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Abstract 

As Large Language Models (LLMs) become increasingly sophisticated and ubiquitous in natural language processing 
(NLP) applications, ensuring their robustness, trustworthiness, and alignment with human values has become a critical 
challenge. This paper presents a novel framework for contextual grounding in textual models, with a particular 
emphasis on the Context Representation stage. Our approach aims to enhance the reliability and ethical alignment of 
these models through a comprehensive, context-aware methodology. By explicitly capturing and representing relevant 
situational, cultural, and ethical contexts in a machine-readable format, we lay the foundation for anchoring a model's 
behavior within these contexts. Our approach leverages techniques from knowledge representation and reasoning, such 
as ontologies, semantic web technologies, and logic-based formalisms. We evaluate our framework on real-world 
textual datasets, demonstrating its effectiveness in improving model performance, fairness, and alignment with human 
expectations, while maintaining high accuracy. Furthermore, we discuss the other key components of the framework, 
including context-aware encoding, context-aware learning, interpretability and explainability, and continuous 
monitoring and adaptation. This research contributes to the growing body of work on responsible AI, offering a practical 
approach to developing more reliable, trustworthy, and ethically-aligned language models. Our findings have significant 
implications for the deployment of LLMs in sensitive domains such as healthcare, legal systems, and social services, 
where contextual understanding is paramount.  

Keywords: Contextual Grounding; Large Language Models (LLM); Context Representation; Interpretability; Natural 
Language Processing (NLP) 

1. Introduction

LLM based Natural language processing (NLP) models have achieved significant advancements in recent years, enabling 
a diverse array of applications, including language translation, text summarization, dialogue systems, and content 
recommendation. However, the widespread adoption of these models has heightened concerns regarding their 
propensity to generate harmful or biased outputs, especially when deployed in sensitive contexts or high-stakes 
business domains. Contextual grounding, defined as the process of anchoring a model's understanding and decision-
making within relevant situational, cultural, and ethical contexts, has emerged as a promising solution to these 
challenges. By explicitly incorporating contextual information, it is possible to better align a model's behavior with 
human expectations, societal norms, and ethical principles, thereby mitigating the risks of unintended or harmful 
consequences.  

This paper proposes a novel framework for contextual grounding in textual models, aimed at enhancing their 
robustness, trustworthiness, and safety. Our approach focuses on the Context Representation stage, which involves 
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developing methods to capture and represent relevant contextual information in a machine-readable format using 
knowledge representation techniques. We also provide an overview of the other key components of the framework, 
including context-aware encoding, context-aware learning, interpretability and explainability, and continuous 
monitoring and adaptation. 

2. Related Work 

Contextual grounding has been explored in various domains within natural language processing (NLP), including 
sentiment analysis, dialog systems, and ethical language generation. Researchers have investigated how contextual 
factors like domain knowledge [1], cultural nuances [2], and situational contexts [3] impact the accuracy and fairness of 
models. Yushi Yao, Guangjian Li [4] proposed a context-aware sentiment analysis model that enhances sentiment word 
identification by incorporating contextual information. For dialog systems, studies have shown that incorporating 
contextual information such as conversational history, user profiles, and situational awareness can significantly 
improve the quality and naturalness of generated responses [5]. Zhaojiang et al. [6] introduced a context-aware neural 
conversation model that considers multi-turn dialog history and personal traits of the participants. In ethical language 
generation, the importance of contextual grounding has been recognized to ensure AI systems generate language 
aligning with societal norms, cultural values, and ethical principles [7].  

Researchers at the Allen Institute for AI [8] proposed a framework for ethical language generation that incorporates 
social, cultural context, and ethical reasoning principles to avoid generating harmful or biased content. Additionally, 
studies emphasize the need to consider ethical and societal implications when developing and deploying AI systems [9, 
10]. For instance, the AI Now Institute [10] highlights the importance of considering the broader societal impact, ethical 
implications, and potential risks associated with AI systems, particularly in sensitive domains or high-stakes 
applications. However, a comprehensive framework for contextual grounding in textual models, specifically focused on 
enhancing their robustness, trustworthiness, and safety, remains an area requiring further exploration and 
development. While previous works have addressed contextual grounding in specific domains or tasks, a unified 
approach integrating techniques from knowledge representation, adversarial training, interpretable AI, and continuous 
monitoring is lacking. Existing methods often focus on individual aspects of contextual grounding, such as incorporating 
domain knowledge or mitigating specific biases.  

