
 Corresponding author: Md Rakibul Karim Akanda 

Copyright © 2024 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0. 

Machine learning based object tracking 

Md Rakibul Karim Akanda *, Joshua Reynolds, Treylin Jackson and Milijah Gray  

Department of Engineering Technology, Savannah State University—Savannah, GA 31404, United States of America. 

World Journal of Advanced Engineering Technology and Sciences, 2024, 11(01), 048–055 

Publication history: Received on 09 December 2023; revised on 20 January 2024; accepted on 22 January 2024 

Article DOI: https://doi.org/10.30574/wjaets.2024.11.1.0021 

Abstract 

Machine learning based object detection as well as tracking that object have been performed in this paper. The authors 
were able to set a range of interest (ROI) around an object using Open Computer Vision, better known as OpenCV. Next 
a tracking algorithm has been used to maintain tracking on an object while simultaneously operating two servo motors 
to keep the object centered in the frame. Detailed procedure and code are included in this paper. 

Keywords: Machine learning; Tracking; Microcontrollers; Robot 

1 Introduction 

The Raspberry Pi is still selling for a large premium due to the worldwide supply and demand issues. At the time of this 
report there are still no primary vendors that that had a Raspberry Pi 4b 8 GB. We started looking around at the 
Raspberry Pi alternatives. There are two manufacturers that stand out on paper. The first was a company that makes a 
product called the Orange Pi, the second is a company that makes a product called the Rock Pi, they have recently 
dropped the Pi from their name. After purchasing the Rock 4c+ we realized that it and the Raspberry Pi were greatly 
different in the software side and compatibility of things. This forced us to the secondary market where the prices were 
at least triple what the MSRP was.  

After purchasing the Raspberry Pi 4b 8gb, cooling case, monitor and cables needed. We got to work on installing 
software, starting to look at code and research the best means to bring our project to fruition. Our first snag came when 
just trying to install the necessary software, luckily one of the reasons we bit the bullet and paid the money for a 
Raspberry Pi was that the community is robust. You can find help tutorials and software across the Internet. 
Unfortunately, that also meant an information overload; we would start installing a set of software which is referred to 
as packets. These packets wouldn’t always be compatible with other packets that we installed and expected them to 
work with. We would get going on something and find that the time frame of the information was already outdated, and 
the new software versions wouldn’t work with other software versions anymore. Sometimes having the latest and 
greatest version wouldn’t always be beneficial as there wouldn’t be a lot of information on it or the workarounds weren’t 
there for bugs that were encountered. It took some trial and error to find the editions that we decided to go with.  

One method of safeguarding is to create virtual environments within the folder structure of the Raspberry Pi. This 
creates a place where you can install different software versions and not have it affect or corrupt the base Raspberry Pi 
operating system, which was called Raspbian, and its stability. You could essentially Muck up a whole virtual build and 
instead of starting from scratch and losing all the information on your Pi, such as your codes, you could just delete the 
virtual environment and create a new one.  

In the beginning we started off with the Raspbian 32-bit OS, we decided after encountering so many issues with packet 
compatibility and software execution stability that we would start with an OS base that had been tried and tested with 

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://www.wjaets.com/
https://doi.org/10.30574/wjaets.2024.11.1.0021
https://crossmark.crossref.org/dialog/?doi=10.30574/wjaets.2024.11.1.0021&domain=pdf


World Journal of Advanced Engineering Technology and Sciences, 2024, 11(01), 048–055 

49 

plenty of resources and support. Raspberry Pi has recently come out with a 64-bit operating system, which it renamed 
Raspberry Pi OS, about a year ago. We were worried however that the bugs would not have been worked out yet. We 
would later re-examine that after learning how much faster a 64-bit OS would be vs its predecessor and find some good 
resources. Most information we examined put the 64-bit OS with our Pi at about a 25% performance increase.  

Our software selection took a little bit of trial and error, before and after the OS swap. The software we decided to use 
to execute our plan is listed in the section previous. By the time we decided to go with a 64-bit version we had become 
pretty good at using the Raspberry Pi system and community to find solutions to our software issues. The 64-bit system 
came with some fundamental packet changes that affected the Python operation code we developed. The camera had 
gone from the legacy raspicam software packets to a newer packet system called libcamera which featured a code called 
picamera2. This change in the packet library caused us to make some changes to the fundamental code that grabs and 
shows images from the camera sensor.  

The physical wiring of the whole system and installing it on the case is all simple there is a nice mounting system in the 
case with cutouts for all the I/O on the raspberry pi the case came with a nice adapter that allows the 40 pin General 
Purpose Input Output (GPIO) pins to be accessed on the side. This 40-pin diversion adapter gave us the ability to mount 
the pan tilt Hat on the side of the case, as the hats take up all 40 pins. This Hat board also comes with pins that can still  
utilize the Pi’s unused 40 pin GPIO. The head of the pan tilt camera has two servos mounted perpendicular on X and Y 
axes. The system has two cables to operate the servo motors, one cable to connect the camera, fan power cable, a USB-
C power cable, and a display cable for the monitor (Fig. 1 and Fig. 2). We went with a USB Bluetooth keyboard and mouse 
and the system sits on a wooden frame.  

