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Abstract 

Roads serve as vital parts of our infrastructure, providing as crucial conduits for people's mobility and connectivity. 
However, the growing number of vehicles on the road has resulted in an increase in pavement strain and degradation, 
which has a substantial impact on the entire riding experience. To achieve a high-quality surface, roadways must be 
consistently monitored and maintained. 

In recent years, transportation infrastructure agencies and governments have shown a rising interest in leveraging new 
technologies to monitor road pavements. This interest derives from the difficult and time-consuming nature of manual 
and instrumented techniques. Automated technologies have arisen as a response to these issues, notably 
in recognizing pavement deterioration, such as the common problem of potholes. 

The objective of this research is to identify potholes using two low-cost automated techniques: a vibration-based 
method that uses the G-Sensor Logger application and a vision-based way that uses image processing. On the same 
roads, both approaches were employed and compared, with manual surveying utilized to validate the results. The 
results showed that vision-based strategies were more effective than vibration-based methods. 

Finally, although vibration-based analysis is appropriate for routine monitoring, vision-based analysis provides a more 
comprehensive and in-depth examination of road conditions. These discoveries will help future efforts to better monitor 
and maintain road surfaces, ensuring a smooth and safe travel experience for everybody. 
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1. Introduction

Detecting pavement deterioration is crucial because it immediately affects the safety and comfort of road users while 
also improving the effectiveness of road maintenance. Traditionally, inspectors travelled the highways to assess the 
severity of the problems when it comes to pavement distress detection and analysis. These manual methods are difficult, 
subjective, expensive, time-consuming, and prone to human error, among other problems. 

To overcome these challenges, transportation organizations and researchers globally have shifted towards automated 
methods for pavement distress detection. Technologies like Ground Penetrating Radar, Laser Road Imaging Systems, 
video/image processing, and smartphone sensors have gained traction. Among these, smartphone sensors and video 
processing have gained significant popularity due to their ease of use and cost-effectiveness. Unlike more complex 
methods that necessitate specialized equipment like lights and lasers, smartphone sensors and video processing 
provide a more accessible and affordable alternative for surveying road conditions. 
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1.1. Road Pavement Distress: Pothole 

Potholes are concave deformations that vary in size and display a bowl-like shape in the bituminous surface or that 
extend into the binder/base course. These formations result from the pavement materials' localized disintegration. 
Figure-1 shows severity of potholes.  

 

Small Pothole 

 

Medium Pothole 
 

Large Pothole 

Figure 1 Photos of Different Severity of Potholes 

1.2. Causes 

Potholes are primarily caused by compromised bituminous wearing coat adhesion brought on by water infiltration or 
expanded surface voids. Due to the impact of the traffic and the loss of cohesiveness, the pavement softens. Plastic filler 
in the granular base may speed up pothole formation. If surface aggregates are not properly maintained, they may 
become looser over time and contribute to potholes. Additionally, there may be contributing factors such as insufficient 
bitumen content in certain areas of the surfacing layer or poor compatibility with the underlying water-bound macadam 
foundation layer. Potholes can result from a lack of bitumen, especially when combined with poor camber and a thin 
bituminous surface. In densely graded mixtures, imbalanced fines and penalties can also cause potholes. 

Potholes are categorized into three sizes: small, medium, and large. A small pothole measures 25 mm deep and 200 mm 
wide.  

1.3. Severity 

A medium pothole ranges from 25 to 50 mm in depth and 500 mm in width. Large potholes are more than 50 mm deep 
and 500 mm wide. 

1.4. How to Measure/Measurement 

At each severity level, note the quantity of potholes and the square meters of the area that they have affected. The lowest 
point beneath the pavement’s surface determines the pothole depth. The fatigue cracking area is modified as necessary 
when a pothole develops within it. A pothole's minimum plan dimension is roughly 0.02 m2. On distress map sheets, it 
is essential to note the precise plan dimensions and pothole area. While they should not be included in the measurement 
summaries, potholes that don't meet the minimum plan dimension should be noted and marked on the distress map 
sheets. 

