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Abstract 

The power system network is complex. This makes it more challenging to obtain valuable information because of its 
hundreds of buses and transmission lines. In addition, solving the steady-state equations of the power system network 
requires substantial mathematical computations. The power flow analysis is a study of the electrical power system. 
Engineers and utility companies use it for the design, control, planning, and future improvement of the electrical power 
network. Power flow analysis calculates the voltage magnitude, phase angles, active and reactive power flows, losses of 
the power system network under various loads, and generation conditions. This paper is a tutorial article aimed to 
present the power flow analysis techniques of Gauss-Seidel, Newton-Raphson, and Fast-Decoupled approaches. The 
Power World Simulator is used to demonstrate the software implementation of the approaches. The results show that 
Newton Raphson and Fast Decoupled have a faster convergence. The Newton Raphson method is the popular technique 
used for the analysis. An illustrative example for an IEEE 3-bus system on each technique is also presented in the article. 

Keywords: Power Flow; Iteration; Convergence; Real Power; Reactive Power; Gauss-Seidel; Newton Raphson; Fast 
Decouple  

1. Introduction

The power flow is also known as load flow, and both terms are interchangeably utilized. In a typical electric power 
system, power flows from the generation station through the transmission lines to the loads. The two main types of 
power that flow in a power system network are real and reactive power [1]. The load flow study is an essential part of 
the power system analysis that enables the engineers to plan and determine the steady-state solution of the entire 
power system network. Under the steady-state conditions, the load flow analysis offers an organized mathematical 
technique for computing the magnitude of the voltages and the angles at each bus or node, the real and reactive power 
at the reference bus or node, the phase angle of the voltage and the reactive power at the generator bus or node. In 
addition, the modeling of the power system is achieved by the electrical circuit of generators, transmission lines, and 
distribution networks [2, 3]. The load flow equations are expressed in terms of power that is nonlinear and are to be 
computed by iterative processes using numerical methods. The numerical methods employed in the technique involve 
solving mathematical problems using arithmetic operations that give only approximate solutions as the outcome.  

In recent years, many mathematical analysis approaches have been used to solve power flow or load flow analysis 
problems [4]. The most generally used iterative techniques are Gauss-Seidel, Newton-Raphson, and Fast Decoupled 
methods [5]. The continuous increase in power demand leads to a vast increase in the size of the power system and the 
dimension of the power flow equations. This abrupt increase makes it more challenging for numerical mathematical 
approaches to converge to the correct solutions without the iteration process. The challenge faced nowadays by all 
engineers involved in the electrical designs of industrial and commercial power systems are determining the most 
appropriate method suitable for the power system analysis. In addition, since reliable convergence is the most critical 
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criterion for load flow analysis methods, high accuracy in terms of reliability and faster result time in terms of 
computational speed, determine the best acceptable method. The use of digital computers in load flow studies began in 
the mid-1950s, and before this time, the solutions obtained from using analog boards were inaccurate compared to 
practical applications [6]. Subsequently, several techniques for calculating load flow have since emerged. The load flow 
analysis methods have witnessed tremendous improvements as the most efficient computational procedures in power 
systems planning, design, and operation because their calculations result in solutions of some nonlinear equations. 
Aside from this, manual solutions are impractical except for calculating some examples of circuit operating 
characteristics. The advent of digital computers makes load flow analysis studies in power systems efficient and reliable 
compared to the past because modern large-scale computers have sufficient speed and size to handle power system 
network calculations. In addition, solving network equations is more efficient with the development of hardware 
algorithms. The improved performance of these algorithms makes load flow analysis solutions easier to achieve in terms 
of high computational speed, simplicity, flexibility, low computer storage, and reliability. Thus, the application of the 
numerical methods using the computer remains the most consistent technique for arriving at the best solution.  

This paper is a tutorial article aimed to present the power flow analysis techniques of Gauss-Seidel, Newton-Raphson, 
and Fast-Decoupled approaches using the Power World Simulator to demonstrate an example of software 
implementation of the approaches. Also, hand calculations of a typical IEEE 3-bus system present numerical solutions 
of the various methods.  

1.1. Fundamentals of power network analysis. 

The complexity of the power system network, indicates that power flows through many paths or branches of hundreds 
of buses or nodes and transmission links. Hence, such systems form networks of series and parallel paths. Based on 
Kirchoff's laws, the anyalsis of the power network requires that the electric power flow in the systems divides between 
the branches proportionately. In network analysis, there is a need for electrically distinct reference points called nodes 
or buses. The buses are nodes with one or more lines or loads connected to the generators. Figure 1 illustrates a simple 
3-bus power network for anylasis.  

Figure 1 A 3-bus system 

With reference to Figure 1, applying Kirchoff's current law and taking current injection into a bus as postive, the 
equations are as follows: 

Node 1: I1 = 𝑦12 (𝑉1 − 𝑉2)  + 𝑦13(𝑉1 − 𝑉3) ……………………………………(1) 

With 𝑦12 = 𝑦21 , 𝑦23 = 𝑦32 , and 𝑦13 = 𝑦31 representing the admittance of the lines. 