A holistic framework considering the interplay between situational, cultural, and ethical contexts, and their impact on 
model behavior across various tasks and applications, is needed to ensure the overall robustness, trustworthiness, and 
safety of textual models. By addressing this gap, the proposed framework in this paper aims to provide a comprehensive 
and principled approach to contextual grounding, enabling the development of more reliable, ethical, and trustworthy 
NLP systems that can be deployed in a wide range of real-world scenarios while aligning with human values and societal 
expectations. 

3. Proposed framework 

The proposed framework as displayed in Figure 1 below, comprises of five key components that work together to enable 
contextual grounding in textual models. Firstly, the Context Representation component captures and represents 
relevant contextual information, such as situational factors, cultural norms, and ethical considerations, in a machine-
readable format using techniques from knowledge representation and reasoning. The Context-Aware Encoding 
component then integrates this contextual information with the textual inputs, ensuring that the model's understanding 
and decision-making are influenced by the relevant context. The Context-Aware Learning component incorporates 
contextual grounding into the model's training process, enabling it to learn context-sensitive representations and 
decision boundaries through techniques like multitask learning, adversarial training, and curriculum learning. To 
enhance transparency and scrutiny of the model's decision-making processes, the Interpretability and Explainability 
component leverages techniques from interpretable AI, such as attention visualization and counterfactual explanations. 
Finally, the Continuous Monitoring and Adaptation component implements mechanisms for continuous monitoring and 
adaptation of the model's behavior based on feedback and evolving contextual factors, using techniques from online 
learning and continual learning.  
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Figure 1 Proposed framework 

The Context Representation stage is the primary focus of this paper. We develop methods to capture and represent 
relevant contextual information, such as situational factors, cultural norms, and ethical considerations, in a machine-
readable format. This involves leveraging techniques from knowledge representation and reasoning, including 
ontologies, semantic web technologies, and logic-based formalisms. 

𝑃(𝐶) =  { 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 =  𝑈𝑆, 𝑟𝑒𝑙𝑖𝑔𝑖𝑜𝑛 =  𝐶ℎ𝑟𝑖𝑠𝑡𝑖𝑎𝑛, 𝑎𝑔𝑒𝑔𝑟𝑜𝑢𝑝 =  𝑌𝑜𝑢𝑡ℎ} . . . . . . . . . (1) 

Let 𝐶 =  { 𝑐1, 𝑐2, … , 𝑐𝑛} be the set of context elements. Each context element 𝑐ᵢ ∈  𝐶 is represented as a set of predicates 
𝑃(𝑐ᵢ) and their associated values.  

3.1. Situational Context 

We developed ontologies to represent situational factors, such as location, time, activity, and environmental conditions. 
These ontologies capture the relationships and constraints among various situational elements, enabling context-aware 
reasoning and inference. Example ontology for representing situational contexts can be represented with formulas (2), 
(3), (4), (5) and (6). 

𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛 ⊆ 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 . . . . . . . . . (2) 

𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛 ≡ ∃ℎ𝑎𝑠𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛. 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ⊓ ∃ℎ𝑎𝑠𝑇𝑖𝑚𝑒. 𝑇𝑖𝑚𝑒 ⊓ ∃ℎ𝑎𝑠𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦. 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 … … . . (3) 

𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ⊆ 𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝑇ℎ𝑖𝑛𝑔 . . . . . . . . (4)  

𝑇𝑖𝑚𝑒 ⊆ 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝑇ℎ𝑖𝑛𝑔 . . . . . . . . . . (5) 

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ⊆ 𝐸𝑣𝑒𝑛𝑡 . . . . . . . . . (6) 

At the highest level, the ontology establishes that a Situation is a subset of Context (2). This relationship implies that 
every situation is a specific instance or type of context, but not all contexts are necessarily situations. This distinction is 
important for differentiating between general contextual information and more specific situational data. The core of the 
ontology lies in its definition of a Situation (3). This formal description states that a Situation is equivalent to the 
conjunction of three existential relationships: it has a Location, it has a Time, and it has an Activity. Each of these 
components must exist for something to be classified as a Situation in this ontology. This definition provides a clear 
structure for what constitutes a situation, enabling more precise reasoning about contextual factors. The ontology 
further refines these components by establishing hierarchical relationships (4), (5), and (6). 
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3.2. Cultural Context 

We developed ontologies to represent cultural norms, values, and practices, integrating them with existing cultural 
knowledge bases or datasets. These ontologies capture the relationships and hierarchies among cultural concepts, 
enabling context-aware reasoning and inference. Example ontology for representing cultural contexts can be 
represented with formulas (7), (8), (9), (10), (11) and (12). 