2. Literature Review 

Pavement monitoring techniques can be broadly categorized into static and dynamic methods, based on how vibration 
data is collected. Dynamic pavement monitoring has gained traction, influenced by factors such as equipment 
availability, pavement type (asphalt, concrete, or composite), and road classification. 

One effective method for pavement distress detection is vision-based analysis, which involves capturing video footage 
of the road surface. Lekshmipathy et al. (2020) successfully utilized this approach to detect cracks, potholes, and patches 
with an impressive 84% accuracy. Similarly, Zhang et al. (2021) employed deep neural networks to identify and classify 
pavement distress, leveraging a specialized dataset to train and evaluate Convolutional Neural Networks (CNNs) with 
diverse topologies and layer combinations. 

To comprehensively evaluate pavement conditions, the Pavement Performance Index (PPI) is computed by summing 
the product of deterioration parameters' ratings and respective weightages. Issa et al. (2021) proposed an artificial 
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intelligence-driven method for predicting the Pavement Condition Index (PCI). This involved gathering distress data 
through visual inspections, forming a database, and subsequently employing an Artificial Neural Network (ANN) model 
for accurate PCI predictions. 

In the context of pavement quality assessment, Sinha and Hagawane (2020) devised a formula using IRC and ASTM 
techniques to rate pavement quality across an 80-kilometer four-lane flexible pavement stretch. Their study compared 
ratings obtained from both methods to ascertain correlations, accuracy, and precision in the results. Additionally, Jain 
et al. (2013) applied artificial neural networks (ANN) to analyze the present serviceability index (PSI) for flexible 
pavements on urban highways. Their findings demonstrated that the ANN model outperformed traditional regression 
models, showcasing higher R2 values and improved error metrics. 

3. Methodology and Study Area 

The methodology for this study is shown in Figure 2, which outlines a systematic approach to achieving the study's 
goals. Problem identification is the first step, which is then followed by a thorough literature review to determine the 
goals and objectives of the study. The study used three different methods for data collection from road surfaces, which 
was essential to achieving its objectives. 

The road surface data was collected using an Android application called G-sensor logger in the vibration-based method. 
In the case of the manual distress surveying technique, data was gathered by visually observing the road surface, 
whereas for the vision-based approach, photographs of the road surface were taken. The busy coastal highway 
Bhimpore, which is well-known for its significant distress, served as the site of the data collection. 

Excel was used to process the data, create graphs that show the acceleration data, and analyse the vibration-based data. 
The quantity of potholes present might be predicted thanks to these graphs. On the other hand, a Convolutional Neural 
Network (CNN) technique was used to detect potholes using photographs for the vision-based data. Five road segments 
were subjected to both methods, and manual surveying was used to confirm the findings. A comparison study of the 
two techniques was done to determine the pothole detection's accuracy. A thorough analysis of the results from both 
techniques resulted in a definitive judgement. Figure 3  shows schematic diagram of study approach. 

 

Figure 2 Flow Chart of Methodology 
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Figure 3 Schematic diagram of study approach 

Daman is a developing Union Territory in India that is positioned between Gujarat and Maharashtra. It has evolved into 
a desirable hub for a number of industries over time, luring them to the area to establish their presence. Daman is also 
well-known for being a top tourist attraction, with a sizable influx of visitors every day, particularly on weekends. This 
influx has resulted in an increase in commercial and industrial traffic, which has had a considerable influence on the 
state of the roadways. 

The Coastal Highway Bhimpore, a crucial section of National Highway 848B, is extremely significant since it connects 
Daman with the checkpoint for entry and exit. Being accessible to a wide variety of vehicles, it is one of Daman's busiest 
highways. This road receives heavy traffic and as a result has seen a considerable decline in quality. The road's poor 
condition is made worse by the fact that it is particularly pothole-ridden during the rainy season. This road was 
therefore selected as the study region to concentrate on the detection of these common potholes. Figure-4 shows details 
of study area. 
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Coastal Highway Bhimpore  Daman Entry Point 

Area Sq. Km 72 

 

Google map of Daman, India 

Density per Sq. Km 2655 

Elevation 5m (16 ft.) 

