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Abstract 

An approach has been developed to create an approximated simplicial complex in between the Vietoris-Rips complex 
and the Čech complex using median of triangles for computing Betti numbers of some point cloud data. The Vietoris-
Rips complex has been built first for this. Then the sample points have been classified into three classes based on three 
conditions of the median (𝑙) of any triangle’s maximum edge (2𝑟) for any three points in ℝ𝑛 . Then the values of the 

filtration (𝜀) have been chosen in such a way that  𝜀 = 𝑟  for 𝑙 < 𝑟 , 𝜀 = 𝑟  for 𝑙 = 𝑟 , and  𝜀 = 𝑟 +
(𝑙−𝑟)

3
 for 𝑙 > 𝑟 . The 

approach has been extended for higher dimensional triangles calculating 𝑙  by the distance of the centroid from the 
opposite vertex of the maximum face and considering 𝑟 as the filtration value of the maximum edge. Then an algorithm 
has been introduced to calculate the simplicial complex after building simplices for each filtration value. Finally, to 
validate the study results of the approximated simplicial complex have been compared with the Vietoris-Rips complex 
and the Čech complex. The proposed approximated simplicial complex has been found computationally effective than 
the Čech complex and its filtration values are lying between filtration values of the Vietoris-Rips complex and the Čech 
complex without any loss of persistent data. 

Keywords: Approximated simplicial complex; Čech complex; Vietoris–Rips complex; Persistent homology; 
Topological data analysis; Point cloud data; Betti numbers. 

1. Introduction

The development of modern science and technology is highly depending on data. Every day data are generated 
persistently in different fields. A large amount of data are high dimensional with a lot of noise. Analyzing these types of 
data is very challenging. Topological data analysis (TDA) is one of the most popular and vital tools to analyze these data 
that can analyze higher dimensional data with noise. TDA mainly analyzes data to calculate the shape of data using 
persistent homology. Persistent homology is a methodology of calculating the homology of a chain complex for some 
filtrations to track persistence of the homology. Though the calculation of homology is basically introduced via singular 
homology [1], the algebra of infinitely generated modules makes its computation very difficult to use in practice. In 
contrast, simplicial homology is quite easy to calculate because of its finite nature.  

Simplicial homology is the homology calculated from a simplicial complex which is a collection of simplices. Simplices 
are points, edges, triangles, and higher dimensional triangles. There are many ways to construct a simplicial complex 
from some point cloud data which begins with the nerve of a topological space. 

Let 𝑈 be an underlying topological space of a set of vertices 𝐴. Let 𝐶 =  {𝐶𝛼}𝛼𝜖𝐴  be any covering of 𝑋. 
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Definition [2]: The nerve of 𝐶, 𝒩(𝐶) is an abstract simplicial complex of 𝐴 where a 𝑘-simplex forms if the intersection 
of all coverings of  𝑘 + 1  vertices of  𝐴  is non-empty, i.e., if for any {𝑎1, 𝑎2 , . . . , 𝑎𝑘} ⊂ 𝐴, 𝐶𝑎0

 ∩  𝐶𝑎1
 ∩ . ..  ∩  𝐶𝑎𝑘

 ≠

 ∅, {𝑎1, 𝑎2 , . . . , 𝑎𝑘} forms a 𝑘-simplex. 

As mentioned in [3], Nerve Theory confirms that the nerve 𝒩(𝐶) is homotopic equivalent to 𝑈. Now the mathematical 
question is how to build the covering. To answer this question there are many approaches have been introduced. In this 
study, only two of them have been reviewed to be on the track we followed.  

Firstly, open balls can be considered as coverings of the space 𝑈, 𝐵𝑘(𝑈) = {𝐵𝑘(𝑢)}𝑢𝜖𝑈  . For any 𝑈𝑣 ⊂ 𝑈 such that 𝑈𝑣  ∈
 ∪𝑣𝜖𝑈𝑣

𝐵𝑘(𝑣), the Nerve can be defined as a simplicial complex of {𝐵𝑘(v)} 𝑣𝜖𝑈𝑣
which is known as Čech complex Č(𝑈𝑣 , 𝑘). 