𝐶𝑢𝑙𝑡𝑢𝑟𝑒 ⊆ 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 . . . . . . . . . (7) 

𝐶𝑢𝑙𝑡𝑢𝑟𝑒 ≡ ∃ℎ𝑎𝑠𝑅𝑒𝑔𝑖𝑜𝑛. 𝑅𝑒𝑔𝑖𝑜𝑛 ⊓ ∃ℎ𝑎𝑠𝐸𝑡ℎ𝑛𝑖𝑐𝐺𝑟𝑜𝑢𝑝. 𝐸𝑡ℎ𝑛𝑖𝑐𝐺𝑟𝑜𝑢𝑝 ⊓ ∃ℎ𝑎𝑠𝑅𝑒𝑙𝑖𝑔𝑖𝑜𝑛. 𝑅𝑒𝑙𝑖𝑔𝑖𝑜𝑛 

⊓ ∃ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒. 𝑉𝑎𝑙𝑢𝑒 . . . . . . . . . (8) 

𝑅𝑒𝑔𝑖𝑜𝑛 ⊆ 𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝑇ℎ𝑖𝑛𝑔 . . . . . . . . . (9) 

𝐸𝑡ℎ𝑛𝑖𝑐𝐺𝑟𝑜𝑢𝑝 ⊆ 𝑆𝑜𝑐𝑖𝑎𝑙𝐺𝑟𝑜𝑢𝑝 . . . . . . . . . (10) 

𝑅𝑒𝑙𝑖𝑔𝑖𝑜𝑛 ⊆ 𝐵𝑒𝑙𝑖𝑒𝑓𝑆𝑦𝑠𝑡𝑒𝑚 . . . . . . . . . (11) 

𝑉𝑎𝑙𝑢𝑒 ⊆ 𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝐶𝑜𝑛𝑐𝑒𝑝𝑡 . . . . . . . . . (12) 

The ontology begins by establishing Culture as a subset of Context (7), indicating that cultural aspects are specific 
instances of broader contextual information. The core definition of Culture (8) is composed of four key elements: Region, 
EthnicGroup, Religion, and Value. This definition suggests that a culture is characterized by its geographical location, the 
ethnic groups it encompasses, its religious influences, and its core values. The ontology further refines these 
components by establishing hierarchical relationships. Region is defined as a subset of SpatialThing (9), linking cultural 
geography to broader spatial concepts. EthnicGroup is categorized as a subset of SocialGroup (10), placing ethnic 
identities within the larger framework of social structures. Religion is classified as a subset of BeliefSystem (11), 
contextualizing religious practices within broader ideological frameworks. Lastly, Value is defined as a subset of 
AbstractConcept (12), suggesting that cultural values are specific types of abstract ideas. 

3.3. Ethical Context 

We developed ontologies to represent ethical principles, guidelines, and considerations, incorporating frameworks 
from moral philosophy and ethical reasoning. These ontologies capture the relationships and hierarchies among ethical 
concepts, enabling context-aware reasoning and inference. Example ontology for representing ethical contexts can be 
represented with formulas (13), (14), (15), (16), (17). 

