
*Corresponding author: Christian Mancas

Copyright © 2023 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0.

On enforcing dyadic relationship constraints in MatBase

Christian Mancas *

Mathematics and Computer Science Department, Ovidius University, Constanta, Romania.

World Journal of Advanced Engineering Technology and Sciences, 2023, 09(02), 298–311

Publication history: Received on 06 June 2023; revised on 18 July 2023; accepted on 21 July 2023

Article DOI: https://doi.org/10.30574/wjaets.2023.9.2.0211

Abstract

Dyadic relationships are widely encountered in the sub-universes modeled by databases, from genealogical trees to
sports, from education to healthcare, etc. Their properties must be discovered and enforced by the software applications
managing such data, in order to guarantee their plausibility. The (Elementary) Mathematical Data Model provides 11
dyadic relationship constraint types. MatBase, an intelligent data and knowledge base management system prototype,
allows database designers to simply declare them by only clicking corresponding checkboxes and automatically
generates code for enforcing them. This paper describes the algorithms that MatBase uses for enforcing all these 11
dyadic relationship constraint types.

Keywords: Database constraints; Dyadic relations; Modelling as programming; The (Elementary) Mathematical Data
Model; MatBase

1. Introduction

Very many database (db) sub-universes include dyadic relationships (e.g., Lawvere and Rosebrugh2003; Mancas 2023).
For example, let us consider soccer championships ones, where, besides a set of TEAMS and one of CITIES, in order to
store the results a MATCHES set is needed as well. MATCHES is a dyadic relationship over TEAMS, i.e., a subset of the
Cartesian product TEAMS  TEAMS, with, e.g., its first canonical projection denoted Host : MATCHES TEAMS and its
second one denoted Visitor : MATCHES TEAMS.

Dyadic relationships have very interesting properties, among which the (Elementary) Mathematical Data Model
((E)MDM, Mancas 2002, 2018, 2023) considers the following 11 ones: connectivity, reflexivity, irreflexivity, symmetry,
asymmetry, transitivity, intransitivity, Euclideanity, inEuclideanity, equivalence, and acyclicity.

For example, MATCHES is connected (i.e., in any championship, any team should play against all other teams), irreflexive
(i.e., no team ever plays against itself), symmetric (i.e., in any championship, for any match <host, visitor> there should
also be a match <visitor, host>), transitive (i.e., in any championship, for any matches between teams <t1, t2> and <t2,
t3> there should also be a match <t1, t3>), and Euclidean (i.e., in any championship, for any matches between teams <t1,
t2> and <t1, t3> there should also be a match <t2, t3>).

On one hand, as with any other constraint (business rule), failing to enforce any of the above ones could lead to storing
unplausible data in the corresponding db (e.g., matches <Chelsea, Chelsea> or missing matches).

On the other hand, as, except for the irreflexivity, all other above constraints on MATCHES are of type tuple generating,
enforcing them is also saving time for end-users, as they only have to enter data for CITIES and TEAMS, while the system
is automatically generating corresponding MATCHES <Host, Visitor> data pairs, with end-users then only having to enter
calendar dates and scores for matches.

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://www.wjaets.com/
https://doi.org/10.30574/wjaets.2023.9.2.0211
https://crossmark.crossref.org/dialog/?doi=10.30574/wjaets.2023.9.2.0211&domain=pdf

World Journal of Advanced Engineering Technology and Sciences, 2023, 09(02), 298–311

299

Of course, the dyadic relationship constraints are not enough for guaranteeing data plausibility, not even for this simple
db example: as usual, all other existing constraints in the corresponding sub-universe should also be enforced. For
example, names of cities and teams should be unique (i.e., both Team : TEAMS  ASCII(32) and City : CITIES  ASCII(32)
must be one-to-one), no team may play more than one match a day (i.e., both Host  MatchDate : MATCHES TEAMS 
[13-Aug-2021, 22-May-2022] and Visitor  MatchDate : MATCHES TEAMS  [13-Aug-2021, 22-May-2022] must be
minimally one-to-one), etc.