Time zone UTC+5:30 (IST) 

Coordinates 20.41°N 72.89°E 

Government Type Daman Municipal Council 

Figure 4 Details of Study Area 

The Daman Ganga River divides Daman into two distinct regions known as Nani-Daman and Moti-Daman. Contrary to 
its name, Nani-Daman is the larger area, and it is home to important institutions like important hospitals, supermarkets, 
and residential neighborhoods. On the other hand, Moti-Daman, where the majority of the administrative offices are 
located, is where the old city is predominantly located. 

4. Basic of Different Pothole Monitoring Techniques 

4.1. Vision based Pothole Detection Technique 

This method uses the CNN algorithm to locate and detect potholes in asphalt pavements. This technique has many 
benefits, such as automated feature extraction processes and consistent accuracy under various settings. The proposed 
method successfully recognises and detects potholes with high accuracy and robustness. With results that serve as a 
strong foundation for efficient pavement maintenance, it has the potential to autonomously replace conventional 
manual pavement inspection methods. 

4.2. Convolutional Neural Network 

The term "Artificial Intelligence" has enormous relevance in the field of computer technology and has completely 
changed the way we live our daily lives by making a variety of activities easier. These innovations, which have 
immensely helped humanity, are designed to reduce human labor. Amazing progress has been achieved in bridging the 
gap between human and machine capabilities thanks to artificial intelligence. This field's main goal is to let machines to 
perceive and understand the world similarly to humans, enabling a variety of activities like image and video processing. 
With time, important developments in Deep Learning for Computer Vision have come about, with the Convolutional 
Neural Network serving as a key approach. 
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Figure 5 Methodology of CNN algorithm 

A Convolutional Neural Network (ConvNet/CNN) stands as a formidable algorithm within Deep Learning, designed to 
process input images and allocate significance (via learnable weights and biases) to various components or objects 
present in the image, effectively distinguishing between them. Figure-5 shows methodology of CNN algorithm. This 
model is highly versatile, adept at handling one-dimensional, two-dimensional, and even three-dimensional image data. 
Notably, ConvNets demand considerably less pre-processing compared to alternative classification methods. Instead of 
manual filter engineering, ConvNets can autonomously learn these filters and characteristics through adequate training. 

The architecture of a ConvNet draws inspiration from the structural layout of the Visual Cortex and mirrors the 
connectivity patterns observed in the Human Brain's Neurons. Individual neurons respond to stimuli within a defined 
region of the visual field, termed the Receptive Field. Multiple similar receptive fields are stacked together, spanning 
the complete visual field. 

The popularity of utilizing CNNs in deep learning can be attributed to three key factors: 

 CNNs alleviate the need for manual feature extraction by directly learning features, streamlining the process 
significantly. 

 The outputs of CNNs demonstrate exceptional accuracy in recognition tasks, bolstering their effectiveness in 
image analysis and classification. 

 CNNs are adaptable and can be retrained for new recognition tasks, allowing for the expansion and 
enhancement of existing networks' capabilities. 

4.3. Vibration based Pothole Detection Technique 

This method uses a vibration-based technology to locate potholes. Readings from smartphone sensors are used to 
identify instances of distress, and a special smartphone program called Sensor Logger is used for this purpose. 

The accelerometer sensor used by the Sensor Logger program measures the acceleration of gravity along the x, y, and 
z-axes. The z-axis corresponds with vertical motion in this situation, which is often brought on by bumping into a 
pothole or experiencing a shift in slope. The y-axis is connected to the vehicle's turning left or right, while the x-axis 
represents the vehicle's acceleration and braking. 

M = √X2+Y2+Z2………………………………………………………………………………………………………………………………………………………(1) 
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Figure 6 Sensor Logger Application 

The Sensor Logger app is a free and versatile tool, which records information from various smartphone sensors, 
including the accelerometer, gyroscope, and GPS. An easy-to-use interface allows users to adjust the sensor selection 
and sampling frequency. Figure 6 shows the screen shot of sensor logger application. The app allows users to view 
interactive plots or export data in CSV or JSON formats. For this study, the app was used to gather data on road surface 
acceleration, which was then examined in Excel and graphed to show the location and severity of the distress. The 
graphs were used to identify major difficulties like potholes and bumps as different speeds were tested. Significant 
distress was indicated by peaks in the graph. Data on the minimum and average vibration helped evaluate pavement 
deterioration. 