𝐸𝑡ℎ𝑖𝑐𝑎𝑙𝐶𝑜𝑛𝑡𝑒𝑥𝑡 ⊆ 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 . . . . . . . . . (13) 

𝐸𝑡ℎ𝑖𝑐𝑎𝑙𝐶𝑜𝑛𝑡𝑒𝑥𝑡 ≡ ∃ℎ𝑎𝑠𝑃𝑟𝑖𝑛𝑐𝑖𝑝𝑙𝑒. 𝐸𝑡ℎ𝑖𝑐𝑎𝑙𝑃𝑟𝑖𝑛𝑐𝑖𝑝𝑙𝑒 ⊓ ∃ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒. 𝑉𝑎𝑙𝑢𝑒 ⊓ ∃ℎ𝑎𝑠𝑁𝑜𝑟𝑚. 𝐸𝑡ℎ𝑖𝑐𝑎𝑙𝑁𝑜𝑟𝑚. . . . . . . ..(14) 

𝐸𝑡ℎ𝑖𝑐𝑎𝑙𝑃𝑟𝑖𝑛𝑐𝑖𝑝𝑙𝑒 ⊆ 𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝐶𝑜𝑛𝑐𝑒𝑝𝑡 . . . . . . . . . (15) 

𝑉𝑎𝑙𝑢𝑒 ⊆ 𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝐶𝑜𝑛𝑐𝑒𝑝𝑡 . . . . . . . . . (16) 

𝐸𝑡ℎ𝑖𝑐𝑎𝑙𝑁𝑜𝑟𝑚 ⊆ 𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝐶𝑜𝑛𝑐𝑒𝑝𝑡 . . . . . . . . . (17) 

This ontology formalizes ethical contexts for improved reasoning in Large Language Models. (13) establishes 
EthicalContext as a subset of Context, situating ethical considerations within broader contextual frameworks. The core 
definition in (14) characterizes an EthicalContext through three essential components: EthicalPrinciple, Value, and 
EthicalNorm. (15), (16), and (17) further refine these elements by categorizing them as subsets of AbstractConcept, 
emphasizing their conceptual nature. This structure enables LLMs to process ethical considerations more 
systematically, facilitating nuanced understanding and generation of ethically-aware language by providing a 
framework for principles, values, and norms within ethical reasoning.  

While the Context Representation stage is the primary focus of this paper, we provide a brief overview of the other 
components of the proposed framework in the subsequent sections. 

3.4. Context-Aware Encoding 

This component integrates contextual information with textual inputs, ensuring that the model's understanding and 
decision-making are influenced by the relevant context. This is achieved through context-aware encoding [17] 
mechanisms, such as conditioning the input representations on the context or using attention mechanisms to 
dynamically attend to relevant context elements. 
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3.5. Context-Aware Learning 

This component incorporates contextual grounding into the model's training process, enabling it to learn context-
sensitive representations and decision boundaries. This is accomplished through techniques such as multitask learning, 
adversarial training, and curriculum learning, where the model is exposed to increasingly complex and diverse contexts 
during training [18]. 

3.6. Interpretability and Explainability 

To enhance the transparency and scrutiny of the model's decision-making processes, this component leverages 
techniques from interpretable AI, such as attention visualization [19], concept activation vectors [20], and 
counterfactual explanations [21]. These techniques allow for better understanding of how the model's outputs are 
influenced by the provided context. 

3.7. Continuous Monitoring and Adaptation 

This component implements mechanisms for continuous monitoring and adaptation of the model's behavior based on 
feedback and evolving contextual factors. This involves techniques from online learning [22] and continual learning, 
enabling the model to adapt and refine its understanding of relevant contexts over time. 

3.8. Data Collection  

To evaluate the effectiveness of our proposed framework for contextual grounding in textual models, we conducted 
experiments on a real-world dataset focused on bias detection and mitigation. The Social Bias Inference Corpus (SBIC) 
[11] dataset was chosen for this purpose, as it contains a diverse collection of sentence pairs annotated for the presence 
of biases related to sensitive attributes such as gender, race, religion, and age. By utilizing this dataset, we aimed to 
assess the framework's ability to incorporate contextual information about sensitive attributes and mitigate biases, 
thereby aligning the model's behavior with societal norms and ethical principles. The experimental setup involved 
training and evaluating our context-grounded models, as well as several baseline models, on the SBIC dataset. 
Appropriate evaluation metrics were carefully selected to measure not only the accuracy of bias detection and 
classification but also the fairness and interpretability of the models' predictions across different sensitive attribute 
groups. The details of the dataset, evaluation metrics, and baseline models used in our experiments are provided in the 
following sections. The SBIC dataset consists of over 150,000 sentence pairs, where each pair contains a sentence and 
a corresponding hypothesis statement. The sentences and hypotheses are annotated for the presence of biases related 
to various sensitive attributes, such as gender, race, religion, and age. 