The code that we developed after some grueling trial and error turned out to be straight forward. It will be listed in the 
supplements at the end with notations. The basics of the code are to start the camera capture a frame, draw a box over 
a range of interest (ROI), use a built-in algorithm to track ROI, start a loop that captures frames, determines the center 
of the frame determines the center of the ROI, takes the error, and adjust the servos accordingly to minimize that error. 
Thus, keeping the ROI in the center of the frame. This process will have further detail in the procedures.  

2 Instruments and components and Software 

2.1 Raspberry Pi: Model 4b  

 Quad Core Cortex-A72(ARM v8) 64-bit @1.8GHz 

 8 Gb RAM 

 Dual Band IEEE 802.11ac wireless 

 Bluetooth 5.0 

 Gigabit Ethernet 

 2 x USB 3.0 2 USB 2.0 ports 

 RPi standard 40 Pin GPIO header 

 2 x micro-HDMI ports support up to 4k @ 60 Hz  

 2 Lane MIPI DSI  

 2 Lane MIPI CSI 

 5v USB-C power connector (min 3A) 

2.2 Case  

 Cooling Fan  

 Heat sinks 

o CPU 

o RAM 

o Graphics chip 

 Mouse and keyboard  

 Monitor 

 Sd card 64Gb (> 32 Gb or more recommended) 

 Sun founder Pan Tilt camera Set 

o Frame 

o Pan-tilt Hat 



World Journal of Advanced Engineering Technology and Sciences, 2024, 11(01), 048–055 

50 

o 2 x Servo Motors 

o Camera Module (5Mp) 

o FCC Cable (MIPI cam cables) 

 Micro HDMI to HDMI Cable 

 Micro HDMI to MINI HDMI Cable 

 Raspberry Pi compatible Switching USB-C 5v 3.6A Power Supply 

 Traveling monitor 

 Power Supply 

 Raspberry “bullseye” 64 bit with desktop v. 5.15 

 Python 3.9.2 

 Open Computer Vision 4.7.2 

 Thonny (Python Integrated Development Environment) 

 Numpy v. 1.19.2 

2.3 Procedure 

Here importing servo library and other libraries are needed at the beginning of the program. After that we added some 
more setup code here, we declare dimension dispH and dispW which we will call up later for the frame. Also, we added 
variables and initial starting values for your servo motors. After the camera configuration we added the tracker variable 
and attached the OpenCV code to it. We added the code for capturing a single frame. Next, we declared a bounding box 
variable and have OpenCV bring up a window to select a Range of Interest (ROI). Then just below that we initialized the 
tracker and kill the selector window. Back in the while loop just after the image grab, we added a line that checks for a 
successful range of interest in the tracker. After that we tell the program to assign x,y,w,h variables to the associated 
points within the bounding box for x, y starting coordinate and the width and height of the frame. Next, we add code 
that will declare an error between the center of the bounding box and the center of the frame then use this error to 
make the pan and tilt servo motors move to minimize the error and try to move the center of the bounding box to the 
center of the frame. If the error is less than 40 pixels on the x axis and less than 20 on the y axis the camera doesn’t 
move. If the error drifts farther than that it will move one degree, if it drifts too far then it will adjust by 3 degrees.  

3 Camera tracking code with CSRT tracking: 

import cv2 #open computer vision 

import time #time functions 

from servo import Servo #servo library that converts code PWM frequency to angles 

import picamera2 # library that intercats with camera 

fps = 0 

fpsPosition = (30,30) #where it is displayed 

fpsFont = cv2.FONT_HERSHEY_SIMPLEX #font to be used 

fpsColor = (255,120,200) #color in BGR 

fpsHeight = 0.5 #Font Height 

fpsFontThickness = 2 #font thickness 

dispH = 800 #going to be the Height of the frame in pixels 

dispW = 1000 #going to be the Width of the frame in pixels 

pan = Servo(pin = 13) #pin servo signal wire is attached to  



World Journal of Advanced Engineering Technology and Sciences, 2024, 11(01), 048–055 