Node 2: I2 = 𝑦12 (𝑉2 − 𝑉1)  + 𝑦23(𝑉2 − 𝑉3) …………………………….….… (2) 

  Node 3:  −I3 = 𝑦31 (𝑉3 − 𝑉1)  + 𝑦23(𝑉3 − 𝑉2) ………………..…………… (3) 
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Rearranging Equations (1), (2), and (3) gives, 

𝐼1 =  𝑉1(𝑦12 + 𝑦13) + 𝑉2(−𝑦12) +  𝑉3(−𝑦13) ……………………...……(4) 

𝐼2 =  𝑉1(−𝑦21) + 𝑉2(𝑦21 + 𝑦23) + 𝑉3(−𝑦23) ………………….…...… (5) 

−𝐼3 = 𝑉1(−𝑦31) + 𝑉2(−𝑦32) + 𝑉3(𝑦31 + 𝑦23) ………………….....… (6) 

In general, for an n-bus power network the node equations at bus (i) is expressed as, 

𝐼𝑖 =  ∑ 𝑌𝑖𝑗
𝑛
𝑗=1 𝑉𝑗 ………………………………………………………………….… (7) 

Where Yij is expressed using both, Equations (8) and (9).

[

𝐼1
𝐼2
𝐼3

] = [

𝑦12 + 𝑦13 −𝑦12 −𝑦13

−𝑦21 𝑦21 + 𝑦23 −𝑦23

𝑦31 𝑦32 −(𝑦31 + 𝑦23)
] [

𝑉1

𝑉2

𝑉3

] …………..……(8) 

The power flow nodal equations for a 3-bus system in matrix form are as follows, 

[

 𝐼1
 𝐼2
−𝐼3

] = [

𝑌11 𝑌12 𝑌13

𝑌21 𝑌22 𝑌23

𝑌31 𝑌32 𝑌33

] [

𝑉1

𝑉2

𝑉3

] …………………………………..…..……… (9) 

In Equation 9 , 𝑌11 = 𝑦12 + 𝑦13, 𝑌12 = −𝑦12, 𝑌13 = −𝑦13 
𝑌21 = -𝑦12,  𝑌22 = 𝑦21 + 𝑦23, 𝑌23 = −𝑦23 
𝑌31 = 𝑦31, 𝑌32 = 𝑦32,  𝑌33 = −(𝑦31 + 𝑦23) 

   Thus, Equation 9 can generally be expressed as   𝒀𝒃𝒖𝒔𝑽 = 𝑰……………………………….……..…(10) 

1.2. Power Flow Equations 

In the power systems, the loads and generations are specified in terms of power as in Equation (11). 

𝑺 = 𝑃 + 𝑗𝑄 = 𝑽𝑰∗ ………………………………………………….…….…..…(11) 

Where S is the complex power with P and Q being the real and reactive components respectively. 

Therefore, the current, 𝐼 in Equation (8) can be replaced from Equation (11) as 

I = 
𝑃−𝑗𝑄

𝑉∗  ……………………………………………………………………….…..…(12) 

Equation (8) then becomes, 

[
 
 
 
 
𝑃1−𝑗𝑄1

𝑉1
∗

𝑃2−𝑗𝑄2

𝑉2
∗

𝑃3−𝑗𝑄3

𝑉3
∗ ]

 
 
 
 

 = [

𝑦12 + 𝑦13 −𝑦12 −𝑦13

−𝑦21 𝑦21 + 𝑦23 −𝑦23

𝑦31 𝑦32 −(𝑦31 + 𝑦23)
] [

𝑉1

𝑉2

𝑉3

] ……..……(13) 

1.3. General form of solution Procedures 

In Equation (13), the branches of networks can be represented by their respective branch admittance, and the voltages 
and currents in the network are related by the general form as follows, 

[
𝑃−𝑗𝑄

𝑉∗ ] = [𝑌][𝑉] ……………………………………………………………………(14) 
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The general form of Equation (13) is expressed in Equation (14); this constitutes a nonlinear system of equations that 
cannot be simplified using closed-form matrix procedures but requires methods involving numerical and iterative 
approaches. 

For an 𝑛 bus system, the nodal equation in general form for the ith bus is as follows, 

𝐼𝑖 =  ∑ 𝑌𝑖𝑗𝑉𝑗
𝑛
𝑗=1  for 𝑖 = 1,2,3…n ………………………………………………(15) 

2. Classification of buses 

In power systems, the three classifications of buses are slack (swing), generation, and load buses. Each of these buses 
has known and unknown variables of four quantities namely real power P, reactive power Q, voltage magnitude |𝑉|, and 
the voltage phase angle 𝛿 [7, 8]. The unknown variables are determined by writing systems of equations of the form 
shown in Equation 13 with one equation for each node and solving the equation using the numerical method [9]. The 
buses classification is based on the specified and unspecified variables as shown in Table 1. Figure 1 can be compared 
to Figure 2, which shows generator slack bus 1, generator PV bus 3, and the PQ load bus 2. 

 

Figure 2 3-bus power system 

2.1. Generator Bus (PV) 

This is a regulated bus. The real power 𝑃 and the voltage magnitude |𝑉| are known. For the regulated bus, it is required 
to determine the reactive power 𝑄 and the phase angle of the voltage 𝛿 because both are unknown. See bus 3 in Figure 
2.  