 

Figure 2 Bias type distribution 

The dataset contains detailed information including the original sentences from the corpus and their corresponding 
hypotheses, which are crafted to test for potential biases. It includes bias annotations that label whether the sentences 
or hypotheses exhibit biases related to sensitive attributes such as gender, race, religion, and age, among others. 
Additionally, it identifies specific types of biases present, such as toxicity, stereotyping, or offensive language. 
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3.9. Data Preprocessing  

We performed extensive data preprocessing and cleaning steps on the SBIC dataset. This included handling missing 
values, removing duplicates, and ensuring consistent formatting of the sensitive attribute information and bias 
annotations. Additionally, we split the dataset into training, validation, and test sets, following the recommended ratios 
provided by the dataset creators. To manage the training process efficiently, we leveraged distributed training 
techniques, where the model and data were partitioned across multiple GPU nodes. This allowed us to accelerate the 
training time and handle larger batch sizes, which can improve the model's generalization performance. 

3.10. Evaluation 

Quantitative Metrics: We evaluated the performance of our contextual grounding framework on the SBIC dataset using 
bias detection accuracy, bias type classification accuracy, fairness and interpretability metric. Bias Detection Accuracy 
(BDA) identifies the presence or absence of biases in the sentence or hypothesis pairs. 

𝐵𝐷𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝐵 + 𝐹𝑃 + 𝐹𝑁
 

where: 

 TP (True Positives): The number of instances where the model correctly identified the presence of bias. 
 TN (True Negatives): The number of instances where the model correctly identified the absence of bias. 
 FP (False Positives): The number of instances where the model incorrectly identified bias when there was none. 
 FN (False Negatives): The number of instances where the model failed to identify bias when it was present. 

 

Bias Type Classification Accuracy (BTCA) measures the accuracy of correctly classifying the specific type of bias present 
in the sentence or hypothesis pairs. 

𝐵𝑇𝐶𝐴 =
∑ 𝑇𝑃(𝑘)𝐾

𝑘=1

𝑁
 

 𝑁 is the total number of instances (sentence/hypothesis pairs) in the dataset 
 𝑘 is the index of each bias type category. 
 𝐾 is the total number of bias type categories. 
 𝑇𝑃(𝑘) is the number of instances correctly classified as belonging to bias type k i.e. true positive 

 

Fairness is measured by bias detection metrics, such as the Disparate Impact Score (DIS)[13,14,15] and the Equal 
Opportunity Difference (EOD)[16], to assess the fairness of the model's predictions across different sensitive attribute 
groups. Fairness is a critical metric in evaluating the performance of our contextual grounding framework, as it assesses 
the model's ability to mitigate biases and maintain consistent behavior across various groups defined by sensitive 
attributes such as gender, race, religion, or age. We used DIS which is a widely used metric for measuring fairness in 
binary classification tasks. It compares the ratio of positive outcomes between two groups, with a value of 1 indicating 
perfect fairness. 

𝐷𝐼𝑆 =
𝑃( 𝑌 = 1 ∣∣ 𝐺 = 𝑔′ )

𝑃( 𝑌 = 1 ∣∣ 𝐺 = 𝑔 )
 

where: 

 𝑃(𝑌 = 1|𝐺 = 𝑔): The probability of a positive outcome (e.g., being classified as biased) for instances belonging 
to group 𝑔. 

 𝑃(𝑌 = 1|𝐺 = 𝑔′): The probability of a positive outcome for instances belonging to a reference group 𝑔′. 
 

We also used the Equal Opportunity Difference (EOD) to measure fairness that focuses on the true positive rate (recall) 

for different groups. It measures the absolute difference in true positive rates between two groups, with a value of 0 

indicating perfect fairness. 
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𝐸𝑂𝐷 = ∣ 𝑇𝑃𝑅(𝑔) − 𝑇𝑃𝑅(𝑔′) ∣ 

where: 

 𝑇𝑃𝑅(𝑔): The true positive rate (recall) for instances belonging to group 𝑔. 

 𝑇𝑃𝑅(𝑔′): The true positive rate for instances belonging to a reference group 𝑔′. 

