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Abstract 

Analog-to-digital converters are essential components in modern systems which gather data from the real world to be 
used, after signal processing, in many ubiquitous applications. This work addresses the effect of the presence of additive 
noise in the test setup when characterizing these electronic devices using the Histogram Test method. The precision 
with which the converter transfer function is estimated is directly related to the amount of noise present, the number 
of data samples acquired and the sinusoidal stimulus signal amplitude. Here an analytical expression that quantifies this 
precision as a function of the test parameters is given to be used by the engineer when designing the test. 
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1. Introduction

In the information age that we live in, the paramount commodity is data. In all kinds of devices, we find around us, from 
cars and mobile phones to houses, offices and factories, the gathering, storing, and processing of a myriad of signals is a 
happening without us being aware. For all those systems, which tend to be highly complex, to operate as expected 
without user intervention, they need to be very well designed. The signal measurements that underlie all this are 
nowadays carried out by a canonical system made up of sensors that “measure” everything in our environment, analog-
to-digital converters (ADCs) that transform the signals created into digital words which can then be easily transmitted 
and stored without practically any loss of information and through unimaginable distances. 

Those ADCs [1]-[2] are part of what we call an acquisition system with a certain signal conditioning circuitry, voltage 
range, sampling frequency and number of bits [3]-[4]. Naturally the behavior of those systems, in particular the accuracy 
of signal representation, is closely related to how they are implemented. Being electronic circuits, they are subject to all 
kinds of non-ideal phenomena like lack of linearity, spurious interference, additive noise, phase noise in sampling 
frequency oscillator, jitter in the sampling instants, etc. The engineer way to deal with all these phenomena is, for one, 
to use the Fourier theory and decompose the signals involved into a sum of sinewaves. The behavior of the system under 
those sinewaves can then be studied more easily and the effect of those non-ideal phenomena accounted for like the 
creation of spurious frequency components due to the nonlinear behavior of the acquisition system [5], uncertainty on 
the estimation of sinusoidal parameters due to the presence of additive noise [6]-[7], jitter in the sampling instant [8]-[9] 
or frequency error on the signals [10]-[11]. Note that the use of sinusoidal signals is generalized in engineering going 
well beyond acquisition system characterization. They are used, for example, in geophysical exploration [12], liquid 
fluid velocity measurement [13]-[15], sonar [16] and distance measurement [17], just to name a few. 

This work addresses one of those problems, namely the non-linearity of the ADC behavior which can be corrected if 
properly characterized. The most common method to do so is the Histogram Test Method, also known as the Code 
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Density Method [18]-[22], in particular for the determination of the transition voltages [23]-[24]. This method consists 
in applying a sinusoidal stimulus signal to the ADC and acquiring a very large number of samples. If the ADC had an ideal 
behavior, the number of samples with each of the possible ADC output codes would be exactly the one predicted 
theoretically, for that shape of stimulus. Any deviation in the number of counts of the histogram or, more commonly, 
the cumulative histogram, allows for an easy estimation of the actual value of the transition voltages. Those values are 
naturally only an estimative and are affected by the random effects present like noise and jitter. The transition voltage 
estimators will thus have a certain variance and bias that one wants to be as small as possible, hence the use of a large 
number of samples. The use of stimulus signals with different temporal evolutions like triangular ones [25] of even 
noise [26]-[28] has been proposed and studied in the past. It just leads to a different expected output code distribution. 

2. Histogram Test Method 

The transfer function of an ADC relates the input voltage with the digital output word. Different ADCs have different 
number of bits (𝑛𝑏) and output word size. In the example shown in Figure 1 there are eight different possible output 
codes which are represented using three bits (numbered from 0 to 2𝑛𝑏 − 1). We thus have the transfer function of a 
3-bit ADC. 