2.2. Slack Bus 

This is a swing bus and is generally considered as the reference bus. The slack bus provides the mismatch between the 
scheduled generation and the net system load with the losses and net generation. The voltage magnitude |𝑉|, and 
voltage angle 𝛿  are specified, while the real power 𝑃  and the reactive power 𝑄  are calculated using the load flow 
voltages solution subsituted in Equations 18 and 19, [4, 7, 9]. This bus is indicated as bus 1 in Figure 2.  

2.3. Load Bus (PQ) 

The bus 3 in Figure 2 is also referred to as a PQ bus without any connected generator, and in practical power systems, 
most buses are load buses. The real power 𝑃  and the reactive power 𝑄  are given at this bus, and both the voltage 
magnitude |𝑉|, and the phase angle of the voltage 𝛿 are calculated because they are unknown. 
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Table 1 Classification of Busses 

No Type of bus Known Variables Unknown Variables 

1 Slack/Swing  𝛿, ⌈𝑉⌉ 𝑃, 𝑄 

2 Generator/Regulated 

(PV) 

𝑃, ⌈𝑉⌉ 𝑄, 𝛿 

3 Load (PQ) 𝑃, 𝑄 𝛿, ⌈𝑉⌉ 

3. Load Flow Analysis 

The load flow or power flow analysis is fundamental in interconnected power system analysis because its mathematical 
calculations and the simultaneous algebraic equations are the basis for the solution of the performance equations in 
computer-aided electrical power systems analyses [10]. The load flow analysis results have applications in economic 
scheduling and design of power systems, verification of system overloading conditions, optimal operation of every 
single generator, and ensuring uninterrupted system operation and security during systems maintenance.  

3.1. Gauss-Seidel Technique 

This technique is the most straightforward iterative technique to solve load flow problems. This technique involves an 
initial guess of the voltage value to get a calculated value of a specific variable. After that, the guess value is substituted 
by the computed value. The repetition of this process continues till the iteration solutions converge. This technique has 
poor convergence characteristics but has applications in load flow with fewer buses [11]. Load flow problems are solved 
by applying the iterative approach to Equation (16) [3, 12]. 

𝑃𝑖 −𝑗𝑄

𝑉𝑖
∗  = 𝑉𝑖 ∑ 𝑌𝑖𝑗

𝑛

𝑗=1
 - ∑ 𝑦𝑖𝑗𝑉𝑗  j ≠ i

𝑛

𝑗=1
 …………………………………..………(16) 

Applying the Gauss-Seidel iterative technique to Equation (16) for the value of the voltage magnitude 𝑉𝑖  yields Equation 
(17), where both real power and reactive power are scheduled for the load buses, in iterative sequence. 

𝑉𝑖
(𝑘+1)

= 

𝑃𝑖
𝑠𝑐ℎ−𝑗𝑄𝑖

𝑠𝑐ℎ 

𝑉𝑖
∗  +∑𝑦𝑖𝑗𝑉𝑗

(𝑘)
 

∑ 𝑦𝑖𝑗
 𝑗 ≠ 𝑖 …………..……………………………..…...…(17) 

Therefore, applying Kirchhoff's current law to Equation (17) and injecting a positive current into bus 𝑖 makes the real 
and reactive power delivered into the generator buses 𝑃𝑖

𝑠𝑐ℎ and 𝑄𝑖
𝑠𝑐ℎ  have positive values. The load buses 𝑃𝑖

𝑠𝑐ℎ and 𝑄𝑖
𝑠𝑐ℎ  

have negative values because of the real and reactive power flow out of the load buses. The calculated 𝑃𝑖 and 𝑄𝑖  using 
Equation (16) is given in Equations (18-20) [13, 14]. 

𝑃𝑖(𝑘+1) = Real [𝑉𝑖∗(𝑘){ ∑ 𝑦𝑖𝑗
𝑛

𝑖=0
− ∑ 𝑉𝑖(𝑘)𝑛

𝑗𝑖
 }] 𝑗 ≠ 𝑖 ………………….……(18) 

𝑄𝑖(𝑘+1) = Imaginary [𝑉𝑖∗(𝑘){ ∑ 𝑦𝑖𝑗
𝑛

𝑗=1
− ∑ 𝑉𝑖(𝑘)𝑛

𝑗𝑖
 }] 𝑗 ≠ 𝑖 ……….………(19) 

The power flow equation is usually stated in terms of the bus admittance matrix, and applying the matrix's nondiagonal 
elements and the bus admittance's diagonal elements to Equation (17) gives Equations (20), (21), and (22) [3, 13]. 