3.11. Qualitative Assessment 

In addition to quantitative metrics, we conducted qualitative assessments by involving human participants. We 
measured the Interpretability of our contextual grounding framework through user studies, where human participants 
rated the coherence and helpfulness of the model's explanations for its bias detection and classification decisions. We 
conducted user studies with a diverse group of participants representing various backgrounds and perspectives. We 
presented the participants with a sample of the model's predictions and the accompanying explanations, which included 
visualizations, textual descriptions, and other forms of interpretable outputs generated by our framework's 
Interpretability and Explainability component. The participants were asked to rate the coherence and helpfulness of 
these explanations on a predefined 5-point Likert scale [23] where 1 represented "not coherent/helpful at all" and 5 
represented "highly coherent/helpful." We collected ratings for individual explanations and aggregated them across 
multiple instances to obtain an overall assessment of the framework's Interpretability.  

Additionally, we gathered qualitative feedback and comments from the participants to gain deeper insights into the 
strengths and weaknesses of the explanations, as well as suggestions for improvement.  

The Interpretability metric was calculated as the average rating across all participants and instances. This metric 
provides a quantitative measure of the framework's ability to generate coherent and helpful explanations that align 
with human expectations.  

It is important to note that interpretability is a subjective and context-dependent metric, as it relies on human 
perception and judgment. To mitigate potential biases and obtain a comprehensive assessment of the framework's 
Interpretability, we ensured a diverse and representative sample of participants in the user studies. 

4. Model architecture and training parameters 

For the context-grounded models, we employed the T5-Small architecture [24], which has proven effective in various 
language understanding tasks while being more compact than larger LLMs. The T5-Small model consists of 6 encoder 
and 6 decoder layers, 512 hidden dimensions, 8 attention heads, and approximately 60M parameters. To train our 
context-grounded models, we utilized a standard workstation with NVIDIA RTX 3080 GPUs, which provided sufficient 
computational power for our experiments with smaller LLMs. We used the PyTorch deep learning framework and the 
Hugging Face Transformers library, which offer optimized implementations of various pre-trained language models, 
including T5, BART, and DistilBERT. These libraries facilitated the integration of our custom context representation 
modules with the pre-trained models, enabling seamless fine-tuning on the SBIC dataset. We compared our context-
grounded models against the following baselines: 

 Non-contextual Model (DistilBERT): We used the pre-trained DistilBERT [25] model as a standard smaller LLM 
trained on the SBIC dataset without any contextual information. This model served as a baseline to measure the 
impact of incorporating contextual information.  

 Simple Context Concatenation (BART-Base): For this baseline, we used the BART-Base model [26] and 
concatenated the sensitive attribute information (e.g., gender, race, religion) with the sentence and hypothesis 
as a simple string during the input representation stage.  

 Metadata-based Context Model (T5-Base): We employed the T5-Base model and provided the sensitive 
attribute information as additional metadata features during training and inference. These metadata features 
were passed as separate inputs to the model, alongside the sentence and hypothesis inputs. 

For all models, including the baselines, we used pre-trained Transformer-based language models as the underlying 
architecture. These models were then fine-tuned on the SBIC dataset for the task of bias detection and classification. 
Specifically, we used the following model configurations. 
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Table 1 Model architecture for the baseline models 

Model Encoder layers Hidden dimensions Attention heads Parameters 

DistilBERT 6 768 12 66M 

BART-Base 6 768 12 139M 

T5-Base 12 768 12 220M 

The only difference among these models lies in how the contextual information (i.e., sensitive attribute information) is 
incorporated or handled during the input representation and training/inference stages. 

5. Model Training  

5.1. Pretraining 

We initialized our models with pre-trained weights for T5-Small, DistilBERT, BART-Base, and T5-Base. These models 
were obtained through various pretraining objectives such as masked language modeling, text-to-text transfer, and 
denoising autoencoding on large corpora of text data. 

5.2. Context Representation 

We developed ontologies to represent the relevant contextual information, including situational, cultural, and ethical 
contexts. These ontologies were encoded using OWL (Web Ontology Language) [27] and stored as RDF (Resource 
Description Framework) [28] triples. 

5.3. Context Integration 

We integrated the context representations with the input sequences by concatenating the relevant RDF triples with the 
sentence and hypothesis pairs from the SBIC dataset. For encoder-decoder models like T5 and BART, we prepended the 
context information to the input sequence. 