4.4. Manual Distress Survey 

In line with IRC: 82-2015 (Code of practice for maintenance of Bituminous Road Surface), distress data on the pavement 
is manually gathered. Surface distress serves as a gauge of the structural and functional condition of the pavement. A 
proficient team of 3-4 individuals, well-trained and experienced, conducts a quantitative visual assessment of physical 
distress while traveling at a speed of 8-10 km/hr in a vehicle. 

During the distress recording, the team visually notes and documents the following details, indicating the percentage of 
each category for every kilometer length i.e,Depressions/Settlements, potholes, patching, raveling, rutting. 

In such situations, the pertinent data, accompanied by measurements, can be gathered on-site and documented as 
shown in table 1 

Table 1 Data Collection sheet 

Chain-
age (m) 

Crack
s (%) 

Patch 
Work 
(%) 

Pothole
s (%) 

Bleedin
g (%) 

Depressi
on (%) 

Edge 
Breaking 
(%) 

Ravelin
g (%) 

Rut 
Depth 
(mm) 

To
tal 

F r o m T
o 

          

The rating of pavement may be assigned as per criteria given in Tables 2 to 5 for different categories of roads.  

Table 2 Pavement Distress Based Rating for Highways (IRC: 82-2015) 

Defects (type) Range of Distress 

Cracking (%) >10 5 to 10 <5 

Patching (%) >10 1 to 10 <1 

Pothole (%) >1 0.1 to 1 <0.1 
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Depression (%) >5 1 to 5 < 1 

Rut depth (mm) >10 5 to 10 <5 

Rating 1 1.1 - 2 2.1 - 3 

Condition Poor Fair Good 

 

Table 3 Pavement Distress Based Rating for MDR(s) and Rural Roads 

Defects (type) Range of Distress 

Cracking (%) >20 10 to 20 <10 

Patching (%) >20 5 to 20 <5 

Pothole (%) >1 0.5 to 1 <0.5 

Depression (%) >5 2 to 5 < 2 

Rating 1 1.1 - 2 2.1 - 3 

Condition Poor Fair Good 

 

Table 4 Pavement Distress Based Rating for Urban Roads 

Defects (type) Range of Distress 

Cracking (%) >15 5 to 15 <5 

Patching (%) >1 0.1 to 1 <0.1 

Pothole (%) >5 1 to 5 < 1 

Depression (%) >10 5 to 10 <5 

Rating 1 1.1 - 2 2.1 - 3 

Condition Poor Fair Good 

To compute the Weighted Rating Value for each specific parameter, predefined weights have been allocated (IRC: 82-2015). 

Table 5 Weighted Rating 

Sr. No. Parameter Weightage(Multiplier Factor) 

1. Cracking 1.00 

2. Patching 0.75 

3. Pothole 0.50 

4. Depression 0.75 

5. Rut depth 1.00 

In the manual survey, the identified distresses were documented on sheets using the corresponding symbols denoting 
each type of distress. Table 6 shows types of distresses. 
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Table 6 Types of Distresses 

Distress ID Distress Type Symbol 

1. Fatigue Cracking  (square meters) L,M,H* 

 

2. Block Cracking (square meters) L,M,H* S-Sealed 

 

3. Edge Cracking (square meters) L,M,H* 

 

4. 
Longitudinal Cracking 

(square meters) L,M,H* 
 

5. Transverse Cracking (square meters) L,M,H* 

 

6. Patch (square meters and numbers) L,M,H* 

 

7. Pothole (square meters) L,M,H* 

 

8. Raveling (square meters) No severity levels 

 

9. Shoving (square meters) No severity levels 

 
*Low, Moderate and High severity levels 

4.5. Present Serviceability Rating (PSR) 

The Present Serviceability Rating (PSR) serves as a vital measure to evaluate the performance and condition of 
pavement, providing insights into its degradation and overall road damage. It heavily relies on a visual inspection 
method to determine the pavement's state and the severity of its degradation. In this process, inspectors use a dedicated 
survey form, as shown in Figure 4.5.1, employing a grading scale from 0 to 5, where 0 indicates the poorest pavement 
quality and 5 signifies the best. 