𝑉𝑖
(𝑘+1)

=  

𝑃𝑖
𝑠𝑐ℎ−𝑗𝑄𝑖

𝑠𝑐ℎ 

𝑉𝑖
∗  −∑𝑦𝑖𝑗𝑉𝑗

(𝑘)
 

𝑌𝑖𝑖
 …………………………………………………….………(20) 

𝑃𝑖(𝑘+1) = Real [𝑉𝑖∗(𝑘){𝑉𝑖∗(𝑘)𝑌𝑖𝑖 + ∑ 𝑦𝑖𝑗𝑉𝑗(𝑘)𝑛

𝑖=1,𝑗=1
 }] 𝑗 ≠ 𝑖 ………………….(21) 

𝑄𝑖(𝑘+1)  =  Imaginary [𝑉𝑖∗(𝑘) {𝑉𝑖∗(𝑘)𝑌𝑖𝑖 + ∑ 𝑦𝑖𝑗𝑉𝑗(𝑘)𝑛

𝑖=1,𝑗=1
 }] 𝑗 ≠ 𝑖………(22) 
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In this iterative technique, 𝑃𝑄 buses iteration is performed before proceeding with the 𝑃𝑉 buses iteration. In addition, 
𝑃 and 𝑉 are specified at the 𝑃𝑉 bus, whereas 𝑄 and 𝛿 are computed because they are not specified. And, after every 
iteration, the values of 𝑄 and 𝛿 are updated. 

3.2. Newton-Raphson Technique 

This iterative technique uses Taylor's series expansion approximation to obtain a set of linear simultaneous equations 
from a set of nonlinear simultaneous equations [3, 11]. The technique is widely used to solve cases that lead to 
divergence due to its high-speed convergence characteristics and excellent reliability compared to other iterative 
approaches used in power flow analysis [11] [12]. The Newton-Raphson iterative results are fast, provided the guess 
value is near the solution, while the results take longer if the guess value is far from the solution [13]. Due to its various 
applications, the Newton-Raphson technique is effective and practical for massive power systems. The following 
Equations develop the Newton Raphson technique. Re-writing Equation (15) in polar form results in Equation (23) [13, 
14]. 

𝐼𝑖 = ∑ |𝑌𝑖𝑗|| 𝑉𝑗| (𝜃𝑖𝑗 +
𝑛

𝑗=1
𝛿𝑗) …………………………………………………………….………(23) 

The complex power at bus 𝑖 is as follows, 

𝑃𝑖 − 𝑗𝑄𝑖 = 𝑉𝑖
∗𝐼𝑖  ………………………………………………………………………………..………(24) 

We obtain Equation (25) by substituting Equation (23) into Equation (24) 

𝑃𝑖 − 𝑗𝑄𝑖 = |𝑉𝑖| < −𝛿𝑖 ∑ |𝑌𝑖𝑗|| 𝑉𝑗| (𝜃𝑖𝑗 + 𝛿𝑗
𝑛

𝑗=1
) …………………………………….………(25) 

Equation (26) and Equation (27) are the result of the separation of real and reactive powers. 

𝑃𝑖 = ∑ |𝑉𝑖||𝑉𝑗|𝑌𝑖𝑗
𝑛

𝑗=1
| cos(𝜃𝑖𝑗 − 𝛿𝑖 + 𝛿𝑗 ) …………………………………………..…………(26) 

𝑄𝑖 = −∑ |𝑉𝑖||𝑉𝑗|𝑌𝑖𝑗
𝑛

𝑗=1
| sin(𝜃𝑖𝑗 − 𝛿𝑖 + 𝛿𝑗 ) ……………………………………………………(27) 

Equations (26) and (27) are approximated in Taylor's series since they are a set of nonlinear algebraic equations and 
neglecting all the higher-order terms gives a set of linear equations of Equation (28) [3]. 

………………………………….…(28) 

In Equation (28), the slack bus variable voltage magnitude and angle elements are not included because they are already 
specified. Taking the partial derivatives of Equations (26) and (27) gives the element of the Jacobian matrix of Equation 
(29), which explains the small changes in voltage magnitude and voltage angle [14]. 

[
∆𝑃
∆𝑄

] = [
𝐽1 𝐽3
𝐽2 𝐽4

] = [
∆𝛿

∆⌈𝑉⌉
] ………………………………………………………………………………(29) 

where 𝐽1, 𝐽2, 𝐽3, 𝐽4  are the elements of the Jacobian matrix. The power residuals,  ∆𝑃𝑖
(𝐾)

 and ∆𝑄𝑖
(𝑘)

, are the difference 

between the scheduled and calculated powers [14] are as follows: 
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𝛥𝑃𝑖
(𝑘)

= 𝑃𝑖
𝑠𝑐ℎ − 𝑃𝑖

(𝑘)
 …………………………………………………………………………….………(30) 

𝛥𝑄𝑖
(𝑘)

= 𝑃𝑖
𝑠𝑐ℎ − 𝑄𝑖

(𝑘)
 ……………………………………………………………………………………(31) 

Equations (32) and (33) are the approximation of the angles and magnitudes of the bus voltages respectively.   

𝛿(𝑘+1) = 𝛿𝑖
(𝑘)

− ∆𝛿𝑖
(𝑘)

 ……………………………………………………………………….……………(32) 

⌈𝑉(𝑘+1)⌉ = ⌈𝑉𝑖
(𝑘)

⌉ +  ∆⌈𝑉𝑖
(𝑘)

⌉ ……………………………………………………………………….……(33) 

In Equation (33), |𝑉𝑖
(𝑘)

| and 𝛿𝑖
(𝑘)

 are assumed to be 1, and ∠ 0° respectively for near-solution results. 