Building Čech complex is computationally difficult because of determining the intersection of open balls. It requires 
building higher dimensional balls to go through the process which is computationally expensive. 

Secondly, one can make a simplicial complex called Vietoris-Rips complex without building open balls by using the 
information of vertices and edges only. The Vietoris-Rips complex is a simplicial complex for a certain parameter ε, such 
that k-simplex forms for any {𝑎1, 𝑎2 , . . . , 𝑎𝑘  } ⊂ 𝐴  if and only if  𝑑(𝑎𝑖 , 𝑎𝑗)  ≤ 𝜀, ∀ 0 ≤  𝑖, 𝑗 ≤  𝑘 , i.e., any two points are 

pairwise close enough than 𝜀. 

The Vietoris-Rips complex is computationally fast but it loses some information about small cycles between certain 
parameters, say 𝜀1, for which vertices of the cycle are pairwise close enough and 𝜀2 for which intersection of open balls 
of all vertices of the cycle is non-empty. It means there is a possibility to build a new simplicial complex between the 
Vietoris-Rips complex and the Čech complex. 

There are few studies like [4]-[16] where different constructions of the Čech complex, the Vietoris-Rips complex, and 
other approximated complexes to these two complexes have been introduced. But none of these study counts 
geometrical approximation concerning the median of triangles.  

In this study, the Vietoris-Rips complex has been constructed using a set-theoretic approach and then an approximation 
technique has been introduced to construct a simplicial complex between Vietoris-Rips and Čech complex to calculate 
Betti numbers of some point cloud data.  

2. Background 

2.1. Statement of the problem 

To understand the problem of loss of persistent data due to the Vietoris-Rips complex, Vietoris-Rips complex and Čech 
complex of a sampled data of 4 points [(0,0), (1,0), (0.75,0.75) , (0,0.95)] have been computed and shown in Figure 1. 

 

Figure 1 loss of information of cycles due to the Vietoris-Rips complex compared to the Čech complex. 
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Let 𝜀 be a parameter indicating the radius of each mini ball centered at each of the sampled data points. For 𝜀 =  0.5 
both the Čech complex and Vietoris-Rips complex have formed the cycle [0,1,2,3]. But for 𝜀 =  0.53 Čech complex is 
detecting two loops where the Vietoris-Rips complex has no cycle. For 𝜀 =  0.597 Čech complex has one loop and for 
𝜀 =  0.617 Čech complex has no cycle left. Thus Čech complex detected three cycles. Each cycle has birth and death. The 
value of the parameter 𝜀 for which a cycle forms is called birth and for which value of 𝜀 any two vertices of the cycle 
joined with an edge is called death of the cycle. Thus we can form a point (𝑏𝑖𝑟𝑡ℎ, 𝑑𝑒𝑎𝑡ℎ) as persistent data of the cycle. 
Thus the cycles of Čech complex and Vietoris-Rips complex generate the following Table 1 between 0 ≤  𝜀 ≤ 0.617. 

Table 1 Cycles of the sampled data showed in Figure 1. 

 

 

From Table 1 and Figure 1, it is clear that the Vietoris-Rips complex is an approximation to Čech complex but it loses 
persistent data of small cycles. 

On the other hand, the Čech complex is computationally expansive. Therefore the problem is to construct such a 
simplicial complex that is computationally effective and can detect all cycles as Čech complex. 

2.2. Construction of Vietoris-Rips complex 

To construct a simplicial complex between the Čech complex and Vietoris-Rips complex from a set of point cloud data, 
Vietoris-Rips complex has been constructed and then it has been developed into a desired simplicial complex. Let 𝑋 be 
the set of some sample data points. Then the following algorithm has been followed to construct the Vietoris-Rips 
complex of the sample points. 

2.2.1. ALGORITHM 1: Constructing Vietoris-Rips complex 

 Step 1: Let 𝑚 = number of sample points. Define each point of 𝑋  as a set of Natural numbers ℕ , then the 
indexed set 𝐼 =  {0, 1, 2, . . . , 𝑚 − 1}.  