Pavement conditions falling within grades 0 to 1 represent poor quality, exhibiting various damages and distress on 
high-severity road surfaces. In such cases, urgent reconstruction or rehabilitation measures are warranted. Pavements 
falling within grades 2 to 3 and 3 to 4 are categorized as "Fair" and "Good" conditions, respectively. For these cases, 
proactive maintenance is crucial to address surface problems and medium-severity issues. Conversely, a rating of 4 to 
5 indicates excellent pavement condition, requiring routine maintenance to manage surface irregularities, without an 
immediate need for extensive maintenance. 

Data for the PSR was collected through a visual examination. The Bhimpore Coastal Highway was divided into 5 
segments, each approximately 7.5 meters wide and 100 meters long, to facilitate a thorough assessment of pavement 
condition. The official PSR values from Table 8 were utilized to accurately evaluate the pavement's condition. 
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Figure 7 Pavement Quality 

Table 7 displays the descriptions of PSR (Present Serviceability Rating) obtained from the Highway Performance 
Monitoring System (HPMS) Field Manual. 

Table 7 Present Serviceability Rating (PSR) ranges and descriptions 

PSR Verbal Rating Description 

0.1-1.0 Very poor The pavement is severely degraded.  

1.0-2.0 Poor 
The pavement displays significant deterioration, exhibiting various damages such 
as raveling, cracking, and rutting, all of which significantly influence traffic speed.  

2.0-3.0 Fair 
Substandard riding quality, with low to medium levels of cracking and certain 
distress signs like patching.  

3.0-4.0 Good 
A smooth pavement, providing a high-quality ride, with initial signs of minimal 
rutting and cracking 

4.0-5.0 Very good Completely new and free from distress. 

5. Data Collection 

5.1. Vision based data Collection 

Vision data is collected by taking pictures of the road surface with a smartphone camera in order to demonstrate the 
creative dynamic road pavement monitoring approach. The Convolutional Neural Network algorithm is then used to 
process the images that have been captured. 

The road pavement surface is prone to a variety of problems, including potholes, patches, alligator cracks, longitudinal 
cracks, and transverse cracks. Regardless of road hierarchy or traffic volume, these damages are common on all road 
networks. Pavement age, traffic volume, pavement material quality, weather conditions, and asphalt erosion are the 
main causes of these damages. The data collection took place in sunny weather, which provided ideal conditions for 
monitoring the condition of the road pavement. 

5.2. Vibration based Data Collection 

A smartphone app called Sensor Logger is used to collect vibration data from the pavement surface. This application 
measures acceleration data using the smartphone's accelerometer sensor. It also records location information, including 
latitude and longitude. The application provides thorough vibration data for analysis by gathering sensor data at a rate 
of 10 readings per second. Figure 8 shows a screen shot of spreadsheet containing recorded Acceleration data. 
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Figure 8 A spreadsheet containing recorded Acceleration Data 

5.3. Data collection using Bike, Car & Manual (Visual) 

To record vibration data, a smartphone of the ‘Activa 6G’ model was safely mounted on the top side of a bike as shown 
in figure 9 . This information was gathered in February 2022 during the daytime at various speeds of 15 km/h, 20 km/h, 
and 25 km/h. As the vehicle moved, the application measured the actual length of the road segment. Five monitoring 
iterations were carried out for each travel speed along the street segment in order to improve vibration measurements, 
with the goal of determining the most precise number of iterations.  