Unfortunately, while, for example, uniqueness may be enforced by almost any commercial Database Management
System (DBMS), with unique indexes, no such DBMS may enforce dyadic relationship constraints. Consequently,
developers must enforce them into the software applications that manage corresponding dbs (through either extended
SQL triggers or event-driven methods of high-level programming languages embedding SQL).

Fortunately, our MatBase intelligent system provides, through its (E)MDM interface, both a very user-friendly experience
to db architects (e.g., for MATCHES above, you only need to click its corresponding Connected, Irreflexive, Symmetric,
Transitive, and Euclidean checkboxes) and its associated code-generating power, which is both constructing underlying
db tables, standard MS Windows forms for them, as well as event-driven code in their classes for enforcing the
corresponding constraints.

As such, MatBase is not only saving developing time, but also saves testing and debugging time, which promotes the 5th
programming generation – modelling as programming (Thalheim 2020; Mancas 2020a).

MatBase (Mancas 2018, 2019a, 2020b, 2023) is an intelligent prototype data and knowledge base management system,
based on both the (E)MDM, the Entity-Relationship (E-R) Data Model (E-RDM, Chen 1976; Thalheim 2000; Mancas
2015), the Relational Data Model (RDM, Codd 1970; Abiteboul, Hull, and Vianu 1995; Mancas 2015), and Datalog (Maier
and Warren 1988; Abiteboul, Hull, and Vianu 1995; Mancas 2023).

Currently, MatBase has two versions – one developed in MS Access, for student and small db use and a professional one,
developed in MS C# and SQL Server.

This paper presents the pseudocode algorithms used by both MatBase versions to automatically generate code for
enforcing dyadic relationship constraints.

2. Related work

This paper is a continuation of Mancas 2020b, which was mainly focused on assisting the process of detecting dyadic
relationship constraints. It refines its AEDRC Algorithm (which is a very high level one, mainly dealing with the
coherence and minimality of the sets of dyadic relationships constraints) for each type of dyadic relationship
constraints.

Other approaches related to the (E)MDM are based on business rules management (BRM) (e.g., von Halle 2001; Morgan
2002; Weiden et al. 2002; Ross 2003; von Halle and Goldberg 2006; Taylor 2019), their corresponding implemented
systems (BRMS), and process managers (BPM), like the IBM Operational Decision Manager (Kolban 2015), IBM Business
Process Manager (Dyer et al. 2019), Red Hat Decision Manager (Red Hat 2020), Agiloft Custom Workflow/BPM (Agiloft
2020), etc.

They are generally based on XML (but also on the Z notation, the Business Process Execution Language, the Business
Process Modeling Notation, the Decision Model and Notation, or the Semantics of Business Vocabulary and Business
Rules).

This is the only other field of endeavor trying to systematically deal with business rules, even if informally. However,
this is not done at the db design level, but at the software application one, and without providing automatic code
generation.

From this perspective, (E)MDM also belongs to the panoply of tools expressing business rules, and MatBase is also a
BRMS, but a formal, automatically code generating one.

World Journal of Advanced Engineering Technology and Sciences, 2023, 09(02), 298–311

300

3. Prerequisites

Let R = (fC, gC) be an arbitrary dyadic relationship. For enforcing dyadic relationship type constraints on R, both C
and R must have Graphic User Interface (GUI) forms associated to their corresponding tables and event-driven methods:

 Classes C and R must contain private AfterInsert(x) and AfterInsert(f, g) methods, respectively (see Figure 3);
 Class R must contain:

o Definition of two private numerical variables fOldValue and gOldValue (see Figure 1);
o A private method Current(f, g)shown in Figure 1, to be called each time the cursor of the R’s form enters a

new element (line, row, record) of its underlying data;
o A private method BeforeInsert(f, g)shown in Figure 2, to be called each time end-users ask for adding a new

element to R;
o A private BeforeUpdate(f, g) method shown in Figure 4, to be called each time a new or existing element of