 Step 2: Construct a matrix [𝐷] 𝑚×𝑚 of pairwise distances assuming indexed points as rows and columns. Then 
[𝐷]  =  {𝑎𝑖𝑗  is the pairwise distance between 𝑖𝑡ℎ  and 𝑗𝑡ℎ  indexed point: 𝑖, 𝑗𝜖 𝐼}. 

 Step 3: Make a list 𝐿 of all entries of [𝐷] without repeating any numbers. 

 Step 4: Consider 𝜀 =  
𝐿

2
  for each element of 𝐿. 

 Step 5: For each 𝜀, calculate the list of all points as 0-simplices denoted as 𝐶0, where 𝐶0 =  [[𝑖]: 𝑖 𝜖 𝐼]. 
 Step 6: For each 𝜀, calculate the list of 1-simplices, denoted as 𝐶1, where 𝐶1 =  [[𝑖, 𝑗]: 𝑖𝑡ℎ  and 𝑗𝑡ℎ  points pairwise 

distance 𝑑𝑖𝑗  ≤  2𝜀 ]. 

 Step 7: For each 𝜀, calculate the list of 2-simplices, denoted as 𝐶2, where 𝐶2 =  [[𝑖, 𝑗, 𝑘]: for any two elements 
of 𝐶1 that have the common intersection of a singleton point, if the symmetric difference of the two elements is 
in  𝐶1] . In other words, 𝐶2 =  [[𝑖, 𝑗, 𝑘]:  if the length of [𝑖, 𝑗] ∩ [𝑗, 𝑘]  or, [𝑖, 𝑘] ∩ [𝑗, 𝑘]  or, [𝑖, 𝑗] ∩ [𝑖, 𝑘] = 1  and 
symmetric difference of any pairs among {[𝑖, 𝑗], [𝑗, 𝑘], [𝑖, 𝑘]}𝜖 𝐶1]. 

 Step 8: Calculate the list of 3-simplices, denoted as 𝐶3, where 𝐶3 =  [[𝑖, 𝑗, 𝑘, 𝑙]: for any three elements of 𝐶2 that 
have the common intersection of a singleton point, if the union of the three elements is in 𝐶2]. 

 Step 9: Accumulate the simplicial complex as a list, say 𝑆𝐶, where 𝑆𝐶 =  [𝐶0, 𝐶1, 𝐶2, 𝐶3]. 

2.3. Approximation of Vietoris-Rips complex to Čech complex: 

To compute such an approximated simplicial complex between Vietoris-Rips and Čech complex, the main problem is to 
calculate 𝜀 values for which 2-simplices and 3-simplices will be formed. Before going to the algorithm, let’s discuss the 
observation that gives us a strong hypothesis of triangulation. 

Čech complex Vietoris-Rips Complex 

Cycles (birth, death) Cycles (birth, death) 

[0123] (0.5, 0.5303) [0123] (0.5, 0.5303) 

[023] (0.5303, 0.5489)   

[012] (0.5303, 0.5590)   
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Let us assume three random sample points 𝑥, 𝑦, 𝑧. They can be chosen from anywhere on a circle. Assume that these 
three points are in such an arrangement that 𝑑(𝑥, 𝑦)  >  𝑑(𝑦, 𝑧)  ≥  𝑑(𝑥, 𝑧), where 𝑑 refers to the distance between two 
points. Let 𝑚 be the middle point of 𝑥 and 𝑦 and let 𝑙 be the line connecting 𝑧 and 𝑚, called the median of the 𝑥𝑦 line. 

 

Figure 2 Three classes of the choice of 3 random points from a circle to form a 2-simplex. 

Let 𝑥𝑚 =  𝑚𝑦 =  𝑟. Then the three classes shown in Figure 2 of these three points can be made for (𝑎) 𝑙 = 𝑟, (𝑏) for 𝑙 <
 𝑟, and (𝑐) for 𝑙 >  𝑟. 

