to the final test result. As a result, the value estimated by this test serves as an upper 
bound on the level of additive random noise present in the ADC under examination. 

For systematic errors to be nullified, perfect alignment of the two records is crucial, requiring the acquisition to start 
precisely at the same point relative to the stimulus signal period. The IEEE 1057 standard recommends triggering the 
start of acquisition based on the stimulus signal voltage. However, the presence of amplitude noise affects this triggering 
process, as the instant of the first sample depends not only on the ideal stimulus signal value, as it should, but also on 
the random voltage noise present at that moment. 

It is worth noting that, in principle, curve fitting could be applied to a triangular signal as well. However, it is important 
to acknowledge that triangular fitting procedures are not as straightforward as sine fitting methods. 

The objective of this paper is to demonstrate that a sinusoidal stimulus signal can be effectively utilized, using the same 
estimator employed for the triangular stimulus signal. This serves as the main goal of the research. However, the 
intricate process of aligning the records using the sine fitting information, as well as a comprehensive assessment of the 
improvements offered by this approach compared to the traditional method, will be explored and detailed in a 
forthcoming publication. 

Section 2 of the paper focuses on the analysis of the variance of the ADC output codes, taking into account three different 
types of stimuli: continuous (DC), triangular, and sinusoidal. The goal is to examine the impact of these stimuli on the 
variability of the ADC output. 

Moving on to section 3, the paper proceeds to derive the estimator specifically for the sinusoidal stimulus case. This 
estimator is then compared to the estimators derived for the DC and triangular stimulus cases. By comparing these 
estimators, the researchers aim to assess the performance and effectiveness of the sinusoidal stimulus in terms of 
estimating the ADC output. 

Lastly, in section 4, the paper presents the conclusions drawn from the analysis conducted in the previous sections. 
These conclusions summarize the findings of the study and highlight the key insights regarding the variance of ADC 
output codes under different stimulus types. The researchers may discuss the advantages and limitations of each 
stimulus type and provide recommendations for practical applications based on their conclusions. 

2. Variance of the a DC Output Codes 

2.1. DC Stimulus Signal 

The random additive noise observed in analogue-to-digital converters (ADCs), as described in [1], refers to a non-
deterministic fluctuation in the ADC output characterized by its frequency spectrum and statistical properties. Typically, 
the noise is assumed to be white, meaning it has a flat frequency spectrum, exhibits a stationary probability density 
function, and is independent of the stimulus signal. 

In the presence of random noise at the ADC input, the output code (k) can be regarded as a discrete random variable 

capable of assuming any value between 0 and ( 2 1bn
 ) for an nb-bit ADC. 

When the standard deviation of the additive noise exceeds the ADC's ideal code bin width (Q), the recommended 
approach in [1] involves short-circuiting the ADC input and acquiring two sets of samples (A and B). By subtracting the 
obtained codes from each other, fixed errors originating from the ADC can be eliminated, while the inherent random 
nature of the output codes is preserved. 

In this context, normalized voltages will be employed, denoted in units of least significant bits (LSB), achieved by 
dividing the voltages with the ideal code bin width Q of the ADC. The normalized stimulus signal voltage will be denoted 
as y, while the normalized random noise voltage will be represented as r. Consequently, the normalized sampled voltage 
at a specific instant tj can be expressed as follows: 

     j j ju t y t r t  ………..(1) 
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Given that the normalized additive noise has a mean of zero and a standard deviation represented by r (/Q), the 
sampled voltage, which is also a random variable, has 

   and   u u ry    .……….(2) 

Since the additive noise is considered here to be normally distributed, the sampled voltage probability density function 
is [16] 
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and its distribution function is [10] 
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By subtracting the codes obtained from the two sample sets, the ADC can be viewed as exhibiting ideal behavior, as any 
fixed errors have been eliminated through the subtraction process. Consequently, random errors can be attributed to 
the presence of noise in the stimulus signal input. 