3.3. Fast-Decoupled Technique 

This technique is the most advanced method for solving load flow analysis. It is a simplified version of the Newton-
Raphson technique. It involves decoupling the calculations of real and reactive powers and directly obtaining the 
elements of the Jacobian matrix from the Y-bus [8]. The Fast-Decoupled is the most utilized technique in load flow 
analysis because of its fast convergence. In some cases, the fast-decoupled technique convergence is less effective 
because of the heavy loading on some buses or the high reactance-to-resistance ratio [14]. In addition, it uses 
assumptions to simplify the Jacobian matrix because it requires more iterations than the Newton-Raphson technique. 
However, to overcome the weak coupling between the real power and voltage magnitude in the power network, and 
reactive power and the voltage angle, the Jacobian matrix of Equation (29) is reduced in half by eliminating the element 
of 𝐽2 and 𝐽4 [12] [13] [14] to obtain Equation (34). 

[
∆𝑃
∆𝑄

] = [
𝐽1 0
0 𝐽4

] [
Δ𝛿
Δ|𝑉|

 ] ………………………………………………………………………….………(34) 

And, Equation (34) is simplified to Equations (35), (36), (37), and (38)   as follows: 

Δ𝑃 = 𝐽1 ∆𝛿 =  [
𝜕𝑃

𝜕δ
] Δδ ………………………………………………………………………….…………(35) 

Δ𝑄 = 𝐽4∆⌈𝑉⌉ =  [
𝜕𝑃

𝜕|V|
] Δ|V| ………………………………………………………………………………(36) 

𝜕𝑃

𝑉𝑖
 = - 𝐵′Δδ …………………………………………………………………………………………...…………(37) 

𝜕𝑄

𝑉𝑖
 = - 𝐵′′Δ|V| …………………………………………………………………………………………..………(38) 

𝐽1 and 𝐽4 are derived from the Y-bus results in Equations (39) and (40). 

Δ𝑄 = [𝐵′]−1 Δ𝑃

|v|
 ………………………………………………………………………….……………..………(39) 

Δ|𝑉| =  [𝐵′′]−1 Δ𝑄

|V|
 ………………………………………………………………………………..…………(40) 

where ∆⌈𝑉⌉ and ∆𝑄 are the changes in voltage magnitude and phase angle. In addition, 𝐵′′ and 𝐵′′ are the imaginary 
parts of the Y-bus admittance. 

3.4. Slack bus Power and losses calculations  

The slack bus real and reactive power are computed using Equations 26 and 27. The complex power losses in the system   

is SLosses = SGEN - SLoad. The loss in the line from bus i to bus j, SLoss ij = Sij + Sji; where Sij = Vi Iij* and Sji = Vj Iji*.   

Also the current in the line Iij = (Vi – Vj)yij.  
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4. Illustrative Examples [15]. 

Shown in Figure 3 is an IEEE 3-bus system that is used to illustrate the 3 techniques outlined in the previous sections of 
this paper.  

 

Figure 3 IEEE 3-Bus System [15] 

4.1. Gauss-Seidel Approach  

The Admittance matrix: 

𝑌BUS  = [

15.0501 − 𝑗55.03 −5 + 𝑗15 −10.0501 + 𝑗40.03
−5 + 𝑗15 20.00 − 𝑗65.00 −15.00 + 𝑗50.00

−10.0501 + 𝑗40.03 −15.00 − 𝑗50.00 25.0 − 𝑗90.03
]
 

The admittance matrix in polar form: 

𝑌BUS  = [
57.01∠−74.74∘ 15.81∠108.43∘ 41.23∠104.04∘

15.81∠108.43∘ 68.01∠−72.90∘ 52.20∠106.70∘

41.23∠104.04∘ 52.20∠106.70∘ 93.41∠−74.48∘
]
 

First Iteration: 𝑎𝑠𝑠𝑢𝑚𝑒 𝑉2 
[0] = 1.00∠0∘ and 𝑉3 

[0] = 1.03∠0∘. 

𝑉2 
[1] =

1

𝑌11

(
𝑃2 

𝑠𝑐ℎ − 𝑗𝑄2 
𝑠𝑐ℎ

𝑉2 
[0]∗

+ 𝑦21𝑉1 + 𝑦23𝑉3 
[0])

 =
1

57.0509∠−74.7043∘
(
−0.2 + 𝑗0.5

1.00∠0∘
+ (5 − 𝑗15)1.02∠0∘ + (−15.00 + 𝑗50)1.00∠0∘)

𝑽𝟐 
[𝟏] = 𝟏. 𝟎𝟏𝟐𝟎 − 𝒋𝟎. 𝟎𝟐𝟔𝟎 𝒑𝒖 = 𝟏. 𝟎𝟏𝟐𝟑∠ − 𝟏. 𝟒𝟕𝟏𝟕∘

 

 𝑄3 is unknown. Hence, it can be calculated using the equation below: 

𝑄3
[1]

= −Im {𝑉3
∗[0]