  

Figure 9 Mobile Mounted on Bike and Car 

  

Figure 10 Manual Measurement of distress 
Figure 11 Manual Distress Survey Sheet based 

A smartphone was attached to the dashboard of the vehicle, a ‘Honda Amaze’ model, using a typical mobile handle, as 
shown in figure 9 Data was  measured and collected in March 2022, also in the daytime as shown in figure 10 and 11. 
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Five iterations at each of three different travel speeds (15, 20, and 25 km/h) were used. During the data collection 
process, the start and end points of both vehicle modes were predetermined locations on the road. 

To evaluate physical distress shown in figure 10, a skilled team of 3-4 individuals with ample experience and training 
conducted a quantitative visual assessment while walking on the road surface. Additionally, a survey form for Present 
Serviceability Rating was completed during the manual distress survey.Data Analysis  

5.4. Analysis of Data Collected using Vision Method 

We chose five road segments, each 100m long, to compare the vibration-based and vision-based approaches. In this 
study, we used a smartphone camera to take pictures of the road surface along all five stretches. From each stretch, 10 
images were taken, yielding 50 total images. With the help of a Convolutional Neural Network (CNN), we were able to 
identify potholes in images by classifying them as "Pothole" in predictions and "Normal" in predictions for images 
without potholes. A manual distress survey of all images was used to verify the validity of these predictions. Table 8 
shows vision based data analysis. 

Table 8 Vision based Data Analysis 

No. of potholes 

Road 1 Road 2 Road 3 Road 4 Road 5 

Image 
No. 

Prediction Image 
No. 

Prediction Image 
No. 

Prediction Image 
No. 

Prediction Image 
No. 

Prediction 

1. Normal 1. Normal 1. Normal 1. Normal 1. Normal 

2. Pothole 2. Normal 2. Normal 2. Normal 2. Normal 

3. Pothole 3. Pothole 3. Normal 3. Normal 3. Normal 

4. Normal 4. Pothole 4. Normal 4. Pothole 4. Pothole 

5. Pothole 5. Pothole 5. Normal 5. Pothole 5. Pothole 

6. Normal 6. Pothole 6. Normal 6. Pothole 6. Pothole 

7. Normal 7. Normal 7. Normal 7. Pothole 7. Pothole 

8. Normal 8. Normal 8. Normal 8. Pothole 8. Normal 

9. Normal 9. Normal 9. Pothole 9. Normal 9. Normal 

10. Normal 10. Normal 10. Pothole 10. Normal 10. Normal 

5.5. Analysis of Data Collected using Vibration Method 

The graph shows how much the pavement vibrates when a ‘bike’ is moving at different speeds figure 12. The slow bike 
movement causes slight vibration changes at 15 km/h. Average vibrations ranged from 1.873 m/s2 to 18.874 m/s2, 
respectively. The highest and lowest average vibrations were 26.228 m/s2 and 1.683 m/s2 at 20 km/h, respectively. 
These values were 30.998 m/s2 and 3.551 m/s2 at 25 km/h. 

Vibration damages pavement and increases with speed. Smartphone sensors exhibit high sensitivity to vibrations from 
moving traffic. Higher bike speeds increase the precision of vibration data, revealing serious pavement damage like 
potholes. Lower vibration values, however, imply that maintenance is not immediately required. 
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Magnitude of pavement vibration data at speed of 15 
km/h 

 

Magnitude of pavement vibration data at speed of 20 
km/h 

 

Magnitude of pavement vibration data at speed of 25 km/h 

Figure 12 Analysis of data collected using BIKE at different Speed 

Significant variations can be seen in the figures, which show pavement vibration data obtained from the ‘car’ at various 
speeds figure 13. The vibration levels varied from about 0.904 m/s2 at 15 km/h to about 20.81 m/s2 at a speed that 
reflected the car's slow motion. The highest and lowest values were 25.51 m/s2 and 2.15 m/s2, respectively, at 20 km/h. 
The maximum vibration data at 25 km/h was around 26.84 m/s2, and the minimum was about 0.567 m/s2. 

Due to the smartphone sensor's increased sensitivity, it is notable that speeds of 15 km/h and 25 km/h show a 
significant variation between maximum and minimum vibration data. The results highlight a direct correlation between 
pavement vibration measurements and travel speeds, with higher speeds causing more pavement vibration because of 
amplified vibrations in the vehicle chassis. 