its underlying data whose values for columns <f, g> were < fOldValue, gOldValue > and that were then
modified to <u, v> is about to be saved in the db;

o A private AfterUpdate(f, g) method shown in Figure 5, to be called each time an existing element of its
underlying data whose values for columns <f, g> were <fOldValue, gOldValue> were then modified to <u, v>
and successfully saved to the db;

o A private Delete(f, g) method shown in Figure 6, to be called each time end-users ask for the deletion of an
existing element of its underlying data;

o A private AfterDelSuccess(f, g) method shown in Figure 7, to be called each time an existing element of its
underlying data whose values for columns <f, g> were <fOldValue, gOldValue> were successfully deleted
from the db.

Figure 1 Method Current and variables
fOldValue and gOldValue of class R

Figure 2 Method BeforeInsert of class R

Figure 3 Methods AfterInsert of classes C and R

Figure 4 Method BeforeUpdate of class R Figure 5 Method AfterUpdate of class R

All these methods and variables are automatically generated by MatBase the first time it needs them.

World Journal of Advanced Engineering Technology and Sciences, 2023, 09(02), 298–311

301

Figure 6 Method Delete of class R

Figure 7 Method AfterDelSuccess of class R

4. Enforcing connectivity constraints

According to the connectivity definition, enforcing such constraints for R requires that:

1. Each time a new element x is added to C, pairs <x, y> or <y, x>must be automatically added to R, for any
other element y of C. Moreover, whenever R is also symmetric, both these pairs should be added.

2. Each time a pair <x, y> of R, yx, is modified in <u, v>, with either ux or vy, and there is no <y, x> in R,
then either <x, y> or <y, x> must be automatically added to R. Moreover, whenever R is also symmetric,
no such pair should ever be modified.

3. No pair <x, y> of R, yx, should be deleted, if there is no pair <y, x> in R. Moreover, whenever R is also
symmetric, no such pair should ever be deleted.

Consequently, MatBase adds the pseudocode algorithms from Figures 8a or 8b to the method AfterInsert of class C from
Figure 3 for case 1, the ones from Figures 9a or 9b to method AfterUpdate from Figure 5 for case 2, and the ones from
Figures 10a or 10b to method Delete from Figure 6 for case 3.

Figure 8a Code added in method AfterInsert of class C
from Figure 3 if R is not symmetric

Figure 8b Code added in method AfterInsert of
class C from Figure 3 if R is symmetric too

Figure 9a Code added in method AfterUpdate from Figure 5 if R is not symmetric

Figure 9b Code added in method AfterUpdate from Figure 5 if R is symmetric too

Figure 10a Code added in method Delete

from Figure 6 if R is not symmetric

Figure 10b Code added in method Delete from Figure
6 if R is symmetric too

World Journal of Advanced Engineering Technology and Sciences, 2023, 09(02), 298–311

302

5. Enforcing reflexivity constraints
According to the reflexivity definition, enforcing such constraints for R requires that:

1. Each time a new element x is added to C, a pair <x, x> must automatically be added to R.

2. No pair <x, x> of R may be modified.

3. No pair <x, x> of R should ever be deleted, unless x is deleted from C.

Consequently, MatBase adds the pseudocode algorithm from Figure 11 to the method AfterInsert of class C from Figure
3 for case 1, the one from Figure 12 to method BeforeUpdate from Figure 4 for case 2, and the one from Figure 13 to
method Delete from Figure 6 for case 3.

Figure 11 Code added in method
AfterInsert of class C from Figure 3 Figure 12 Code added in method

BeforeUpdate from Figure 4

Figure 13 Code added in method
Delete from Figure 6

6. Enforcing irreflexivity constraints
According to the irreflexivity definition, enforcing such constraints for R requires that each time a pair <x, x> (be it new
or obtained by modifying an existing <u, v>) is about to be saved in the db R’s image, saving must be canceled.

Consequently, MatBase adds the pseudocode algorithm from Figure 14 to the method BeforeUpdate from Figure 4.