(𝑉3
[0](𝑦31 + 𝑦32) − [𝑦31𝑉1 + 𝑦32𝑉2 

[1]])}
 

𝑄3
[1]

=  −Im {1.03∠0∘(1.03∠0∘(10 − 𝑗40 + 15.00 − 𝑗50) − [(10 − 𝑗40)1.02∠0∘

 +(15.00 − 𝑗50)(1.0120 − j0.0260)])}

=  −Im {1.7201 − j0.9373} = 0.9373𝑝𝑢

 

Therefore, the voltage 𝑉3 
[1] can be calculated as follows:  
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 𝑉3 
[1]  =

1

𝑌33 
(
𝑃3

sch 
− 𝑗𝑄3

[1]

𝑉3 
[0]∗

+ 𝑦31𝑉1 + 𝑦32𝑉2
[1]

)

 =
1

10 − 𝑗40 + 15.00 − 𝑗50
(

1.5 − 𝑗0.9373

1.03∠0∘
+ (10 − 𝑗40)1.02∠0∘

+(15.00 − 𝑗50)(1.0120 − j0.0260)
)

 = 𝟏. 𝟎𝟐𝟗𝟒 − 𝒋𝟎. 𝟎𝟎𝟐𝟐𝒑𝒖 = 𝟏. 𝟎𝟐𝟗𝟒∠−. 𝟏𝟐𝟐𝟒𝟓∘ 

 

4.11 Line Flow and Power Loss 

Based on the explanation on section 3.4 of this paper, from bus 1 to 2, I12 = (V1 – V2) y12 = (1.02∠0° - 1.0123∠ − 

1. 4717∘) (5 − j15) = 15.7385∠103.409∘ pu 

S12 = V1 I*12 = (1.02∠0°) (15.7385∠ − 103.409∘) = 16.0533∠ − 103.409∘ pu 

16.0533∠ − 𝟏𝟎𝟑. 𝟒𝟎𝟗∘ pu.  

         Also, S21 = V2 𝐼21
∗   = (1.0123∠ − 1. 4717∘ )(−15.7385∠103.409∘)* = (15.9320∠75.1193) pu.  

Power loss in Line12 , SL12 = S12 + S21 = 0.3687 -0.2179j pu. 

 

4.2. Newton-Raphson Approach 
 

From Figure 1, we have 3 unknows: angles (, ) of bus 2 and 3 and bus 2 voltage. 

Step 1 - Using the admittance matrix in polar form: 

Step 2 - Obtain the Jacobian matrix elements using the following formulas: 

𝑃2 = |𝑉2||𝑉1||𝑌21|cos (𝜃21 − 𝛿2 + 𝛿1) + |𝑉2|
2|𝑌22|cos (𝜃22) + |𝑉2||𝑉3||𝑌23|cos (𝜃23 − 𝛿2 + 𝛿3) ………….(41) 

∂𝑃2

∂𝛿2

= |𝑉2||𝑉1||𝑌21|sin (𝜃21 − 𝛿2 + 𝛿1) + |𝑉2||𝑉3||𝑌23|sin (𝜃23 − 𝛿2 + 𝛿3) 

                                              
∂𝑃2

∂𝛿3

= −|𝑉2||𝑉3||𝑌23|sin (𝜃23 − 𝛿2 + 𝛿3) 

∂𝑃2

∂|𝑉2|
= |𝑉1||𝑌21|cos (𝜃21 − 𝛿2 + 𝛿1) + 2|𝑉2||𝑌22|cos (𝜃22) + |𝑉3||𝑌23|cos (𝜃23 − 𝛿2 + 𝛿3) 

      𝑃3  = |𝑉3||𝑉1||𝑌31|cos (𝜃31 − 𝛿3 + 𝛿1) + |𝑉3||𝑉2||𝑌32|cos (𝜃32 − 𝛿3 + 𝛿2) + |𝑉3|
2|𝑌33|cos (𝜃33) ………….(42) 

∂𝑃3

∂𝛿2

= −|𝑉2||𝑉3||𝑌32|sin (𝜃32 − 𝛿3 + 𝛿2) 

 ∂𝑃3

∂𝛿3

= |𝑉3||𝑉1||𝑌31|sin (𝜃31 − 𝛿3 + 𝛿1) + |𝑉3||𝑉2||𝑌32|sin (𝜃32 − 𝛿3 + 𝛿2) 

∂𝑃3

∂|𝑉2|
= |𝑉3||𝑌32|cos (𝜃32 − 𝛿3 + 𝛿2) 

    𝑄2  = −|𝑉2||𝑉1||𝑌21|sin (𝜃21 − 𝛿2 + 𝛿1) − |𝑉2|
2|𝑌22|sin (𝜃22) − |𝑉2||𝑉3||𝑌23|sin (𝜃23 − 𝛿2 + 𝛿3) …………..(43) 

∂𝑄2

∂𝛿2

= |𝑉2||𝑉1||𝑌21|cos (𝜃21 − 𝛿2 + 𝛿1) + |𝑉2||𝑉3||𝑌23|cos (𝜃23 − 𝛿2 + 𝛿3) 
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∂𝑄2

  ∂𝛿3

= −|𝑉2||𝑉3||𝑌23|cos (𝜃23 − 𝛿2 + 𝛿3) 

∂𝑄2

∂|𝑉2|
= −|𝑉1||𝑌21|sin (𝜃21 − 𝛿2 + 𝛿1) − 2|𝑉2||𝑌22|sin (𝜃22) − |𝑉3||𝑌23|sin (𝜃23 − 𝛿2 + 𝛿3) 

Single iteration: assume 𝑉2 
[0] = 1.00∠0∘ and 𝑉3 

[0] = 1.03∠0∘.  