5.4. Fine-tuning 

We fine-tuned each model on the SBIC dataset using appropriate loss functions for the bias detection and classification 
tasks. For T5 and BART, we used a text-to-text format, treating the task as a generation problem. For DistilBERT, we 
used the standard cross-entropy loss. The general fine-tuning objective can be formulated as: 

𝐿 = −
1

𝑁
∑[𝑦𝑖  𝑙𝑜𝑔(𝑝𝑖) + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑝𝑖)]

𝑁

𝑖=1

 

where -  

 𝑁 is the number of training instances 
 𝑦𝑖  is the true label (0 or 1 for bias detection, or a categorical label for bias type classification) 
 𝑝𝑖  is the model's predicted probability for the corresponding label 

For T5 and BART models, we adjusted this objective to suit their text-to-text framework, using teacher forcing during 
training. We employed gradient accumulation and mixed-precision training to efficiently handle larger batch sizes on 
limited GPU resources, ensuring effective training of these smaller yet capable LLMs. 

5.5. Context-Aware Learning 

To incorporate contextual grounding into the training process, we employed a multi-task learning approach [12]. In 
addition to the primary task of bias detection and classification, we introduced an auxiliary task of predicting the 
relevant context elements based on the input sequence. This auxiliary task encouraged the model to learn context-
sensitive representations and decision boundaries. For the encoder-only model (DistilBERT), we added an additional 
classification head for the auxiliary task. For the encoder-decoder models (T5-Small, BART-Base, and T5-Base), we 
formulated the auxiliary task as an additional generation task. The overall training objective became: 
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𝐿𝑡𝑜𝑡𝑎𝑙  =  𝐿𝑚𝑎𝑖𝑛  + 𝜆 𝐿𝑎𝑢𝑥  
where -  

 𝐿𝑚𝑎𝑖𝑛 is the is the loss for the main task (cross-entropy for DistilBERT, sequence generation loss for T5 and 
BART models) 

 𝐿𝑎𝑢𝑥  is the loss for the auxiliary context prediction task (cross-entropy for DistilBERT, sequence generation loss 
for T5 and BART models) 

 𝜆 is a hyperparameter controlling the weight of the auxiliary task 

We trained our model for 10 epochs using the Adam optimizer with a learning rate of 2e-5, a batch size of 32, and a 
linear warmup schedule for the first 10% of the training steps. We employed dropout regularization with a rate of 0.1 
to prevent overfitting. The training process was conducted on a single NVIDIA Tesla V100 GPU with 32GB of VRAM. The 
average training time for one epoch was approximately 2 hours and 15 minutes.  

 

Figure 3 Training time per epoch for different LLMs 

The Figure 4. shows the learning rate schedule over 10 epochs. We use a cosine annealing learning rate scheduling with 
warm restarts, which is often used in training language models. This schedule allows for periodic resets of the learning 
rate, which can help the model escape local minima.  

 

 Figure 4 Learning rate schedules over Epochs 
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During the training process, we evaluated the model's performance on the validation set after each epoch. We observed 
steady improvements in the bias detection accuracy, bias type classification accuracy, and fairness metrics (Disparate 
Impact Score and Equal Opportunity Difference) over the course of training. 

 

Figure 5 Training and validation loss over epochs for T5-Small model with Contextual Grounding  

6. Results 

The empirical evaluation of our context-grounded T5-Small model on the Social Bias Inference Corpus (SBIC) dataset 
yielded promising results, demonstrating the efficacy of our proposed framework in mitigating biases and aligning the 
model's behavior with societal norms and ethical principles related to sensitive attributes. After the 10th epoch of 
training, our model achieved the following performance metrics on the validation set. 

Table 2 Comparison of our T5-small Context-aware model vs. the baseline performance 

Model 
Bias Detection 
Accuracy 

Bias type Classification 
Accuracy 

Disparate Impact 
Score (Gender) 

Equal Opportunity 
Difference (Race) 

T5-small (Context-aware) 89.7% 84.2% 0.98 0.07 

Baseline A 86.9% 80.8% 0.96 0.11 

Baseline B 85.2% 81.5% 0.95 0.09 

Baseline C 82.3% 79.7% 0.93 0.12 
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Figure 7 Comparison of Bias detection accuracy across different contextual integration methods 

The high Bias Detection Accuracy of 89.7% indicates that our model effectively learned to identify the presence or 
absence of biases in the sentence and hypothesis pairs, a critical first step in addressing bias mitigation. 