Figure 14 Code added in method BeforeUpdate from Figure 4

7. Enforcing symmetry constraints

According to the symmetry definition, enforcing such constraints for R not connected (the case R connected is dealt with
in section 4) requires that:

1. Each time a pair <x, y>, xy, is added to R, a pair <y, x>must automatically be added to R as well.
2. Each time a pair <x, x> of R is modified in <u, v>, with uv and either ux or vx, then <v, u> must

automatically be added to R; each time a pair <x, y> of R, yx, is modified in <u, v>, with uv and
either ux or vy, then <y, x> must automatically be replaced in R by <v, u>, whenever R is not
connected; and each time a pair <x, y> of R, yx, is modified in <u, u> and either ux, or uy, then <y,
x> must automatically be deleted from R, whenever R is not connected.

3. Each time a pair <x, y> of R, yx, is deleted, then <y, x> must automatically be deleted from R as well,
whenever R is not connected.

Consequently, whenever R is not connected, MatBase adds the pseudocode algorithm from Figure 15 to the method
AfterInsert of class R from Figure 3 for case 1, the one from Figure 16 to method AfterUpdate from Figure 5 for case 2,
and the one from Figure 17 to method AfterDelSuccess from Figure 7 for case 3.

World Journal of Advanced Engineering Technology and Sciences, 2023, 09(02), 298–311

303

Figure 15 Code added in method AfterInsert of class R
from Figure 3

Figure 17 Code added in method AfterDelSuccess of
class R from Figure 7

Figure 16 Code added in method AfterUpdate from Figure 5

8. Enforcing asymmetry constraints

According to the asymmetry definition, enforcing such constraints for R requires that:

1. Each time a pair <x, y>, xy, is about to be added to R, this must be rejected whenever a pair <y, x> exists in R.

2. Each time a pair <x, y> of R is modified in <u, v>, with uv and either ux or vy, this must be rejected whenever
a pair <v, u> exists in R.

Consequently, MatBase adds the pseudocode algorithm from Figure 18 to the method BeforeInsert of class R from Figure
2 for case 1 and the one from Figure 19 to the method BeforeUpdate from Figure 4 for case 2.

Figure 18 Code added in method BeforeInsert from
Figure 2

Figure 19 Code added in method BeforeUpdate from
Figure 4

9. Enforcing transitivity constraints

According to the transitivity definition, enforcing such constraints for R requires that:

World Journal of Advanced Engineering Technology and Sciences, 2023, 09(02), 298–311

304

1. Each time a pair <x, y>, xy, is added to R and R contains a pair <y, z>, zy, a pair <x, z>must automatically be

added to R as well, if it does not exist already.

2. Each time a pair <x, z> of R is modified in <u, v>, with either ux or vz, and there is at least a y in C such that both
<x, y> and <y, z> belong to R, then modification of <x, z> must be rejected; each time a pair <x, x> of R is modified
in <u, v>, with uv and either ux or vx, and there is at least a y in C such that either <u, y> or <y, v> are in R,
then either <y, v> or <u, y> must automatically be added to R, if they do not exist already .

3. Each time a pair <x, z> of R is about to be deleted and there is at least a y in C such that both <x, y> and <y, z>
belong to R, then deletion of <x, z> must be rejected.

Consequently, MatBase adds the pseudocode algorithm from Figure 20 to the method AfterInsert of class R from Figure
3 for case 1, the one from Figure 21 to method BeforeUpdate from Figure 4 for case 2, and the one from Figure 22 to
method Delete from Figure 6 for case 3, but only when R is not connected and symmetric as well (case in which,
according to the algorithms for the coherence and minimality of the constraint sets (Mancas 2018, 2020b, 2023),
transitivity is redundant, being implied by connectivity and symmetry).

Figure 20 Code added in method AfterInsert from
Figure 3

Figure 22 Code added in method Delete from Figure 6 Figure 21 Code added in method BeforeUpdate from
Figure 4

10. Enforcing intransitivity constraints

According to the intransitivity definition, enforcing such constraints for R requires that:

1. Each time a pair <x, z> is about to be added to R and there are at least two pairs <x, y> and <y, z> stored by R,
then adding <x, z> to R must be rejected.