 

Figure 1 Transfer function of an ADC with nb-bits. In this example nb is 3 

The value of the input voltage at which the output transitions from output code 𝑘 − 1 to output code 𝑘 is called the 
transition voltage 𝑇𝑘 . The difference between two consecutive transition voltages is the code bin width 

𝑊𝑘 = 𝑇𝑘+1 − 𝑇𝑘  , 𝑘 = 1 … 2𝑛𝑏 − 2………………(1) 

In the example given in Figure 1 we have a bipolar ADC, that is, one where the input voltage can be positive or negative. 
The limits of the input range, called “Full-scale” are −𝐹𝑆 and 𝐹𝑆. There are other transfer function definitions where the 
transition voltages are not symmetric or even where they are all positive (unipolar ADC) [29]-[30]. 

To carry out the test a sinewave that covers the entire ADC range is applied (𝑣𝑖𝑛). It has a properly chosen amplitude 
(𝐴), offset (𝐶), frequency (𝑓) and initial phase (𝜑): 

𝑣𝑖𝑛(𝑡) = 𝐶 − 𝐴 ⋅ cos(2𝜋𝑓 ⋅ 𝑡 + 𝜑). ………………(2) 

This signal is applied to the ADC and sampled at a constant rate, the sampling frequency 𝑓𝑠 leading to a set of 𝑀 sampling 
instants 𝑡𝑖  at  

𝑡𝑖 =
𝑖

𝑓𝑠
 , 𝑖 = 0, 1, … , 𝑀 − 1. ………………(3) 

The samples are acquired, and a histogram of the 2𝑛𝑏  possible output codes is computed like the one illustrated in Figure 
2. The vertical bar height, ℎ𝑘 , corresponds to the number of samples that have a specific code 𝑘 
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Figure 2 Example of an output sample histogram. In this example there are 16 bins corresponding to a 4-bit ADC 

The lower and higher output codes happen more often because the sinusoidal signal voltage does not change linearly 
with time. It is more often “encountered” at the maximum or minimum. This example is for an 4-bit ADC which has 16 
different possible output codes.  

From this histogram the cumulative histogram, 𝑐𝑘 , is computed by counting the number of samples that have an output 
code 𝑘 or lower. The example shown in Figure 3, corresponds to the same case as in Figure 2. We see that the value of 
the last bin of the cumulative histogram always has a value equal to the number of samples acquired, 𝑀. 

 

Figure 3 Example of an output sample cumulative histogram. In this example there are 16 bins corresponding to a 
4-bit ADC 

If the ADC behaves ideally, the number of codes in each bin 𝑘 will have a known value. If the ADC does not have an ideal 
transfer function, the number of output codes in each bin will vary. If there is noise in the input voltage, on the sampling 
clock signal or on the ADC itself, the number of codes in each bin will be random. 

The estimated transition voltages are given by 

�̂�𝑘 = 𝐶 − 𝐴 ⋅ cos (
𝑐𝑘−1

𝑀
) , 𝑘 = 1, 2, … , 2𝑛𝑏 − 1. ………………(4) 

Note the “hat” symbol over the transition voltage variable indicating that it is an estimated value. Ideally this would be 
equal to the actual ADC transition voltages but non-ideal effects like additive noise in the ADC and the test setup, phase 
noise in the signal generator, jitter in the sampling instant and frequency errors in the stimulus signal and sampling 
clock lead to values that are random. One would want those values to be unbiased, that is, their average over many test 
repetitions equals the actual ADC transition voltages and that their standard deviation is as low as possible. 
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3. Estimation Uncertainty 

Here we consider only the presence of voltage noise which can be present in the stimulus signal itself or generated 
internally in the ADC. We represent both cases by an additive component present at the ADC input – additive noise and 
represent it by 𝑛(𝑡). Furthermore, here we consider this noise to be essentially of thermal origin and thus normally 
distributed with a null means and a standard deviation 𝜎𝑟 . The input signal is sampled by the ADC, as described in (3), 
and thus we have a set of 𝑀 sampled voltages which include the stimulus signal and input equivalent random noise: 