 

Magnitude of pavement vibration data at speed of 15 
km/h 

 

Magnitude of pavement vibration data at speed of 20 
km/h 
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Magnitude of pavement vibration data at speed of 25 km/h 

Figure 13 Analysis of data collected using CAR at different Speed 

5.6. Factors Influencing Distress Detection Accuracy 

 Vehicle Speed 
 Vehicle Type 
 Vehicle Age 
 Number of Iterations 
 Vehicle Condition 

5.7.  Comparison of data collected using Bike and Car 

Following manual surveying, it is evident that pavement vibration data collected by bike is most accurate at 25 km/h, 
while data collected by car is most accurate at 20 km/h. As a result, it is possible to conclude that the pavement vibration 
data obtained via the smartphone application in both vehicle tests is of sufficient accuracy. Figure 14 shows comparison 
of data collected using bike and car. 

 

Figure 14 Comparison of data collected using Bike and Car 

The study reveals that the highest acceleration vibration is observed between 90m and 150m, indicating significant 
road distress, likely major types like potholes and alligator cracks, requiring immediate maintenance. Less fluctuation 
is observed from 150m to 180m, suggesting minor distress like patches and cracks. The method provides accurate 
distress location but doesn't precisely identify distress types. The experiment highlights the suitability and accuracy of 
both bikes and cars for pavement monitoring, and the significant influence of travel speed on pavement vibration data 
precision. 
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5.8. Data Analysis of five road stretches collected using Car 

Data analysis using both a bike and a car confirmed that both vehicles are suitable and precise as test vehicles for 
pavement monitoring. Previous research highlighted the accuracy of data collection at 20 km/h using the Honda Amaze 
car. As a result, for data collection across the five road segments, the Honda Amaze car was driven at a speed of 20 km/h. 

We chose five 100m road stretches to compare vibration and vision-based methods. On all five roads, the Sensor Logger 
application was used to collect acceleration data from the road surface. This acceleration data was then meticulously 
analysed in Excel. The number of potholes was determined using the resulting Excel-generated graph. Manual distress 
surveys were used to validate the accuracy of this analysis. Figure 15 shows Magnitude of pavement vibration on all the 
roads 

  

Magnitude of pavement vibration data of road 1 Magnitude of pavement vibration data of road 2 

  

Magnitude of pavement vibration data of road 3 Magnitude of pavement vibration data of road 4 

 

Magnitude of pavement vibration data of road 5 

Figure 15 Magnitude of pavement vibration on all the roads 
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The summary of all collected data have been mentioned in table 9, table 10, table 11 and table 12 

Table 9 No. of Distress Calculation using vibration method 

Road      No. Major Distress like Pothole Minor Distress 

1. 3 1 

2. 3 3 

3. 3 0 

4. 4 2 

5. 4 0 

5.9. Analysis of data collected using Manual Method 

Name of the Road: Coastal Highway Bhimpore Distance: 1 km 

Type of Surface: Flexible Pavement  Carriage Width: 7.0m 

Date of Observation: 13/03/2022   Weather Condition: Hazy Sunshine 

Table 10 Manual Data Collection 

Chain age (m) Cracks (%) Patch Work (%) Potholes (%) Depression    (%) Rut Depth (mm) Total 

From To 

0 100 15 10 0 0 0 25 

100 200 7 0 25 0 0 32 

200 300 5 0 0 0 0 5 

300 400 25 15 0 5 10 45 

400 500 10 10 5 0 0 25 

500 600 35 0 14 7 15 71 

600 700 30 4 0 5 15 54 

700 800 13 0 3 0 0 16 

800 900 28 30 16 9 10 93 

900 1000 22 25 20 0 0 67 

 

Table 11 Manual Data Collection for length 1 Km 

Chain age (m) Cracks 
(%) 

Patch Work 
(%) 

Potholes 
(%) 

Depression    
(%) 

Rut Depth 
(mm) 