2. Each time a pair <u, v> of R is modified in <x, z>, with either ux or vz, and there is at least a y in C such that
both <x, y> and <y, z> belong to R, with yx and yz, then modification of <u, v> must be rejected.

Consequently, MatBase adds the pseudocode algorithm from Figure 23 to the method BeforeInsert of class R from Figure
2 for case 1 and the one from Figure 24 to the method BeforeUpdate from Figure 4 for case 2.

Figure 23 Code added in method BeforeInsert from
Figure 2

Figure 24 Code added in method BeforeUpdate from
Figure 4

World Journal of Advanced Engineering Technology and Sciences, 2023, 09(02), 298–311

305

11. Enforcing Euclideanity constraints

According to the Euclideanity definition, enforcing such constraints for R requires that:

1. Each time a pair <x, y>is added to R and R contains a pair <x, z>, a pair <y, z>must automatically be added to R
as well, if it does not exist already.

2. Each time a pair <y, z> of R is modified in <u, v>, with either uy or vz, and there is at least a x in C such that
both <x, y> and <x, z> belong to R, then modification of <y, z> must be rejected.

3. Each time a pair <y, z> of R is about to be deleted and there is at least a x in C such that both <x, y> and <x, z>
belong to R, then deletion of <y, z> must be rejected.

Consequently, MatBase adds the pseudocode algorithm from Figure 25 to the method AfterInsert of class R from Figure
3 for case 1, the one from Figure 26 to method BeforeUpdate from Figure 4 for case 2, and the one from Figure 27 to
method Delete from Figure 6 for case 3, but only when R is not connected and symmetric as well (case in which,
according to the algorithms for the coherence and minimality of the constraint sets (Mancas 2018, 2020b, 2023),
Eucideanity is redundant, being implied by connectivity and symmetry).

12. Enforcing inEuclideanity constraints

According to the inEuclideanity definition, enforcing such constraints for R requires that:

1. Each time a pair <y, z> is about to be added to R and there are at least two pairs <x, y> and <x, z>
stored by R, then adding <y, z> to R must be rejected.

2. Each time a pair <u, v> of R is modified in <y, z>, with either uy or vz, and there is at least a x in C
such that both <x, u> and <x, v> belong to R, with yx and yz, then modification of <u, v> must be
rejected.

Consequently, MatBase adds the pseudocode algorithm from Figure 28 to the method BeforeInsert of class R from Figure
2 for case 1 and the one from Figure 29 to the method BeforeUpdate from Figure 4 for case 2.

Figure 25 Code added in method
AfterInsert from Figure 3

Figure 26 Code added in method
BeforeUpdate from Figure 4

Figure 27 Code added in method
Delete from Figure

Figure 28 Code added in method BeforeInsert from
Figure 2

Figure 29 Code added in method BeforeUpdate from
Figure 4

World Journal of Advanced Engineering Technology and Sciences, 2023, 09(02), 298–311

306

13. Enforcing equivalence constraints

According to a definition of relation equivalence, enforcing it for R requires that R be both reflexive and Euclidean.
Consequently, equivalence is be enforced by merging the algorithms from sections 5 and 11.

14. Enforcing acyclicity constraints

According to the acyclicity definition, enforcing such constraints for R requires that:

1. Each time a pair <x, y> is about to be added to R and there is a path of pairs <y, x1>, …, <xn, x>, n>0, exists in R,
then adding <x, y> to R must be rejected.

2. Each time a pair <u, v> of R is modified in <x, y>, with either ux or vy, this must be rejected whenever a path
of pairs <y, x1>, …, <xn, x>, n>0, exists in R.

Consequently, MatBase adds the pseudocode algorithm from Figure 30 to the methods BeforeInsert of class R from
Figure 2 for case 1 and BeforeUpdate from Figure 4 for case 2. For detecting the paths that would close cycles in the
graphs of any dyadic relationship R, MatBase uses the corresponding Dijkstra algorithm (Dijkstra 1959; Mancas 2023).
The Boolean function DIJKSTRA that implements it takes as parameters the names of the table storing the dyadic
relationship R and of its columns (f, g, and x, for its primary key), as well as the current values for its canonical Cartesian
projections f and g, and returns True if such a path exists or False otherwise.