𝑣𝑖 = 𝐶 − 𝐴 ⋅ cos(2𝜋𝑓 ⋅ 𝑡𝑖 + 𝜑) + 𝑟𝑖  , 𝑖 = 0, 1, … , 𝑀 − 1. ………………(5) 

To ease the presentation, we are going to use a normalized sample voltage given by 

𝑢𝑖 =
𝑣𝑖−𝐶

𝐴
. ………………(6) 

The normalized sample voltages are thus given by 

𝑢𝑖 = 𝑛𝑖 − cos(2𝜋𝑓 ⋅ 𝑡𝑖 + 𝜑) , 𝑖 = 0, 1, … , 𝑀 − 1, ………………(7) 

Where the normalized additive noise is given by 

𝑛𝑖 =
𝑟𝑖

𝐴
, ………………(8) 

And has a standard deviation given by 

𝜎𝑛 =
𝜎𝑟

𝐴
. ………………(9) 

The ADC transition voltages will also be normalized by dividing them by the stimulus signal amplitude 𝐴. We thus have 

𝑈𝑘 =
𝑇𝑘

𝐴
. … … … … … … (10) 

We are also going to introduce the variable 

𝛾𝑖 = 2𝜋𝑓 ⋅ 𝑡𝑖 + 𝜑, ………………(11) 

as the “phase” of each sample which is the argument of the cosine function in (7). 

The probability that the sampled voltage is equal to or lower than the transition voltage 𝑈𝑘  depends on the sample 
phase, 𝛾𝑖 , and the sampled voltage probability density function 𝑓(𝑢) and is given by 

𝑝𝑘(𝛾𝑖) = ∫ 𝑓𝑢𝑖
(𝑢|𝛾𝑖)

𝑈𝑘+1

−∞
⋅ 𝑑𝑢. ………………(12) 

Since we are considering the presence of null mean normally distributed random noise with standard deviation 𝜎𝑛 the 
probability density function of the sampled voltage is 

𝑓𝑢𝑖
(𝑢|𝛾𝑖) =

1

√2𝜋𝜎𝑛
𝑒

−[𝑢+cos(𝛾𝑖)]
2

2𝜎𝑛
2

. ………………(13) 

The probability 𝑝𝑘  can also be written in terms of the probability distribution function, 

𝐹𝑢𝑖
(𝑈|𝛾𝑖) = ∫ 𝑓𝑢𝑖

(𝑢|𝛾𝑖) ⋅ 𝑑𝑢
𝑈

−∞
, ………………(14) 

which, in the case of the normally distributed noise is equal to 

𝐹𝑢𝑖
(𝑈|𝛾𝑖) =

1

2
+

1

2
erf (

𝑈+cos(𝛾𝑖)

√2𝜎𝑛
). ………………(15) 
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Typically, in order to increase the precision of the transition voltage estimates, many sets of 𝑀 samples are acquired. 
Furthermore, the start of the acquisition of each set is not triggered by the stimulus signal. Consequently, we can 
consider the initial phase 𝜑 to be a random variable uniformly distributed in the interval from 0 to 2𝜋. The distribution 
of the sampled voltages thus becomes 

𝐹𝑢𝑖
(𝑈) =

1

2𝜋
∫ [

1

2
+

1

2
erf (

𝑈+cos(𝛾)

√2𝜎𝑛
)]

𝜋

−𝜋
𝑑𝛾. ………………(16) 

Introducing now the binomial variable 𝑤𝑘  which equals 1 if the ADC digital output code corresponding to a certain input 
voltage belongs to class 𝑘 of the cumulative histogram and 0 otherwise. The probability density function of this variable 
is 

𝑓𝑤𝑘
(𝑤) = {

𝑝𝑘 , 𝑤 = 1
1 − 𝑝𝑘 , 𝑤 = 0

, ………………(17) 