For case (𝑎)𝑙 =  𝑟, 𝑥, 𝑦, and 𝑧 are equidistant from 𝑚 and so the triangle △ 𝑥𝑦𝑧 forms at 𝜀 =  𝑟 =  𝑙. 

For case (𝑏) 𝑙 <  𝑟, △ 𝑥𝑦𝑧 will form immediately joining  𝑥𝑦 because 𝑧 is closer than 𝑥 to 𝑚. That is  △ 𝑥𝑦𝑧 forms at 𝜀 =
 𝑟. 

 

Figure 3 Four random sample points on a sphere to form a 3-simplex. 

For case (𝑐) 𝑙 >  𝑟, point 𝑧 is far from 𝑥 to 𝑚, and of course 𝜀 >  𝑟. Let point  𝑧 is approaching towards 𝑚 such that 𝑙 →

 𝑟 then 𝜀 →  𝑟. That is, (𝑙 − 𝑟)  → 0. Let us assume 𝜀 =  𝑟 + 
(𝑙−𝑟)

3
 considering the above-approaching nature. 

To calculate 3-simplices of any four sample points, let 𝑥, 𝑦, 𝑧, 𝑤 be such random four points on a sphere shown in Figure 
3 that values of 𝜀 to form four triangles  △ 𝑥𝑦𝑧, △ 𝑥𝑧𝑤, △ 𝑥𝑦𝑤, △ 𝑦𝑧𝑤 are 𝜀𝑥𝑦𝑧  >  𝜀𝑥𝑧𝑤  >  𝜀𝑥𝑦𝑤  >  𝜀𝑦𝑧𝑤. 

To follow the same approach discussed earlier to form 2-simplices, let 𝑟ℎ =  𝑚𝑎𝑥 (𝜀𝑥𝑦𝑧 , 𝜀𝑥𝑧𝑤, 𝜀𝑥𝑦𝑤 , 𝜀𝑦𝑧𝑤). Since △ 𝑥𝑦𝑧 

forms at last, let us assume 𝑙ℎ has been drawn from the w to 𝑥𝑦𝑧 plane. Let 𝐺 be the centroid of the tetrahedron 𝑥𝑦𝑧𝑤. 
Then 𝑑(𝑤, 𝐺) can be calculated easily. 
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Since centroid divides each median by 2: 1  ratio, assume that, 𝑙ℎ = 𝑑(𝑤, 𝐺) +
𝑑(𝑤,𝐺)

3
. Thus the three classes of a 

tetrahedron become (a) for 𝑙ℎ = 𝑟ℎ , (b) for 𝑙ℎ <  𝑟ℎ  and (c) for 𝑙ℎ > 𝑟ℎ . For cases (a) and (b) 𝑙ℎ  ≤  𝑟ℎ , the value of 𝜀 

is 𝜀 =  𝑟ℎ . For case (c) 𝑙ℎ <  𝑟ℎ , the value of 𝜀 is 𝜀 =  𝑟ℎ +  
(𝑙ℎ− 𝑟ℎ )

3
. 

To calculate the simplicial complex induced from the median of triangles calculated earlier, the following algorithm has 
been followed. 

2.3.1. ALGORITHM 2: Constructing an approximated simplicial complex to Čech complex 

 Step 1: Follow steps 1 to 4 of ALGORITHM 1. 
 Step 2: Let 𝑇𝑟𝑖𝑎𝑔𝑠 be all possible triangles taking a combination of three points out of all sample points. 
 Step 3: For each triangle ∈  𝑇𝑟𝑖𝑎𝑔𝑠, find the maximum distant points and let m be the midpoint of them. 
 Step 4: For each triangle ∈  𝑇𝑟𝑖𝑎𝑔𝑠, let 𝑟 = 𝑥𝑚 as discussed above. 
 Step 5: For each triangle ∈ 𝑇𝑟𝑖𝑎𝑔𝑠, let 𝑙 =  𝑑(𝑧, 𝑚) as discussed above. 
 Step 6: For each triangle ∈  𝑇𝑟𝑖𝑎𝑔𝑠, calculate 𝜀 for three classes as discussed above (a) 𝜀 = 𝑟 if 𝑟 ≥  𝑙 and (b) 

𝜀 = 𝑟 +  
(𝑙−𝑟)

3
 if 𝑟 < 𝑙. 