Calculated values: [

𝑃2 
[1]

𝑃3 
[1]

𝑄2 
[1]

] = [
−0.5500
0.5665

−1.8000
] 

Given values (Figure 3): =  [

𝑃2
[0]

𝑃3
[0]

𝑄2
[0]

] = [
−2
1.5

−0.5
] 

Therefore, the power and Jacobian Matrix becomes: 

[

Δ𝑃2 
[1]

Δ𝑃3 
[1]

Δ𝑄2[1]

] = [
−2
1.5

−0.5
] − [

−0.5500
0.5665

−1.8000
] = [

−1.4500
0.9335
1.3000

] − 𝑃𝑜𝑤𝑒𝑟 𝑀𝑎𝑡𝑟𝑖𝑥 

𝐽𝑜𝑐𝑎𝑏𝑖𝑎𝑛 𝑀𝑎𝑡𝑟𝑖𝑥, 𝐽 = [
66.8 −51.5 19.45

−51.5 93.52 −15.45
−20.55 15.45 63.2

] 

Step 3: Newton-Raphson expression: 

[

Δ𝛿2 
[1]

Δ𝛿3 
[1]

Δ|𝑉2|
[1]

] = [
66.8 −51.5 19.45
20.19 93.52 −15.45
20.55 15.45 63.2

]

−1

[
−1.4500
−0.9335
1.3000

] = [
−0.0279rad
−0.0033rad
0.0123pu

]

[

𝛿2 
[1]

𝛿3 
[1]

|𝑉2|
[1]

] = [

𝛿2 
[0]

𝛿3 
[0]

|𝑉2|
[0]

] + [

Δ𝛿2 
[1]

Δ𝛿3 
[1]

Δ|𝑉2|
[1]

]

[

𝛿2 
[1]

𝛿3 
[1]

|𝑉2|
[1]

] = [
0
0

1.00
] + [

−0.0279 rad
−0.033 rad
0.0123 pu

] = [
−0.0279 rad
−0.0033rad
1.0123 pu

] = [
−1.5986∘

−0.1891°
1.0123 pu

]

 

4.3. Fast-Decoupled Approach 

[𝐵′] = [
−65     50
   50 −90

] 

Using values from the same power matrix in Newton-Raphson method, the Fast Decoupled method can be expressed 
as: 

[
Δ𝛿2

Δ𝛿3
] = −[𝐵′]−1 [

Δ𝑃2

|𝑉2|

Δ𝑃3

|𝑉3|

]  and [Δ|𝑉2|] = −[𝐵′′]−1 [
Δ𝑄2

|𝑉2|
]     ……………………………(44) 

Where    [𝐵′′] = [−65]  because of the unknown V2 

Therefore,  
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[
Δ𝛿2 

[1]

Δ𝛿3 
[1]

] = −[𝐵′]−1

[
 
 
 
 
Δ𝑃2 

[1]

|𝑉2|
[0]

Δ𝑃3 
[1]

|𝑉3|
[0] ]

 
 
 
 

= − [
−65 50
50 −90

]
−1

[

−1.4500

1.00
−0.9335

1.03

]

 = [
−0.0254 rad
−0.0041 rad

] = [
−1.4569∘

−0.2324°
]

[
𝛿2 

[1]

𝛿3 
[1]

] = [
𝛿2 

[0]

𝛿3 
[0]

] + [
Δ𝛿2 

[1]

Δ𝛿3 
[1]

] = [
0
0
] + [

−1.49569∘

−0.2324∘ ] = [
−1.4569∘

−0.2324∘]

 

[𝚫|𝑽𝟐|
[𝟏]] = −[−𝟏𝟗. 𝟔]−𝟏 [

𝟏. 𝟑

𝟏. 𝟎𝟎
] = 𝟎. 𝟎𝟐𝟎𝟎

[|𝑽𝟐|
[𝟏]] = |𝑽𝟐|

[𝟎] + 𝚫|𝑽𝟐|
[𝟏] = 𝟏. 𝟎𝟎 + 𝟎. 𝟎𝟐𝟎𝟎 = 𝟏. 𝟎𝟐𝟎 𝐩𝐮  

 

5. Simulations 

Power World software is used in simulating the IEEE 3-bus system to check against the illustrative results and an IEEE 
9-bus system. The software platform provides a user-friendly interface and a wide range of tools for analysis, 
visualization, and optimization of the power system. It is widely used by engineers and researchers in the field of 
electrical power systems to study and analyze the behavior of electric grids. It is a powerful tool for power system 
analysis and planning. 