Where 𝑝𝑘  is the probability discussed earlier in (12), that is, the probability that a sample belongs to class 𝑘 of the 
cumulative histogram. We thus have 

𝑝𝑘 = 𝑃{𝑢 ≤  𝑈𝑘+1} = 𝐹𝑢𝑖
(𝑈𝑘+1). ………………(18) 

The number of counts in class 𝑘 of the cumulative histogram is 

𝑐𝑘 = ∑ 𝑤𝑖
𝑀−1
𝑖=0 . ………………(19) 

Note that the variables 𝑤𝑖  are statistically uncorrelated and according to the central limit theorem the sum of a large 
number o random variables is normally distributed regardless of the individual distributions. We thus have that the 
number of counts of the cumulative histogram, 𝑐𝑘 , is normally distributed: 

𝐹𝑐𝑘
=

1

2
+

1

2
erf (

𝑐−𝜇𝑐𝑘

√2𝜎𝑐𝑘

). ………………(20) 

The variance of the number of counts of the cumulative histogram can be obtained from the probability 𝑝𝑘  using 

𝜎𝑐𝑘
2 = 𝜇𝜎𝑐𝑘

2 + 𝜎𝜇𝑐𝑘

2 , ………………(21) 

as given in [24]. This variance is split into two terms so that we can better understand its dependence on the transition 
voltage and noise standard deviation. According to [24] we have 

𝜇𝜎𝑐𝑘
2 =

𝑀

2𝜋
∫ 𝑝𝑘(𝛾)[1 − 𝑝𝑘(𝛾)] ⋅ 𝑑𝛾

𝜋

−𝜋
, ………………(22) 

and 

𝜎𝜇𝑐𝑘

2 =
𝑀

2𝜋
∫ [∑ 𝑝𝑘 (

2𝜋

𝑀
𝑖 + 𝜑)𝑀−1

𝑖=0 ]
2

𝑑𝜑

𝜋

𝑀

−
𝜋

𝑀

− [
𝑀

2𝜋
∫ 𝑝𝑘(𝛾)𝑑𝛾

𝜋

−𝜋
]

2

………………. (23) 

4. Number of Counts of the Cumulative Histogram as a Function of Transition Voltage and Noise 
Standard Deviation 

We are now going to plot some charts that illustrate the dependence of the variance of the number of counts of the 
cumulative histogram, 𝜎𝑐𝑘

2 , on the transition voltage and on the additive noise standard deviation. This will eventually 

allow us to propose an approximate expression for that variance and ultimately for the variance of the estimated 
transition voltages. 

The two terms into which we have split the variance of the number of counts will now be called “the mean of the 
variance”, 𝜇𝜎𝑐𝑘

2 , and “the variance of the mean”, 𝜎𝜇𝑐𝑘

2 . 
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In Figure 4 one can see how the variance of the mean of the number of counts of the cumulative histogram changes with 
the additive noise standard deviation, 𝜎𝑛, for the different ADC transition voltages, 𝑈𝑘+1.For low amounts of noise the 
variance of the mean has a strong dependence on the transition voltage. In fact, the number arcs observed for 𝜎𝑛 = 0 is 
the same as the number of samples, 𝑀. In the present case there are five arcs because 𝑀 = 5. As the noise standard 
deviation increases that dependence is lower and in the limit of large noise standard deviation that dependence in 
negligible and the variance of the mean goes to 0. 

 

Figure 4 Variance of the mean as a function of additive noise (divided by the signal amplitude) standard deviations 
and transition voltage 

In Figure 5 we plot the other term, the variance of the mean. In this case there is no dependence on the number of 
samples in the limit of null noise standard deviation. In fact, this term is null in that case. As the noise standard deviation 
increases so does this term, although not in a completely linear way. As we will see later that increase tops out at 𝑀/4. 