Figure 30 Code added in methods BeforeInsert from Figure 2 and BeforeUpdate from Figure 4

15. The MatBase algorithm for enforcing above constraints

Figures 31 to 35 show the MatBase algorithm for enforcing dyadic relationship constraints.

16. Concluding remarks and implications for future research

It is straightforward to check that applying the Algorithm A9DR from Figure 30 to C = TEAMS and R = MATCHES from
the Introduction section, MatBase automatically generates for their corresponding classes the pseudocode shown in
Figures 36 to 40.

Let us suppose that the TEAMS and MATCHES tables are empty and that end-users start to enter data for the 2021-2022
UK soccer Premier League in this db. Suppose that they start by adding Manchester City to TEAMS (which automatically
gets 1 in its x primary key column); when saving it, method AfterInsert from Figure 35 is automatically invoked, but does
nothing, as there is no other team in TEAMS. When end-users save then, say, Liverpool (which gets x = 2), method
AfterInsert from Figure 35 automatically inserts <2, 1> and line <1, 2> in MATCHES (which corresponds to the matches
<Liverpool, Manchester City> and <Manchester City, Liverpool>, respectively). When end-users save then, say, Chelsea
(which gets x = 3), method AfterInsert from Figure 35 automatically inserts <3, 1>, <1, 3>, <2, 3> and <3, 2> in MATCHES
(which corresponds to the matches <Chelsea, Manchester City>, <Manchester City, Chelsea>, <Liverpool, Manchester
City>, and <Manchester City, Liverpool>, respectively). Obviously, when all the 20 teams are saved in TEAMS, all
corresponding 38 matches between them are automatically saved in MATCHES.

As MATCHES is both connected and symmetric, method Delete from Figure 37 prevents deletions from this table. Method
BeforeUpdate from Figure 39 prevents inserting in MATCHES lines of type <Host, Host>, as well as modifying any <Host,
Visitor> one.

To conclude with, the above automatically generated code by MatBase is both guaranteeing data plausibility in this db
and automatically generating the instance of the MATCHES table while end-users are entering data into the TEAMS one.

World Journal of Advanced Engineering Technology and Sciences, 2023, 09(02), 298–311

307

Figure 31 MatBase algorithm A9DR for enforcing dyadic relationship constraints

World Journal of Advanced Engineering Technology and Sciences, 2023, 09(02), 298–311

308

Figure 31 (Continued)

Figure 32 Method enforceReflexivity of Algorithm A9DR

Figure 33 Method enforceSymmetry of Algorithm A9DR

Figure 34 Method enforceTransitivity of Algorithm A9DR

Figure 35 Method enforceEuclideanity of Algorithm A9DR

Generally, the Algorithm A9DR from Figure 30 automatically generates code that is guaranteeing data plausibility for
any dyadic relationship for which all its properties are declared to MatBase as corresponding constraints, while also
automatically generating its core data values, thus saving most of the developing, testing, and data entering effort.

Moreover, please note that the (E)MDM also includes constraints on self-maps and binary homogeneous function
products (Mancas 2018, 2019b, 2023), which are particular cases of dyadic relationships.

For example, the self-map Mother : PERSONS  PERSONS is irreflexive (i.e., nobody may be his/her mother), asymmetric
(i.e., no mother may be the child of his/her child), intransitive (i.e., anti-idempotent, because if y is the mother of x, then
y may not be his/her own mother), and acyclic (i.e., nobody may be his/her either ancestor or descendant, on no
generation level).