 Step 7: Let 𝑇ℎ𝑒𝑑𝑟𝑜𝑛𝑠 be all possible tetrahedrons taking a combination of four points out of all sample points. 
 Step 8: For each tetrahedron ∈  𝑇ℎ𝑒𝑑𝑟𝑜𝑛𝑠, find the triangle formed at last, i.e., for which 𝜀 is maximum. 
 Step 9: For each tetrahedron ∈  𝑇ℎ𝑒𝑑𝑟𝑜𝑛𝑠, find 𝑟ℎ =maximum 𝜀 calculated in step 8. 
 Step 10: Calculate the centroid 𝐺 of each tetrahedron. 
 Step 11: Calculate 𝑑(𝑤, 𝐺) as discussed above. 

 Step 12: Calculate 𝑙ℎ =  𝑑(𝑤, 𝐺)+ ) + 𝑑
(𝑤,𝐺)

3
. 

 Step 13: For each tetrahedron ∈  𝑇ℎ𝑒𝑑𝑟𝑜𝑛𝑠, calculate 𝜀, where (a) 𝜀 = 𝑟ℎ  if 𝑟ℎ ≥ 𝑙ℎ  and (b) 𝜀 =  𝑟ℎ + 
(𝑙ℎ − 𝑟ℎ )

3
 

if 𝑟ℎ < 𝑙ℎ . 
 Step 14: Merge all 𝜀 into one list. 
 Step 15: Follow steps 5-6 of ALGORITHM 1 for each 𝜀. 
 Step 16: For each 𝜀, calculate the list of 2-simplices, denoted by 𝐶2 , where  𝐶2 = {all of those triangles that have 

𝜀 ≤ the trial 𝜀}. 
 Step 17: For each 𝜀, calculate the list of 3-simplices, denoted as 𝐶3, where 𝐶3 = {all of those tetrahedrons that 

have 𝜀 ≤ the trial 𝜀}. 
 Step 18: Accumulate the desired simplicial complex, say SC, where 𝑆𝐶 =  [𝐶0 , 𝐶1, 𝐶2, 𝐶3]. 

3. Methodology 

The following research methodology has been followed to finish this study: 

 Literatures have been reviewed to find the motivation and background of this research. 
 A Python routine has been written to build the Vietoris-Rips complex of some sampled data points following 

ALGORITHM 1 in section 2.2.1. 
 Several sets of data points have been made to check the Python routine. 
 Another Python routine has been coded to calculate Betti numbers (𝛽0, 𝛽1, 𝛽2). 
 Then following ALGORITHM 2 in section 2.3.1 a separate Python routine has been executed and Betti numbers 

(𝛽0, 𝛽1, 𝛽2) have been calculated using the mogutda package developed by Kwan-Yuet Ho, Isla Staden, and Filip 
Cornell. 

 To visualize simplicial complex, Python routine has been prepared following [17]. 
 A particular example of calculating Čech complex from 11 point data has been found in [18] that has been 

compared with our result. 
 Vietoris-Rips complex has been computed using the Gudhi package and results have been compared to validate 

our model. 
 Finally, the results have been analyzed in section 4. 

4. Results and discussion 

An array of 11 points [(1, 0), (0,1), (2,1), (3,2), (0,3), (3 + √3, 3), (1,4), (3,4) (2,4 + √3), (0,4),  and (−0.5,2)] has been 
used to compare our result with [16]. According to the example of computing Čech complex from the array of 11 points 
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in [16], the 𝜀-values are 0, 0.5, 0.559017, 0.707107, and 1 which are the same as calculated 𝜀-values (see Table 2) within 
[0, 1] interval. There are three 2-simplex have been found [9,6,4] at 0.707107; [2,1,0], and [10,4,1] at 𝜀 = 1. 