The probability, denoted as pk, of a sample having an output code equal to k is determined by the probability of the 
sampled voltage being equal to or lower than the transition voltage T[k+1], while simultaneously being equal to or 
greater than the transition voltage T[k]. This applies specifically to the middle codes, 

    1    ,   1,...,2 2bn

kp P U k u U k k      , ……….(5) 

where we the normalized transition voltage U[k]=T[k]/Q was used. The probability pk can thus be expressed with the 
help of the sampled voltage distribution function: 
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The mean, second moment and variance of the output codes are, by definition [10], 
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2.2. Triangular Stimulus Signal 

If the level of random noise in an ADC is relatively small compared to the ADC's ideal code bin width, the IEEE 1057 
standard [1] recommends using a triangular stimulus signal that encompasses a range of approximately ten ADC codes. 
By analyzing the amplitude distribution, fy, of this triangular stimulus signal [10], it becomes possible to calculate the 
variance of the output codes. 

   2 2

|k k y yy f dyy 




  .……….(8) 

For a triangular shaped stimulus signal, with an amplitude A and an offset C, which are both normalized by the ideal 
code bin width (AQ=A/Q and CQ=C/Q) the amplitude distribution is 
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The output codes’ variance is consequently equal to 
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2.3. Sinusoidal Stimulus Signal 

In the scenario where a sinusoidal stimulus signal is employed, the variance of the output codes can be determined in a 
similar manner as described in the previous paragraph, with the calculation relying on [16].  
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Inserting it into (8) leads to the expression 
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3. Random Noise Estimators 

The estimator for the random noise standard deviation is computed from the mean square difference: 
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The mean square difference obtained from the two sets possesses twice the variance of each individual set, as they are 
independent of one another. As stated in [16], the expected value of the mean square difference, as determined by 
equation (13), is twice the variance of the output codes: 

  2 2 22ka kb kE msd      ……….(14) 

Taken this into account, and considering that the variance of the output codes is equal to that of the additive noise, the 
estimated variance of the noise is just given by 

2
r

msd
  .……….(15) 

The expected value of the estimated noise standard deviation can be approximated by utilizing equation (15).  
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This approximation allows for the estimation of the noise standard deviation based on the calculated mean square 
difference. Inserting equation (14) leads to 
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 E r k  ,……….(17) 

where k is given by equation (7). 

Figure 1 illustrates that for small values of the random noise standard deviation, the expected value of the estimator 
significantly deviates from the actual value of the noise standard deviation. The dashed and dotted curves demonstrate 
this discrepancy. 

 

Figure 1  The graph displays the expected value of the estimated random noise as a function of the actual standard 
deviation of the random noise. It showcases three different stimulus types: a DC stimulus (represented by dashed and 

dotted lines), a triangular stimulus (represented by a solid line), and a sinusoidal stimulus (represented by a dash-
dotted line). In the case of the DC stimulus, two scenarios are depicted: one where the DC value is equal to one of the 

ADC transition voltages (shown by the dashed line), and another where the DC value is precisely between two 
consecutive ADC transition voltages. Both the triangular and sinusoidal stimulus signals have an amplitude of 5 LSB, 

denoting their respective behaviors in the graph 

In the case of a triangular stimulus signal, the estimator recommended in the IEEE 1057 standard is employed for 
estimating the noise standard deviation. This estimator is designed to analyze the differences between the output codes 
obtained from two sets of samples. 

The process involves acquiring two sets of samples, labelled as A and B, during the test. The output codes from these 
two sets are subtracted from each other, effectively cancelling out any fixed errors introduced by the ADC. The 
remaining differences primarily reflect the random effects, such as random additive noise. 

The estimator then calculates the mean square difference (msd) between the output codes of the two sets. This mean 
square difference serves as the basis for estimating the noise standard deviation. By using appropriate formulas and 
statistical analysis, the estimator provides an estimate of the noise standard deviation for the ADC under test. 

It is worth noting that the accuracy and effectiveness of this estimator for the triangular stimulus signal have been 
validated and endorsed by the IEEE 1057 standard, making it a reliable method for assessing the noise performance of 
ADCs. 
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In the case of small random noise, the expression is determined by equations (6) and (7), taking into account that the 
stimulus signal spans only two ADC output codes. Under these conditions, one can observe the following: 

 The mean square difference (msd) is approximately equal to the variance of the output codes (σ2) when the 
random noise is negligible. This can be attributed to the fact that the dominant factor affecting the msd is the 
inherent variation in the ADC output codes. 