 

Figure 5 Mean of the variance as a function of additive noise (divided by the signal amplitude) standard deviations 
and transition voltage 
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In Figure 6 we depict the sum of those two previous charts with constitutes the variance of the number of counts of the 
cumulative histogram, as given by (21). Both phenomena described in the last two figures are visible: the 𝑀 arcs in the 
case of 𝜎𝑛 = 0 and the increase in variance as the standard deviation of the noise increases. 

 

Figure 6 Variance of the number of counts of the cumulative histogram as a function of the normalized additive noise 
standard deviations and transition voltage 

In Figure 7 we see essentially the same as in Figure 6 but we have extended the range of the additive noise standard 
deviation up to the normalized value of 3 which is very high amount of noise (noise standard deviation three times the 
stimulus signal amplitude). Here it is more easily visible the topping off of the variance of the number of counts at 𝑀/4. 

 

Figure 7 Variance of the number of counts of the cumulative histogram as a function of the normalized additive noise 
standard deviations and transition voltage for a larger range of noise 

The interest in knowing the variance of the number of counts of the cumulative histogram is because it is used to 
estimate the ADC transition voltages, as per (4) and knowing their standard deviation allows one to build a confidence 
interval for the measurement made. A simple mathematical expression is thus convenient. The one already proposed in 
[24] is 
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𝜎𝑐𝑘
2 ≈ max (

1

4
, 𝑀 ⋅ min (

1

4
,

𝜎𝑛

𝜋√𝜋
)). ………………(24) 

This approximate expression does not depend on the transition voltage. Its dependence on the noise standard deviation 
can be observed in Figure 8. 

 

Figure 8 Approximate expression for the variance of the number of counts of the cumulative histogram as a function 
of the normalized additive noise standard deviations and transition voltage 

One can see, from the chart in Figure 9 how the values of the approximate expression given in (24) compare with the 
actual values in the case of a very low number of samples and for a null transition voltage. 

 

Figure 9 Number of counts of the cumulative histogram as a function of the normalized additive noise standard 
deviation (thick line) and approximate expression (thin line) for an acquisition of M = 5 samples (null transition 

voltage) 
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In the case of a more realistic number of samples, like 1000, one can see how the approximate analytical expression 
compares with the actual values in the case of three different normalized transition voltages values, namely 0, 0.6 and 
0.99 in Figure 10. 

 

Figure 10 Number of counts of the cumulative histogram as a function of the normalized additive noise standard 
deviation for different values of transition voltages (solid line: U = 0, dotted line: U = 0.6, dashed line: U = 0.99) for an 

acquisition of M = 1000 samples. The approximate expression is represented with a solid thin line 

5. Estimated Transition Voltages 

The ADC transition voltages are estimated from the obtained number of counts of the cumulative histogram using (4). 
Employing a Tayler series approximation of that relationship one can obtains the standard deviation of the transition 
voltages using the first order term of the series only: 

𝜎�̂�
2 ≈ (

𝐴𝜋

𝑀
)

2

⋅ 𝜎𝑐𝑘
2 . ………………(25) 

The proposed approximate analytical expression for the variance of the estimated transition voltages is then, from (24) 

𝜎�̂�
2 ≈ (

𝐴𝜋

𝑀
)

2

⋅ max (
1

4
, 𝑀 ⋅ min (

1

4
,

𝜎𝑛

𝜋√𝜋
)). ………………(26) 

As expected, the more samples are acquired and the less noise is present, the lower is the transition voltage estimate’s 
variance. 

6. Conclusion 

The study presented pertains to the case where additive normally distributed noise is present. It does not apply to other 
kinds of noise, like jitter, nor to noise with other statistical distributions. 

The charts presented allow one to have an idea of how the cumulative histogram variance changes with number of 
samples, transition voltage and noise standard deviation. 

Furthermore, an analytical expression be used to quickly to obtain the variance of the transition voltage estimated given 
the histogram test conditions is offered. Its deviation from the actual values is shown using an illustrative chart. 
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