Table 2 Comparison between filtration values of Vietoris-Rips complex and the proposed approximated simplicial 
complex 

𝜺 −values of Vietoris-Rips complex 𝜺 −values of the proposed 
approximated simplicial complex 

0.0 0.0 

0.5 0.5 

0.5590169943749475 0.5590169943749475 

0.7071067811865476 0.7071067811865476 

0.9999999999999991 0.804737854124365 

1.0 0.9999999999999991 

1.0307764064044151 1.0 

1.25 1.0307764064044151 

1.3228756555322954 1.1937129433613967 

1.346291201783626 1.2142305476310067 

1.4142135623730951 1.25 

1.5 1.3228756555322954 

1.5811388300841898 1.346291201783626 

1.6929339632083815 1.3603796100280632 

1.75 1.408963380382927 

1.8027756377319946 1.4142135623730951 

1.931851652578136 1.4698553182767933 

1.9318516525781364 1.5 

2.0 1.52704627669473 

2.0155644370746373 1.5811388300841898 

2.0615528128088303 1.6929339632083815 

2.1213203435596424 1.75 

2.23606797749979 1.8027756377319946 

2.2460077487775676 1.931851652578136 

2.3660254037844384 1.9318516525781364 

2.3941701709713277 2.0 

2.41827959743147 2.0155644370746373 

2.5686720715874407 2.0615528128088303 

2.6633792282071913 2.1213203435596424 

2.9093129111764093 2.23606797749979 

 2.2460077487775676 

 2.3660254037844384 
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 2.3941701709713277 

 2.41827959743147 

 2.5686720715874407 

 2.6633792282071913 

 2.9093129111764093 
 

Then radius of mini balls 𝜀’s have been calculated from the data for both Vietoris-Rips and the approximated simplicial 
complex which have been compared in Table 2. From Table 2, one can find other 𝜀 values dissimilar to the Vietoris-Rips 
complex in the approximated simplicial complex very easily that have been colored in blue. All 𝜀-values of the Vietoris-
Rips complex are contained in the set of 𝜀-values of the proposed approximated simplicial complex. 

Table 3 Comparison of the approximated simplicial complex with Vietoris-Rips and Čech complexes. 

Filtration 
values 

Name of the Simplicial 
complex 

Simplicial complex 

 

F
o

r 
𝜀

=
0

.0
 Vietoris-Rips Complex [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]] 

Approximated Simplicial 
Complex 

[[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]] 

Čech Complex [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]] 

 

F
o

r 
𝜀

=
0

.5
 Vietoris-Rips Complex [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [4, 9], [6, 9]] 

Approximated Simplicial 
Complex 

[[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [4, 9], [6, 9]] 

Čech Complex [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [4, 9], [6, 9]] 

 

F
o

r 
𝜀

=
0

.5
5

9
0

 

Vietoris-Rips Complex [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [1, 10], [4, 9], [4, 10], [6, 9]] 

Approximated Simplicial 
Complex 

[[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [1, 10], [4, 9], [4, 10], [6, 
9]] 

Čech Complex [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [1, 10], [4, 9], [4, 10], [6, 9]] 

 

F
o

r 
𝜀

=
0

.7
0

7
1

1
 Vietoris-Rips Complex [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [0, 1], [0, 2], [1, 10], [2, 3], 

[4, 6], [4, 9], [4, 10], [6, 9], [4, 6, 9]] 

Approximated Simplicial 
Complex 

[[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [0, 1], [0, 2], [1, 10], [2, 
3], [4, 6], [4, 9], [4, 10], [6, 9]] 

Čech Complex [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [0, 1], [0, 2], [1, 10], [2, 3], 
[4, 6], [4, 9], [4, 10], [6, 9]] 

 

F
o

r 
𝜀

=
0

.8
0

4
7

4
 Vietoris-Rips Complex [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [0, 1], [0, 2], [1, 10], [2, 3], 

[4, 6], [4, 9], [4, 10], [6, 9], [4, 6, 9]] 

Approximated Simplicial 
Complex 

[[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [0, 1], [0, 2], [1, 10], [2, 
3], [4, 6], [4, 9], [4, 10], [6, 9], [9, 4, 6]] 