51 

tilt = Servo(pin = 12) #pin servo signal wire is attached to  

panAngle = 0 #starting position positive is CCW 

tiltAngle = -20 #starting point 

pan.set_angle(panAngle) #executes starting angle 

tilt.set_angle(tiltAngle) #executes starting angle 

picam2 = picamera2.Picamera2() 

picam2.preview_configuration.main.size = (dispW,dispH) #Configures display window 

picam2.preview_configuration.main.format = "RGB888" #configures display format 

picam2.preview_configuration.controls.FrameRate=15 #FPS it strives for 

picam2.preview_configuration.align() #aligns frame array 

picam2.configure("preview") #applies configurations  

picam2.start() #starts camera 

tracker=cv2.TrackerCSRT_create() #Tracking code from cv2 library set to a tracker label 

img= cv2.flip(picam2.capture_array(),-1) #captures a single frame 

bb=cv2.selectROI(img) #calls for creation of a bounding box and places it to bb variable 

tracker.init(img,bb) #initiates tracker from above 

cv2.destroyWindow('ROI selector') #destroys ROI selector Window 

while True: 

 tstart = time.time() #takes a time stamp of start of loop 

img= cv2.flip(picam2.capture_array(),-1) #grab image and flips it due to camera orientation 

success,box=tracker.update(img) #checks to see if cv2 the was successful in finding an array to track 

 if success: #if there is a tracker array  

 (x,y,w,h)=[int(a)for a in box] #assigns x,y,w,h to the attributes of the bounding box  

 cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2) #tells opencv to draw this rectangle around the bb dimensions 

errorx = (x+w/2)-dispW/2 #creates a variable errorx that is the distance in pixels from the center of frame and center 
of bounding box width 

 errory = (y+h/2)-dispH/2 #creates a variable errorx that is the distance in pixels from the center of frame and center 
of bounding box height 

if errorx > 40: #creating an "okay"range of error within 40 pixels or it pans CCW (left) by 1 degree  

 panAngle = panAngle - 1 



World Journal of Advanced Engineering Technology and Sciences, 2024, 11(01), 048–055 

52 

 if panAngle < -90: #till it gets to 90 degrees CCW 

 panAngle = -90 

 pan.set_angle(panAngle) 

 if errorx < -40: #creating an "okay"range of error within 40 pixels or it pans CW (right) by 1 degree 

 panAngle = panAngle + 1 

 if panAngle > 90: #till it gets to 90 degrees CW 

 panAngle = 90 

 pan.set_angle(panAngle) 

 if errorx > 120: #creating an "okay"range of error within 120 pixels or it pans CCW (left) by 3 degree 

 panAngle = panAngle - 3 

 if panAngle < -90: #till it gets to 90 degrees CCW 

 panAngle = -90 

 pan.set_angle(panAngle) 

 if errorx < -120: #creating an "okay"range of error within 40 pixels or it pans CW (right) by 3 degre 

 panAngle = panAngle + 3 

 if panAngle > 90: #till it gets to 90 degrees CW 

 panAngle = 90 

 pan.set_angle(panAngle) 

 if errory > 20: #creating an "okay"range of error within 20 pixels or it tilts down by 1 degree 

 tiltAngle = tiltAngle + 1 

 if tiltAngle < -40: #till it gets to 40 degrees  

 tiltAngle = -40 

 tilt.set_angle(tiltAngle) 

 if errory < -20: #creating an "okay"range of error within 20 pixels or it tilts up by 1 degree 

 tiltAngle = tiltAngle - 1 

 if tiltAngle > 90: #till it gets to 90 degrees 

 tiltAngle = 90 

 tilt.set_angle(tiltAngle) 

 if errory > 60: #creating an "okay"range of error within 60 pixels or it tilts down by 3 degree 



World Journal of Advanced Engineering Technology and Sciences, 2024, 11(01), 048–055 

53 

 tiltAngle = tiltAngle + 3 

 if tiltAngle < -40: #till it gets to 40 degrees 

 tiltAngle = -40 

 tilt.set_angle(tiltAngle) 

 if errory < -60: #creating an "okay"range of error within 60 pixels or it tilts up by 3 degree 

 tiltAngle = tiltAngle - 3 

 if tiltAngle > 90: #till it gets to 90 degrees 

 tiltAngle = 90 

 tilt.set_angle(tiltAngle) 

cv2.putText(img,str(int(fps))+" FPS",fpsPosition,fpsFont,fpsHeight,fpsColor,fpsFontThickness)#display FPS  

 cv2.imshow("Track",img) #show image frame 

 tend = time.time() #ends time for FPS 

 looptime = tend-tstart #calculates how long one loop takes 

fps= .8*fps + .2*1/looptime #stabilizes FPS number by mostly relying on previous FPS number 

 if cv2.waitKey(1) == ord('q'): #kill loop if "q" is pressed 

 break 

cv2.destroyAllWindows() 

4 Wiring Diagram 

 

Figure 1 Raspberry Pi connected with two servo motors, camera, and display. 

 

 



World Journal of Advanced Engineering Technology and Sciences, 2024, 11(01), 048–055 

54 

4.1 Raspberry pi camera to Pi 

 

Figure 2 Raspberry Pi connection with camera. 