5.1. Newton Raphson Method - Simulation 

The iteration solution for the IEEE 3-bus system using the software, for Newton Raphson technique is displayed in Table 
2. The corresponding simulation diagram is also shown in Figure 4.  

Table 2 Newton Raphson Method 5 iterations 

Iteration  V2k V3k 

1 1.0123 ∠ - 1.4717° 1.03 ∠ -0.1226° 

2 1.0119 ∠ - 1.5273° 1.03 ∠ -0.1644° 

3 1.0119 ∠ - 1.5598° 1.03 ∠ -0.1846° 

4 1.0119∠ - 1.5750° 1.03 ∠ -0.1941° 

5 1.0118 ∠ - 1.5823° 1.03 ∠ - 0.1986° 
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Figure 4 Newton Raphson Method – Simulation  

5.2. Gauss-Seidel Method - Simulation 

The iteration solution for the IEEE 3-bus system using the software, for Gauss-Seidel technique is displayed in Table 3. 
The corresponding simulation diagram is also shown in Figure 5.  

Table 3 Gauss-Seidel Method 5 iterations 

Iteration  V2k V3k 

1 1.0123 ∠ - 1.4717° 1.03 ∠ -0.1226° 

2 1.0119 ∠ - 1.5273° 1.03 ∠ -0.1644° 

3 1.0119 ∠ - 1.5598° 1.03 ∠ -0.1846° 

4 1.0119∠ - 1.5750° 1.03 ∠ -0.1941° 

5 1.0118 ∠ - 1.5823° 1.03 ∠ - 0.1986° 
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Figure 5 Gauss-Seidel Method-Simulation  

5.3. Fast Decoupled Method – Simulation  

The iteration solution for the IEEE 3-bus system using this software for Fast Decoupled technique is displayed in Table 
4. The corresponding simulation diagram is also shown in Figure 5.  

Table 4 Fast Decoupled Method 5 iterations 

Iteration  V2k V3k 

1 1.0123 ∠ - 1.4717° 1.03 ∠ -0.1226° 

2 1.0119 ∠ - 1.5273° 1.03 ∠ -0.1644° 

3 1.0119 ∠ - 1.5598° 1.03 ∠ -0.1846° 

4 1.0119∠ - 1.5750° 1.03 ∠ -0.1941° 

5 1.0118 ∠ - 1.5823° 1.03 ∠ - 0.1986° 
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Figure 6 Fast Decoupled Method – Simulation  

5.4. IEEE 9-Bus System - Simulations using Newton Raphson Method 

Figure 9 is the simulation diagram for an IEEE 9-bus system. Table 5.0 is the corresponding power flow and voltage at 
the buses for one iteration. The results are actual values instead of per unit values .  

 

Figure 7 IEEE 9-bus System [16] 
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Table 5 IEEE 9-Bus System [16] 

Bus 

No 

Angle 

Degree 

Voltage 

(kV) 

Load 

P                                      

MW                 

Q Mvar Generation 

P                                    

MW                                            

Q Mvar Injected Power 

P                       

MW         Q Mvar 

1 16.99 0.000   0.000                  0.000 153.000                                   85.000 0.000          0.000 

2 231.22 -1.050 10.000                 5.000      0.000                                     0.000 0.000          0.000 

3 226.480 -1.920 25.000               15.000      0.000                                     0.000 0.000          0.000 

4 228.170 -2.270 60.000               40.000      0.000                                     0.000 0.000          0.000 

5 18.000 -2.890   0.000                  0.000    80.000                                  94.000 0.000          0.000 

6 221.490 -2.870 100.000              80.000      0.000                                     0.000 0.000          0.000 

7 222.050 -2.380   80.000              60.000      0.000                                     0.000 0.000          0.000 

8 13.800 -1.020   40.000              20.000  120.000                                  71.000 0.000          0.000 

9 224.660 -2.160   20.000              10.000       0.000                                     0.000 0.000          0.000 

 

6. Results and Discussions 

Power flow analysis, or load flow analysis, has a wide range of applications in power systems operation and planning. 
The illustrative examples of the IEEE 3-bus system agree with the simulation results. The results of the IEEE 9-bus 
system are satisfactory. The student version of Power World software is user friendly and can handle up to 22-bus 
system. The professional version can handle up to 250,000 nodes or buses.  

7. Conclusion 

Power flow analysis is performed by solving power network equations. Since these equations are nonlinear, iterative 
techniques such as the Gauss-Seidel, the Newton-Raphson, and the Fast-Decoupled power flow methods are commonly 
used for the analysis. In general, the Gauss-Seidel method is simple but converges slower than the Newton-Raphson 
method and the Fast-Decoupled method. However, the Newton Raphson method requires the Jacobian matrix formation 
at every iteration. The fast-decoupled power flow method is a simplified version of the Newton-Raphson method. This 
simplification is achieved in two steps: 1) decoupling real and reactive power calculations; 2) obtaining of the Jacobian 
matrix elements directly from the Y-bus matrix. The illustrative examples serve to guide the novel reader to understand 
in a tutorial faction the techniques and procedures for the solution of load flow problem. The Power World software 
student version is freely available for download and Engineering students can take advantage of its free availability.  
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