 The msd is inversely proportional to the number of samples (M) when the random noise is small. This 
relationship arises due to the reduced contribution of random noise in the presence of a larger number of 
samples. As M increases, the impact of random noise on the msd diminishes, resulting in a more accurate 
estimation of the noise standard deviation. 

By considering these extreme cases and analysing the behaviour of the msd, an approximate expression for the expected 
value of the estimator for the noise standard deviation can be obtained. Although heuristic in nature, this expression 
provides a practical means of estimating the noise standard deviation based on the observed msd and the characteristics 
of the stimulus signal. 
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Inserting (19) into (10) leads to 
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Taking into account equations (14) and (20), a potential estimator suitable for scenarios involving a low level of random 
noise can be expressed as follows: 
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It is the combination of (15) and (21) that leads to (18). The expected value of (18) can be approximated by 
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Inserting (14) leads to 
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Where k is given by (7). This expected value is shown in Figure 1 (solid curve) which proves that it is a good estimator 
of r. 

In order to utilize a sinusoidal stimulus signal, an estimator can be derived using a similar approach to that of the 
triangular stimulus signal. Instead of relying on equations (9) and (10), equations (11) and (12) would be employed. 
Remarkably, for the extreme scenario involving a small standard deviation of random noise and a large amplitude of 
the stimulus signal, the resulting expression remains the same as that derived for the triangular stimulus signal, namely 
equation (20). 

Consequently, the estimator obtained through heuristic analysis for the sinusoidal stimulus case aligns with the 
estimator used for the triangular stimulus, specifically equation (18). The expected value of this estimator for the 
sinusoidal case is depicted in Figure 1 as a dash-dotted curve, demonstrating its similarity to the solid curve 
representing the triangular case. 
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In Figure 2 the error of the estimators, defined as 

 E
r

r re


  ,………. (24) 

is represented. When dealing with small quantities of random noise, both the triangular and sinusoidal estimators 
exhibit significantly lower errors compared to the DC estimator. In this case, the triangular and sinusoidal estimators 
prove to be more accurate and reliable in estimating the noise standard deviation. 

However, when confronted with substantial levels of random noise, all three estimators perform equally well, displaying 
comparable levels of accuracy and reliability. In such situations, the choice between the triangular, sinusoidal, or DC 
estimator may not significantly impact the accuracy of the noise standard deviation estimation. 

 

Figure 2 The graph illustrates the error of the estimators employed to determine the random noise standard 
deviation, plotted as a function of the actual standard deviation of the noise. The estimators are utilized for three 

different stimulus types: a DC stimulus (represented by dashed and dotted lines), a triangular stimulus (represented 
by a solid line), and a sinusoidal stimulus (represented by a dash-dotted line). Within the context of the DC stimulus, 

two scenarios are depicted: one where the DC value is equal to one of the ADC transition voltages (shown by the 
dashed line), and another where the DC value is precisely between two consecutive ADC transition voltages. Both the 
triangular and sinusoidal stimulus signals exhibit an amplitude of 5 LSB, reflecting their respective behaviors on the 
graph. The error of the estimators for each stimulus type provides insights into their performance and accuracy in 

estimating the random noise standard deviation 

4. Conclusion 

The research presented shows that stimulating an ADC with a sinusoidal signal is a viable alternative approach for 
estimating the random noise standard deviation in ADCs. Remarkably, the estimator expression proposed is the same 
as the one recommended by the IEEE 1057 standard. This proposed approach not only offers increased flexibility during 
the testing process but also introduces the possibility of incorporating sine fitting algorithms and record alignment 
techniques. 

By employing a sinusoidal stimulus signal, the need for record triggering, which is essential when using the triangular 
stimulus signal, can be potentially eliminated. This presents an opportunity to alleviate a source of uncertainty in the 
estimation process. The application of sine fitting algorithms and record alignment techniques allows for the precise 
alignment of data records, leading to more accurate and reliable estimations of the random noise standard deviation. 

By considering these advancements and adopting the proposed sinusoidal stimulus signal approach, it is possible to 
enhance the overall accuracy and precision of the random noise standard deviation estimation in ADCs, thereby 
reducing potential sources of uncertainty in the testing process. 
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