Total 

From To 

0 1000 19 9.4 8.3 2.6 5 44.3 

Rating as per Table 12 1 1 1 1.5 2.0 

Condition Poor Poor Poor Fair Fair 
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Table 12 Final Rating Calculation 

Distress Type Rating as per Table 4.2 Weightage as per Table 4.5 Weighted Rating Value 

Cracking 1.0 1.00 1.0 

Patching 1.0 0.75 0.75 

Pothole 1.0 0.50 0.50 

Depression 1.5 0.75 1.13 

Rut depth 2.0 1.00 2.0 

Final Rating Value 1.07 

Road Condition Poor 

5.10. No. of potholes on five road stretches 

To compare vibration and vision-based methods, we selected five road stretches, each spanning 100m. We also 
conducted a manual distress survey on these roads. The number of potholes on each of the five stretches was 
determined through careful manual observation of the road condition. The table 13 below provides the count of 
potholes observed on these stretches. Table 14 shows PSR rating of five road stretches. 

Table 13 No. of potholes calculation using Manual Method 

Road 1 Road 2 Road 3 Road 4 Road 5 

3 4 3 5 4 

 

Table 14 PSR rating of five road stretches 

Road No. PSR Verbal  Rating 

1. 1.0 Poor 

2. 1.1 Poor 

3. 2.5 Fair 

4. 0.5 Very  Poor 

5. 1.2 Poor 

6. Validation and Comparison of Results 

Both experiments were conducted on identical stretches of road to compare the effectiveness of pothole detection 
methods using vibration and vision. For this study, we chose five road segments that were each 100m long. We validated 
both methods further by cross-referencing them with manual surveys. 

Acceleration data for the vibration-based method was collected using a car along a 100m stretch of road during the 
comparison process. To implement the vision-based approach, photographs of the road surface were taken along the 
same 100m stretch for all five roads at the same time. The accuracy of each method in identifying different types of 
distress was quantified and compared. 

A manual distress survey was conducted on the study road stretch to validate the results. The vibration-based method 
used graphs plotted in Excel to determine distress locations. The vision-based method identified distress locations 
based on the latitude and longitude data associated with images collected using the smartphone's GPS. The results of 
the manual distress surveys were then compared to the locations of distress identified using both vibration and vision-
based methods as shown in Table 16 
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Table 15 Rating of potholed based on three techniques 

Rating for No. of Potholes 

Road No. Vision based method Vibration based method Manual Method 

1. 3 3 3 

2. 4 3 4 

3. 2 3 3 

4. 5 4 5 

5. 4 4 4 

The accuracy in detecting potholes using both the methods is also compared and shown in Table 16 

Table 16 Accuracy of detection of individual distresses: vibration vs. vision method 

Distress Vision based method (%) Vibration based method (%) 

Pothole 90 80 

The results show that the vibration-based method detects potholes with an 80% accuracy. Variations in pavement 
vibration data are influenced by factors such as vehicle type, vehicle speed, and smartphone position, according to the 
study. The vibration-based method's accuracy is limited because it can only detect distresses along the wheel path. 

The vision-based method, on the other hand, achieves higher accuracy due to its wider field of view. Unlike the vibration-
based method, the vision-based approach not only pinpoints the location of the distress but also allows for more precise 
identification of the type of distress. 

7. Conclusion 

While both methods are cost-effective and accurate, the vision-based approach is more effective than the vibration-
based method, which is limited to detecting distress along the wheel path. 

The vibration-based pothole detection method locates distress accurately but cannot precisely identify the type of 
distress. 

Vibration-based pothole detection can be performed at any time of day or night, whereas image processing for the 
vision-based method necessitates adequate lighting, particularly at night. 

The vibration-based method is faster than the vision-based method because image processing requires more 
calculations and thus takes longer. 

Despite its lower accuracy, the vibration-based method is appropriate for gathering general pavement condition data, 
whereas the vision-based method is best suited for precise maintenance work. 

Although automated techniques such as vibration-based and vision-based analyses can provide an initial assessment of 
the pavement's condition, they cannot completely replace traditional.  
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