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Abstract 

Superconducting quantum interference device (SQUID) which is made of two parallel Josephson junctions has 
applications in magnetometry. A similar spin-based device is proposed here where spin superfluid in ferromagnet (FM) 
mimics the superconducting state. Two materials CoFeB and Fe3Sn are used for spin superfluid-based SQUID like device 
where easy plane anisotropy in CoFeB can be engineered and Fe3Sn has inherent easy plane anisotropy. Frequency 
varies in spin based proposed devices. Frequency increases and again decreases with the increase in both applied 
magnetic field and applied spin current. The proposed device can be used as nano oscillator and detector. The frequency 
in the proposed device shows multiple frequency steps which can be used for neuromorphic applications.  
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1. Introduction

Superfluidity is the property of a fluid with zero viscosity and is generally assigned to resistance free charge current in 
a superconductor. Like Cooper pair-based superconductor, superfluidity is also found in spin-based systems where 
dissipation is negligible and long-distance transport is possible. Spin superfluidity is found in ferrimagnetic material 
even at room temperature.[1], [2] Spin superfluidity is also found in antiferromagnetic and multiferroic materials.[3], 
[4], [5]  

Apart from using spin Hall effect in the superfluid medium, temperature gradient, laser pulse and domain wall method 
can also be used.[1], [6], [7] When two Cooper pair-based superconductors are coupled by a weak link e.g. normal metal 
or insulator, Josephson junction is formed. Conventional superfluidity can be extended as the spin superfluidity in the 
magnetic system. The magnetic analog of conventional Josephson effect is the spin Josephson effect. This spin Josephson 
effect can be used as spin nano oscillators where dc electric current or dc magnetic field is converted into magnetization 
precession.[8], [9], [10] This change in magnetization results in the change in magnetoresistance which can be detected 
experimentally. These kinds of devices can be implemented as microwave generators or detectors. 
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Figure 1 Two FM is antiferromagnetically exchange coupled by non-magnetic (NM) metal junction at two ends. There 
is no inter layer exchange coupling in the middle part of top and bottom ferromagnet (FM). Center region is 

nonmagnetic (NM) insulator. (A) Basic structure showing two parallel Josephson junctions in 3D view where top and 
bottom ferromagnetic regions are coupled by violet NM metal junction. Red region is NM insulator where two FM 

regions are not coupled by spacer layer to make two Josephson junctions at the two ends. (B) Front view of the 
proposed structure. (C) Change of magnetization in top and bottom FM with time in Fe3Sn with current density of 4 × 

108 A/cm2 using MUMAX3.[14] 

 

 

Figure 2 Current is applied along Y-axis in HM1 and HM2. Current can also be applied in either HM1 or HM2. (A) 3D 
view at the top where light green region represents heavy metal to inject spin current and (B) side view of the 

structure. Injected spin current polarized along Z-direction can also be generated using the pinned FM region having 
copper (Cu) spacer layer and behaving like magnetic tunnel junction (MTJ) or giant magneto-resistor (GMR). (C) 3D 

view where pink color represents Cu spacer region and (D) Front view. 

Dipole effect in the ferromagnets affect the spin superfluid mode and hampers the long-distance transmission.[11], [12] 
Synthetic antiferromagnet can be used to resolve the problem, where two FM layers are antiferromagnetically coupled 
through the NM spacer layer. Antiferromagnetic or synthetic antiferromagnetic (SAF) material-based Josephson 
junction provides terahertz oscillation.[13] Two parallel Josephson junctions form superconducting quantum 
interference device (SQIUD) which is used for measuring variation of magnetic field as its voltage varies with magnetic 
field. Like conventional SQIUD, a spin-based device is proposed here which also consists of two parallel junctions. The 
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frequency of this device varies with both magnetic field and current. The variation of frequency shows step-like 
behavior which can be applicable for neuromorphic applications.[15]-[25]  

 

Figure 3 Variation of spin superfluid oscillation frequency in Fe3Sn with current density (A) 8×107 A/cm2, (B) 2×108 

A/cm2, (C) 3×108 A/cm2 and (D) 5×108 A/cm2. Applied magnetic field is 0.05T along Z-direction. Magnetization along 
Z-direction is small (but not zero) compared to magnetization along X-direction and Y-direction 

Two ferromagnets are antiferromagnetically exchange coupled by non-magnetic (NM) metal junction at two ends. There 
is no inter layer exchange coupling in the middle part of top and bottom ferromagnet (FM). White region is nonmagnetic 
(NM) insulator. Easy plane anisotropy is in X-Y plane. Magnetic fields are applied along Z-axis. Basic structure having 
two parallel Josephson junctions is shown in Fig. 1. Change of magnetization in top and bottom FM of this structure at 
different time with applied current is simulated using well known micromagnetic software MUMAX3.[14] Current can 
be applied along Y-axis in HM1 and HM2 using spin Hall effect (Fig. 2).[26], [27] Current can also be applied in either 
HM1 or HM2. Charge current, j is along Y-axis. Direction of cross-sectional area (between HM and FM), η is along X-axis. 
Injected spin current direction due to spin Hall effect, σ (= η × j) is along Z-axis which is necessary for X-Y easy plane 
anisotropy. Injected spin current polarized along Z-direction can also be generated using the pinned FM region having 
copper (Cu) spacer layer and behaving like magnetic tunnel junction (MTJ) or giant magneto-resistor (GMR) (Fig. 
2).[28], [29] Cu region separates pinned FM and Superfluid region so that superfluid region can move freely. Pinned FM 
region provides spin current polarized along Z-direction which is necessary for superfluid as easy plane is along XY 
plane.  
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Figure 4 Variation of spin superfluid oscillation frequency in Fe3Sn with applied magnetic field (A) 0.02T, (B) 0.03T, 
(C) 0.10T and (D) 2T. Spin current density is 5×108 A/cm2 which is spin polarized along Z-direction. Magnetization 
along Z-direction is small (but not zero) compared to magnetization along X-direction or Y-direction and gradually 