Čech Complex [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [0, 1], [0, 2], [1, 10], [2, 3], 
[4, 6], [4, 9], [4, 10], [6, 9], [9, 4, 6]] 

 

F
o

r 
𝜀

=
0

.9
9

9
9

9
9

 Vietoris-Rips Complex [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [0, 1], [0, 2], [1, 10], [2, 3], 
[3, 5], [4, 6], [4, 9], [4, 10], [5, 7], [6, 9], [4, 6, 9]] 

Approximated Simplicial 
Complex 

[[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [0, 1], [0, 2], [1, 10], [2, 
3], [3, 5], [4, 6], [4, 9], [4, 10], [5, 7], [6, 9], [9, 4, 6]] 

Čech Complex [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [0, 1], [0, 2], [1, 10], [2, 3], 
[3, 5], [4, 6], [4, 9], [4, 10], [5, 7], [6, 9], [9, 4, 6]] 
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F
o

r 
𝜀

=
1

.0
 

Vietoris-Rips Complex [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [0, 1], [0, 2], [1, 2], [1, 4], [1, 
10], [2, 3], [3, 5], [3, 7], [4, 6], [4, 9], [4, 10], [5, 7], [6, 7], [6, 8], [6, 9], [7, 8], 
[0, 1, 2], [1, 4, 10], [3, 5, 7], [4, 6, 9], [6, 7, 8]] 

Approximated Simplicial 
Complex 

[[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [0, 1], [0, 2], [1, 2], [1, 
4], [1, 10], [2, 3], [3, 5], [3, 7], [4, 6], [4, 9], [4, 10], [5, 7], [6, 7], [6, 8], 
[6, 9], [7, 8], [0, 1, 2], [9, 4, 6]] 

Čech Complex [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [0, 1], [0, 2], [1, 2], [1, 4], [1, 
10], [2, 3], [3, 5], [3, 7], [4, 6], [4, 9], [4, 10], [5, 7], [6, 7], [6, 8], [6, 9], [7, 8], 
[0, 1, 2], [9, 4, 6]] 

In Table 3, a comparison of the approximated simplicial complex with Vietoris-Rips and Čech Complexes has been 
performed. From the comparison, 2-simplices of Vietoris-Rips complexes have been highlighted with blue color which 
are absent in the approximated simplicial complex. They have been formed for greater filtration values of the other two 
simplicial complexes. On the contrary, the approximated simplicial complex and Čech complexes are similar for the 
same filtration values. Thus, the approximated simplicial complex is containing the Vietoris-Rips complex which is 
similar to Čech Complex. 

Table 4 Visualization of Vietoris-Rips complex and approximated simplicial complex showing differences in building 
2-simplices for the corresponding filtration values. 

Filtration 
values 

Vietoris-Rips Complex Approximated Simplicial Complex 

F
o

r 
𝜀

=
0

.7
0

7
1

1
 

  

F
o

r 
𝜀

=
1

.0
3

0
7

8
 

  

F
o

r 
𝜀

=
1

.3
4

6
2

9
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F
o

r 
𝜀

=
1

.4
1

4
2

1
 

  

F
o

r 
𝜀

=
1

.5
 

 

 

 

Differences have been found in the visualization of simplicial complexes for some selected values of 𝜀 in Table 4. In the 
figure, approximated simplicial complexes have formed cycles before building a 2-simplex for corresponding filtration 
values which ensures a solution to the data loss problem of the Vietoris-Rips complex. 

Since the visualization in Table 4 is a 2-dimensional projection, 3-simplexes can’t be understood properly. In that case, 
Table 5 has been calculated to recognize the exact number of holes in the simplicial complexes of the figure. Table 5  
shows clear evidence of a greater number of loops (𝜷𝟏) in the approximated simplicial complex than in the Vietoris-
Rips complex. Since faces are generating faster in the Vietoris-Rips complex, a number of voids (𝜷𝟐) will appear earlier 
than the approximated simplicial complex. 