 

Figure 8 Disparate Impact Score (Gender) 

Moreover, the Bias Type Classification Accuracy of 84.2% highlights the model's ability to accurately categorize the 
specific types of biases present, enabling targeted mitigation strategies for different bias categories. Notably, our model 
exhibited a Disparate Impact Score of 0.98 for the gender attribute, indicating near-perfect fairness in the treatment of 
gender groups. A Disparate Impact Score close to 1 suggests that the model's predictions are unbiased and do not 
discriminate based on gender, a desirable property in sensitive tasks involving demographic attributes. 
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Figure 9 Equal Opportunity Difference (Race) 

Furthermore, the Equal Opportunity Difference of 0.07 for the race attribute demonstrates that our model maintains a 
consistent true positive rate (recall) across different racial groups. This low value indicates that the model's ability to 
correctly identify positive instances (biased sentences/hypotheses) is relatively equal for all racial groups, further 
reinforcing the fairness and unbiased nature of our approach. These quantitative results underscore the effectiveness 
of our contextual grounding framework in mitigating biases and aligning the model's behavior with societal norms and 
ethical principles related to sensitive attributes. By explicitly incorporating contextual information, such as situational 
factors, cultural norms, and ethical considerations, our framework enables the model to learn context-sensitive 
representations and decision boundaries, leading to more fair and unbiased predictions. Compared to the baseline 
models, our context-grounded model exhibited superior performance across all evaluation metrics, demonstrating the 
added value of our knowledge representation techniques and context-aware learning strategies. The integration of 
contextual information and the incorporation of ethical principles into the model's training process significantly 
improved its ability to mitigate biases and align with human expectations. It is important to note that while the results 
are promising, there is still room for further refinement and optimization. The training process and the specific 
hyperparameters may need to be fine-tuned based on the characteristics of the dataset and the desired trade-offs 
between different evaluations metrics. Additionally, continuous monitoring and adaptation of the model's behavior, as 
outlined in our framework, are crucial to ensure long-term robustness and alignment with evolving societal norms and 
ethical considerations. Overall, the empirical evaluation of our context-grounded model on the SBIC dataset provides 
strong evidence for the value proposition of our framework in developing trustworthy and unbiased natural language 
processing systems that can be deployed in sensitive domains while adhering to ethical principles and societal 
expectations. 

7. Conclusion and Future Directions 

While this study focused on contextual grounding for textual models, future research could explore extending the 
proposed framework to multimodal models that integrate various data modalities, such as text, images, and audio. 
Incorporating contextual grounding into multimodal models presents unique challenges and opportunities. One key 
challenge is the effective representation and integration of contextual information across different modalities. 
Techniques from multimodal fusion, such as attention mechanisms and tensor fusion, could be leveraged to combine 
modality-specific contextual representations. Additionally, adversarial training methods could be employed to 
encourage the model to learn modality-invariant contextual representations.  

Another research direction could involve developing methods for context-aware multimodal generation, where the 
generated outputs (e.g., text, images, or audio) are tailored to the relevant context. This could involve conditional 
generation models that take contextual information as input, or techniques for post-processing generated outputs based 
on contextual constraints.  

Furthermore, the interpretability and explainability of multimodal models pose additional challenges, as it becomes 
necessary to understand the interplay between different modalities and the contextual factors influencing the model's 
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decisions. Novel visualization and explanation techniques that can effectively convey the complex relationships 
between modalities and context could be explored.  

Overall, extending contextual grounding to multimodal models has the potential to enhance the robustness, 
trustworthiness. Contextual grounding is a critical component in ensuring the robustness, trustworthiness, and safety 
of textual AI models. By anchoring the model's understanding and decision-making within the relevant context, we can 
mitigate potential risks of harmful or biased outputs while enhancing their alignment with human values and ethical 
principles. Our proposed framework, with a particular emphasis on the Context Representation stage, provides a 
structured approach to incorporating contextual grounding into textual models, leveraging techniques from knowledge 
representation and reasoning.  
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