increases with applied magnetic field 

Two types of easy plane ferromagnet CoFeB and Fe3Sn are used where easy plane anisotropy can be engineered in 
CoFeB whereas Fe3Sn has inherent easy plane anisotropy in X-Y plane. CoFeB is one of the most popular materials for 
making spintronics based devices.[30]-[32] In the Josephson junctions, top and bottom ferromagnetic layer are 
antiferromagnetically exchange coupled to provide spin phase difference like SQUID. Fe3Sn has large easy plane 
anisotropy compared to YIG and is much more suitable for spin superfluid applications. Magnetic field is applied along 
Z-axis to tilt the magnetization along Z-direction a little bit from original X-Y easy plane. Spin current polarized along Z-
direction provides necessary torque for spin superfluid oscillation. Required parameters used in the simulation of SAFM 
based on CoFeB and Fe3Sn are mentioned in Table I. 

Table 1 LLG parameters used in simulations 

 CoFeB [33], [34] Fe3Sn [35], [36] 

Saturation magnetization (Msat) 0.9 MA/m 1.18 MA/m 

Exchange stiffness (Aex) 14 pJ/m 10 pJ/m 

Antiferromagnetic exchange stiffness (Aex) −1 pJ/m −1 pJ/m 

Easy plane anisotropy constant (Ku) 0.09 MJ/m3 1.8 MJ/m3 

Landau-Lifshitz damping constant (α) 0.5 1 

Easy plane anisotropy X-Y plane X-Y plane 

2. Theory 

The spin dynamics of these structures can be described by the Landau-Lifshitz-Gilbert (LLG) equation,[37] 

∂mi/∂t = −γmi ×Heff + αmi × ∂mi/∂t, (1) 

where i denotes lattice site number, α is the Gilbert damping constant and the effective field arising from different 
energy terms is given by Heff = − (1/|μi|) ∂H/∂mi. 

MUMAX3, a well-known versatile software is used for simulating the spin dynamics in the structures which incorporate 
Slonczewski torque due to the flow of current with the Landau- Lifshitz formalism.[14] If only current is present that 
means only spin transfer torque is active and it will try to align FM spin along input spin current direction (like switching 
in MTJ). Besides in 
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the definition of spin superfluid, mz (magnetization along Z direction) should be constant (not zero) and to have some 
mz, magnetic field along Z-axis is necessary. Again, if only magnetic field is present, then there is no force acting to rotate 
the FM spin. Magnetic field tries to align FM spin along its direction. With the increase in magnetic field along Z-direction, 
mz will gradually increase. Conditions required for spin superfluid like spin oscillation are the perfect balance between 
current and magnetic field in materials having easy plane anisotropy. 

Magnetization along different directions with oscillations along X-direction and Y-direction for different current density 
are shown in Fig. 3 using Fe3Sn. Oscillation due to four different magnetic fields is shown in Fig. 4. These figures show 
spin superfluid oscillation in easy plane (X-Y plane) and frequency increases and again decreases with the increase in 
both current and magnetic field. Besides increase and decrease in frequency with current and field, several steps in 
frequency are also found for both CoFeB and Fe3Sn (Fig. 5). The results are explained below by using the two sublattice 
model in antiferromagnet or synthetic antiferromagnet. 

The directions of the magnetic moments in top and bottom FM of synthetic antiferromagnet are denoted by two-unit 
vectors m1 and m2. The precession of m1 and m2 are driven by the exchange interaction, the anisotropy, and a magnetic 
field which is applied along the 𝑧̂ direction. These three parts are represented by ωE, ωA, and ωH = γH0, respectively. The 
equations of motion are [38] 

𝑚̇1 = m1 × [ωEm2 − (ωA + ωH) 𝑧̂], (2a) 

𝑚̇2 = m2 × [ωEm1 + (ωA − ωH) 𝑧̂], (2b) 

The resonance frequencies are then 

ω = ωH ± ωR = ωH ±√(ωA(ωA + 2ωE)), (3) 

and it makes two eigen modes, which are characterized by different chirality. In the absence of magnetic field, ωH = 0, 
the two modes are degenerate but as magnetic field is present in the simulation, so the two-frequency mode are 
different. Later damping and torque due to spin current are also incorporated which give rise to the formation of 
different frequencies with the change in magnetic field and spin current. In antiferromagnet or synthetic 
antiferromagnet (SAF), there is sizeable difference between two frequency branches of two sublattice due to two 
frequency mode where these two modes can switch depending on current density [38,39]. This phenomenon gives rise 
to the variation of frequency with current and magnetic field. 

 

Figure 5 Variation of spin superfluid oscillation frequency in CoFeB (A) with change in current at applied magnetic 
field of 0.05T (B) with change in applied magnetic field at current of 5 × 108 A/cm2. Variation of spin superfluid 

oscillation frequency in Fe3Sn (C) with change in current at applied magnetic field of 0.05T (D) with change in applied 
magnetic field at current of 5×108 A/cm2 
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3. Conclusion 

Over the past few decades, research has focused on a wide range of materials and tools that facilitate the production of 
tiny chips used in a variety of applications [40-53]. Two different materials having easy plane anisotropy are used to 
host spin superfluidity and SQUID like structures made from these two materials show step-like frequency variation 
with magnetic field and current. As in neuromorphic computing, synapse requires different weights for different inputs, 
frequency steps in the proposed device can provide required weights. With the prospective applications in 
neuromorphic computing and magnetometry, the proposed device can be useful in room temperature applications of 
SQUID like spin devices.  
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