Table 5 Calculated Betti numbers of Vietoris-Rips and approximated simplicial complexes. 

Filtration 
values 

Betti numbers of Vietoris-Rips complex Betti numbers of approximated simplicial complex 

𝜷𝟎 𝜷𝟏 𝜷𝟐 𝜷𝟎 𝜷𝟏 𝜷𝟐 

For 
𝜀 =0.70711 

4 0 0 4 1 0 

For 
𝜀 =1.03078 

1 1 0 1 5 0 

For 
𝜀 =1.34629 

1 1 2 1 2 0 

For 
𝜀 =1.41421 

1 1 3 1 3 2 

For 𝜀 =1.5 1 1 5 1 2 3 

 

Some values may differ from the equivalent filtration values to the Čech complex shown in Table 6 because the filtration 
values of the proposed approach to generate approximated simplicial complex have been calculated using an 
approximation to the Čech complex. Another notable distinction is between the simplicial complexes that were formed  
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Table 6 Filtration values of simplicial complexes building for Čech complex, approximated simplicial complex, and 
Vietoris-Rips complex. 

Simplicial complex 𝜺-values for 
Čech complex 

𝜺-values for 
approximated 

simplicial 
complex 

𝜺-values for 
Vietoris-Rips 

complex 

 

 

 

0 

 

 

0 

 

 

0 

 

 

 

0.5 

 

 

0.5 

 

 

0.5 

 

 

 

0.5303 

 

 

0.5303 

 

 

- 

 

 

 

0.5489 

 

 

- 

 

 

- 

 

 

 

- 

 

 

0.59651 

 

 

- 

 

 

 

0.5590 

 

 

0.61708 

 

 

0.5303 
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at 0.5489 for the Čech complex but not for the approximated simplicial complex and those that were formed at 0.5965 
for the approximated simplicial complex but not for the Čech complex shown in Table 6. 

The suggested approach to find an approximated simplicial complex can be a useful tool to calculate much more quickly 
and without any data loss in light of all the findings that have been described so far. 

5. Conclusion 

Vietoris–Rips complex is an approximation to the Čech complex where some persistent data loss has been found. On the 
other hand, computing Čech complex is computationally expensive. In this study, a simplicial complex between the 
Vietoris-Rips complex and the Čech complex has been introduced in section 2.3. For this, an algorithm has been written 
to construct the Vietoris-Rips complex in a new way in section 2.2.1. Then another algorithm for constructing an 
approximated simplicial complex to Čech complex has been proposed in section 2.3.1. Figure 2 shows the construction 
of the approximated simplicial complex of the given sample points that have been classified into three classes according 

to 𝑙 < 𝑟, 𝑙 = 𝑟, and 𝑙 > 𝑟. Then the filtration values of the triangles have been defined by 𝜀 = 𝑟 for 𝑙 ≤ 𝑟 and 𝜀 = 𝑟 +
(𝑙−𝑟)

3
 

for 𝑙 > 𝑟 in section 2.3. For higher dimensional data similar approach has been followed and the result showed in section 
2.3. From Table 3, it can be found that the proposed approximated simplicial complex is containing the Vietoris-Rips 
complex. Table 4 and Table 6 show that the same amount of filtration values (𝜀) to the Čech complex that lay between 
the filtration values of the Vietoris-Rips complex and the Čech complex. Table 5 provides convincing evidence that the 
approximated simplicial complex has more loops (𝜷𝟏) than the Vietoris-Rips complex and number of voids (𝜷𝟐) has 
been appeared earlier than the approximated simplicial complex. As a result, the computationally efficient 
approximated simplicial complex algorithm, which approximates the Čech complex and solves the data loss problem, 
has been developed. 

The results of this study can be applied in real data especially in network data to get better result than Vietoris-Rips 
complex with less computational cost. Similar investigations can be performed to construct a more effective 
approximation to the Čech complex. Also, this study can be conducted over a greater number of points. Persistent 
homology of the approximated simplicial complex can be calculated to understand persistence in more detail compared 
with other relevant studies. 
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