World Journal of Advanced Engineering Technology and Sciences, 2023, 09(02), 298–311

309

Figure 36 Method AfterInsert of class TEAMS

Figure 38 Method Delete of class MATCHES

Figure 37 Method Current and variables HostOldValue
and VisitorOldValue of class MATCHES

Figure 39 Method AfterInsert of class MATCHES

Figure 40 Method BeforeUpdate of class MATCHES

For example, the binary homogeneous function product Mother  Father : PERSONS  PERSONS  PERSONS is irreflexive
(i.e., nobody may be both your mother and father), asymmetric (i.e., if y is the mother of x and z his/her father, then
there may not be any person p having y as mother and z as father), inEuclidean (i.e., if x is the mother of both u and v, y
is the father of u and z the one of v, then there may not be a person p having u as mother and v as father, as u and v are
siblings), and acyclic (i.e., no man may give birth and no woman may be a father of a child).

Consequently, future research will be devoted to describing what code is MatBase automatically generated for enforcing
the constraints associated with both self-maps and homogeneous binary function products.

17. Conclusion

Not enforcing any existing business rule from the sub-universe managed by a db software application allows saving
unplausible data in its db. This paper presents the algorithms needed to enforce the 11 possible dyadic relationship
constraint types from the (E)MDM, which are implemented in MatBase, an intelligent DBMS prototype. Moreover, as
MatBase automatically generates the corresponding code, it is a tool of the 5th generation programming languages –
modelling as programming: db and software architects only need to assert the properties of the dyadic relationships

World Journal of Advanced Engineering Technology and Sciences, 2023, 09(02), 298–311

310

(and not only, but of all other (E)MDM constraint types), while MatBase saves the corresponding developing, testing,
and debugging time.

Compliance with ethical standard

Acknowledgement

This research was not sponsored by anybody and nobody other than its author contributed to it.

Disclosure of conflict of interest

There is no conflict of interest.

References

[1] Abiteboul, S., Hull, R. and Vianu, V. (1995). Foundations of Databases. Addison-Wesley, Reading, MA.

[2] Agiloft (2020). Agiloft Reference Manual. https://www.agiloft.com/documentation/agiloft-reference-
manual.pdf.

[3] Chen, P.P. (1976). The entity-relationship model. Toward a unified view of data. ACM TODS 1(1):9-36.

[4] Codd, E. F. (1970). A relational model for large shared data banks. CACM 13(6):377-387.

[5] Dijkstra, E. W. (1959). A Note on Two Problems in Connexion with Graphs. Numerische Mathematik 1, 269 – 271.

[6] Dyer, L., et al. (2012) Scaling BPM Adoption from Project to Program with IBM Business Process Manager, 2nd
ed. ibm.com/redbooks, http://www.redbooks.ibm.com/redbooks/pdfs/sg247973.pdf.

[7] Halle von, B. (2001). Business Rules Applied: Building Better Systems Using the Business Rules Approach. John
Wiley & sons, New-York, NY.

[8] Halle von, B., Goldberg, L. (2006). The Business Rule Revolution. Running Businesses the Right Way. Happy
About, Cupertino, CA.

[9] Kolban, N. (2015). Kolban’s Book on IBM Decision Server Insights. ibm.com/redbooks,
http://neilkolban.com/ibm/wp-content/uploads/2015/06/Kolbans-ODM-DSI-Book-2015-06.pdf.

[10] Lawvere, F. W. and Rosebrugh, R. (2003). Sets for Mathematics, Cambridge University Press, Cambridge, UK.

[11] Maier, D. and Warren, D. S. (1988)Computing with Logic: Logic Programming with Prolog. Benjamin/Cummings,
Menlo Park, CA.

[12] Mancas, C. (2002). On Knowledge Representation Using an Elementary Mathematical Data Model. In Proc. 1st
IASTED Int. Conf. on Inf. and Knowl. Sharing (IKS 2002), pp. 206–211. ACTA Press, Calgary, Canada.

[13] Mancas, C. (2015). Conceptual Data Modeling and Database Design: A Completely Algorithmic Approach. Volume
I: The Shortest Advisable Path. Apple Academic Press / CRC Press (Taylor & Francis Group), Palm Bay, FL.