5 Conclusion 

Today’s world is evolving rapidly around us; this project was very interesting and dug deep into the surface of 
programming. Over the past decades there has been research on various materials and devices which help to make 
smaller chips used in various applications [1-14]. Yet, the world of this technology is vast even in its infancy. To master 
the computer language and especially the Raspberry Pi with its enormous number of configurations would take a long 
time to master. We believe these self-tracking cameras will be everywhere. From AI tracking security cameras to 
cameras that can track and keep live sporting events in the field of view will be. Camera operators will be replaced with 
analytical computer programmers. People who will be able to program and operate multiple systems as well as analyze 
the information coming in.  

Compliance with ethical standards 

Acknowledgments 

This work was supported as part of Modeling and Simulation Program (MSP) grant funded by the US Department of 
Education under Award No. P116S210002 and Improving Access to Cyber Security Education for Underrepresented 
Minorities grant funded by the US Department of Education under Award No. P116Z230007. 

Disclosure of conflict of interest 

No conflict of interest to be disclosed.  

References 

[1] M. R. K. Akanda, “Catalogue of Potential Magnetic Topological Insulators from Materials Database”, IOSR Journal 
of Applied Physics (IOSR-JAP) 15 (3), 22-28 (2023) 

[2] M. R. K. Akanda, “Scaling of voltage controlled magnetic anisotropy based skyrmion memory and its 
neuromorphic application”, Nano Express 10, 2 (2022). https://iopscience.iop.org/article/10.1088/2632-
959X/ac6bb5/pdf 

[3] Md. Rakibul Karim Akanda and Roger K. Lake, “Magnetic properties of nbsi2n4, vsi2n4, and vsi2p4 monolayers”, 
Applied Physics Letters 119, 052402 (2021). https://doi.org/10.1063/5.0055878 

[4] Md. Rakibul Karim Akanda, In Jun Park, and Roger K. Lake, “Interfacial dzyaloshinskii-moriya interaction of 
antiferromagnetic materials”, Phys. Rev. B 102, 224414 (2020). 
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.102.224414 



World Journal of Advanced Engineering Technology and Sciences, 2024, 11(01), 048–055 

55 

[5] M. R. K. Akanda, “Catalog of magnetic topological semimetals”, AIP Advances 10, 095222 (2020). 
https://doi.org/10.1063/5.0020096 

[6] M. R. K. Akanda and Q. D. M. Khosru, “Fem model of wraparound cntfet with multi-cnt and its capacitance 
modeling”, IEEE Transactions on Electron Devices 60, 97–102 (2013). 
https://ieeexplore.ieee.org/abstract/document/6375797 

[7] Yousuf, A., & Akanda, M. R. K. (2023, June), Ping Pong Robot with Dynamic Tracking Paper presented at 2023 ASEE 
Annual Conference & Exposition, Baltimore, Maryland. https://peer.asee.org/43897 

[8] M. R. K. Akanda and Q. D. M. Khosru, “Analysis of output transconductance of finfets incorporating quantum 
mechanical and temperature effects with 3d temperature distribution”, ISDRS, 1–2 (2011), 
https://ieeexplore.ieee.org/abstract/document/6135292 

[9] M. R. K. Akanda, R. Islam, and Q. D. M. Khosru, “A physically based compact model for finfets on-resistance 
incorporating quantum mechanical effects”, ICECE 2010, 203–205 (2010). 
https://ieeexplore.ieee.org/abstract/document/5700663  

[10] M. S. Islam and M. R. K. Akanda, “3d temperature distribution of sic mesfet using green’s function”, ICECE 
2010,13–16 (2010). https://ieeexplore.ieee.org/abstract/document/5700541 

[11] M. S. Islam, M. R. K. Akanda, S. Anwar, and A. Shahriar, “Analysis of resistances and transconductance of sic mesfet 
considering fabrication parameters and mobility as a function of temperature”, ICECE 2010, 5–8 (2010). 
https://ieeexplore.ieee.org/abstract/document/5700539 

[12] Md. Rakibul Karim Akanda, In Jun Park, and Roger K. Lake, “Interfacial dzyaloshinskii-moriya interaction of 
collinear antiferromagnets mnpt and nio on w, re, and au”, APS March Meeting (2021). 
https://ui.adsabs.harvard.edu/abs/2021APS..MARE40004A/abstract 

[13] Rakibul Karim Akanda, “3-D model of wrap around CNTEFT with multiple CNT channel and analytical modeling 
of its capacitances”, Department of Electrical and Electronic Engineering (EEE) 2013. 

[14] Akanda, Md. Rakibul Karim, “Magnetic Properties of Ferromagnetic and Antiferromagnetic Materials and Low-
Dimensional Materials”, University of California, Riverside ProQuest Dissertations Publishing, 2021, 28651079.  