[14] Mancas, C. (2018). MatBase Constraint Sets Coherence and Minimality Enforcement Algorithms. In: Benczur, A.,
Thalheim, B., Horvath, T. (eds.), Proc. 22nd ADBIS Conf. on Advances in DB and Inf. Syst., LNCS 11019, pp. 263–
277. Springer, Cham, Switzerland.

[15] Mancas, C. (2019a). MatBase – a Tool for Transparent Programming while Modeling Data at Conceptual Levels.
In: Proc. 5th Int. Conf. on Comp. Sci. & Inf. Techn. (CSITEC 2019), pp. 15–27. AIRCC Pub. Corp. Chennai,
India.https://aircconline.com/csit/papers/vol9/csit91102.pdf.

[16] Mancas, C. (2019b). Matbase Autofunction Non-relational Constraints Enforcement Algorithms. IJCSIT 11(5):63–
76,https://aircconline.com/ijcsit/V11N5/11519ijcsit05.pdf.

[17] Mancas, C. (2020a). On Modelware as the 5th Generation of Programming Languages. Acta Scientific Computer
Sciences, 2(9):24–26, https://actascientific.com/ASCS/pdf/ASCS-02-0061.pdf.

[18] Mancas, C. (2020b). On Detecting and Enforcing the Non-Relational Constraints Associated to Dyadic Relations
in MatBase. J. of Electronic & Inf. Syst. 2(2):1-
8,https://ojs.bilpublishing.com/index.php/jeis/article/view/2090/2039.

https://www.agiloft.com/documentation/agiloft-reference-manual.pdf
https://www.agiloft.com/documentation/agiloft-reference-manual.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247973.pdf
http://neilkolban.com/ibm/wp-content/uploads/2015/06/Kolbans-ODM-DSI-Book-2015-06.pdf
https://aircconline.com/csit/papers/vol9/csit91102.pdf
https://aircconline.com/ijcsit/V11N5/11519ijcsit05.pdf
https://actascientific.com/ASCS/pdf/ASCS-02-0061.pdf
https://ojs.bilpublishing.com/index.php/jeis/article/view/2090/2039

World Journal of Advanced Engineering Technology and Sciences, 2023, 09(02), 298–311

311

[19] Mancas, C. (2023). Conceptual Data Modeling and Database Design: A Completely Algorithmic Approach. Volume
II: Refinements for an Expert Path. Apple Academic Press / CRC Press (Taylor & Francis Group), Palm Bay, FL (in
press).

[20] Morgan, T. (2002). Business Rules and Information Systems: Aligning IT with Business Goals. Addison-Wesley
Professional, Boston, MA.

[21] Red Hat Customer Content Services (2020). Getting Started with Red Hat Business Optimizer.
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.1/pdf/getting_started_
with_red_hat_business_optimizer/Red_Hat_Decision_Manager-7.1-
Getting_started_with_Red_Hat_Business_Optimizer-en-US.pdf.

[22] Ross, R. G. (2003). Principles of the Business Rule Approach. Addison-Wesley Professional, Boston, MA.

[23] Taylor, J. (2019). Decision Management Systems: A Practical Guide to Using Business Rules and Predictive
Analytics. IBM Press, Indianapolis, IN.

[24] Thalheim, B. (2000). Entity-Relationship Modeling – Foundations of Database Technology. Springer-Verlag,
Berlin, Germany.

[25] Thalheim, B. (2020). The Future: Modelling as Programming. Model-based development, modelling as
programming case studies. https://www.youtube.com/watch?v=tww7LuVzYco&feature=youtu.be.

[26] Weiden, M., Hermans, L., Schreiber, G., van der Zee, S. (2002). Classification and Representation of Business
Rules. In: Proc. 2002 European Bus. Rules Conf.
https://www.researchgate.net/publication/251521215_Classification_and_Representation_of_Business_Rules.

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.1/pdf/getting_started_
https://www.youtube.com/watch?v=tww7LuVzYco&feature=youtu.be
https://www.researchgate.net/publication/251521215_Classification_and_Representation_of_Business_Rules

