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Abstract 

This study focuses on the development of a deep learning-based approach of gearbox monitoring and fault detection. 
The project aims to create a solution for early detection of defects in dynamic equipment based on data from vibration 
sensor by building a binary classifier with convolutional neural network implemented. The gearboxes condition of 
which is being assessed is stored in three similar computer numerically controlled (CNC) milling machines. Data is 
collected during 15 milling operations of different duration and with different tool’s speed and feed. Vibration is 
measured by an accelerometer stored on the body of each gearbox. Convolutional neural network takes vibration 
spectra as inputs and whether fault is detected makes a prediction of a gearbox condition. To make the whole solution 
autonomous and be able to embed it into manufacture the project is integrated into a server with an edge-to-cloud 
architecture. As an end product deep learning fault classifier stored on a server is to detect possible gearbox faults, draw 
conclusions on condition of dynamic equipment and automate the process of fault detection. 

Keywords: Gearbox; CNC machine; Vibration spectrum; Machine learning; Deep learning; Convolutional neural 
network 

1. Introduction

The requirements for precision, reliability and safety of modern numerically controlled machines are very high. Failure 
or damage to transmission parts often causes a chain reaction leading to a severe accident, which significantly increases 
the economic cost of operating the equipment. Gear failure accounts for most of the mechanical failures. Therefore, it is 
very important to accurately determine the condition of the gearbox, as well as diagnose and predict gearbox 
malfunctions. 

Currently, fault diagnosis methods are mainly divided into three types – model-based fault diagnosis methods, signal 
processing-based fault diagnosis methods, and data-based fault diagnosis methods [3]. Data-based fault diagnosis 
methods can be divided into two types, namely: traditional machine learning fault diagnosis methods and deep learning 
fault diagnosis methods. 

Model-based fault diagnosis methods use the correlation between transmission fault characteristics and the physical 
model, analyze the fault mechanism to build and optimize the model, and implement real-time fault diagnosis and 
prediction. However, in practice, it is difficult to establish an accurate transmission model, which significantly limits the 
use of model diagnostic methods. 

Fault diagnosis methods based on signal processing determine effective diagnostic indicators by analyzing the 
correlation between signals and faults [12]. Fault diagnosis is achieved by constructing fault signs using dimensional 
and dimensionless signal indicators. However, the operating conditions of the gearbox are complex and changeable, and 
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the selected features are difficult to use in different conditions. Thus, analyzing the generality of error data in massive 
data is an effective means of error diagnosis. 

In recent years, due to the significant increase in training resources and the rapid development of computing power, 
data-based fault diagnosis methods have gradually attracted more and more attention. The development of machine 
learning algorithms opens up a new way to diagnose transmission failures. In accordance with the signal processing 
technology, a spectrum of signs is analyzed and constructed that can effectively express a malfunction. Then, a machine 
learning algorithm is used for intelligent fault diagnosis. 

However, in traditional machine learning algorithms, the selection and extraction of fault signs are still based on manual 
control, which introduces uncertainty into fault diagnosis and does not allow achieving the goal of real intelligent 
diagnostics. The deep learning method with powerful function learning ability can realize automatic feature extraction 
and fault classification, so it is widely used in the field of fault diagnosis. 

The input data of the deep learning diagnostic model includes two types of fault samples: accelerometer readings in the 
form of acceleration projections along three axes and a two-dimensional vibration spectrum based on accelerometer 
data [6]. The first one directly extracts fault characteristics from one-dimensional vibration signals for diagnosis, and 
the second combines signal processing technology to convert vibration signals into two-dimensional images. Many 
studies have used signal preprocessing technology to improve sample quality during the conversion process. A fault 
feature extraction method that introduces fault image samples into a deep learning model is a necessary choice for 
accurate fault identification. 

Aim and objectives of the research 

The aim of this research is to develop a method for early detection of defects in dynamic equipment based on data from 
vibration sensors by constructing a binary classifier based on machine learning methods.  

The study aims to achieve the following objectives: 

 To analyze approaches to monitoring the condition of dynamic equipment using machine learning methods. 
 To analyze the operating data of a CNC milling machine gearbox in two states. 
 To select a rational convolutional neural network model. 
 To test the built classifier. 
 To draw conclusions on the result of convolutional neural network performance. 

2. Literature Review 

2.1. Gearbox Fault Detection with Vibration Analysis 

The article [1] provides a brief overview of modern vibration-based methods used for condition monitoring in gear 
transmission systems. The authors of the article draw the following conclusions:  

 Transmission vibration signals are usually intermittent and noisy. The time domain averaging method 
successfully removes noise from the signal and captures the dynamics of one signal period. 

 Methods for analyzing vibration signals in the time domain in the form of waveform generation, indices and the 
overall vibration level do not provide any diagnostic information, but may have limited use in detecting faults 
in simple auxiliary components that are critical for safety.  

 In the frequency domain, the fast Fourier transform (FFT) was able to display pulses at fault characteristic 
frequencies and their multiples, but other peaks are also visible — this occurs due to the effect of signal 
modulation. It is difficult to determine fault categories using this method. 

 During the bandpass analysis of the vibration signals of the gear, it was found that this method is applicable to 
identify signs for fault diagnosis. It was concluded that the root mean square (RMS) value of the filtered signal 
frequency in three frequency ranges can be a valuable characteristic for the development of an intelligent 
system. 

 Synchronous signal averaging potentially greatly simplifies shaft and gear fault diagnosis by providing 
significant attenuation of non-synchronous vibrations and signals for which ideal filtering can be used. It is 
necessary to carry out further development on the introduction of methods of synchronous averaging and 
analysis of the results. 
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 An expert system based on artificial neural network (ANN) and fuzzy logic can be designed to reliably classify 
faults using extracted features from a vibration signal. 

 The results also show that signal generation in the case of multiple faults on the contact surfaces of the gear is 
useful only for determining the correct or faulty condition, but is not able to identify fault categories. 

2.2. Deep Neural Networks for Intelligent Diagnosis of Rotating Machinery 

ANNs are one of the most commonly used classifiers in the intelligent fault diagnosis methods, which generally include 
two main steps, i.e. fault feature extraction using signal processing techniques and fault classification using ANN 
classifiers [9], [10]. Feature extraction involves mapping of measured signals onto representative features 
characterizing the health conditions of machinery. And fault classification is to distinguish the health conditions based 
on the extracted features. Thanks to the representative features from the measured signals and adaptive learning 
capability of ANNs, the ANN-based methods are supposed to displace diagnosticians for making decisions and work well 
in intelligent fault diagnosis. The ANN-based methods reported in literature, however, have two obvious deficiencies. 
Firstly, the features input into classifiers are extracted and selected by diagnosticians from the measured signals, largely 
depending on prior knowledge about signal processing techniques and diagnostic expertise. In addition, the features 
are selected according to a specific diagnosis issue and probably unsuitable for other issues. Thus, it is necessary to 
adaptively mine the characteristics hidden in the measured signals to reflect the different health conditions of 
machinery, instead of extracting and selecting features manually. Secondly, the ANNs commonly adopted in intelligent 
fault diagnosis of rotating machinery have shallow architectures, which means that only one hidden layer is included in 
an ANN architecture. Such simple architectures limit the capacity of ANNs to learn the complex non-linear relationships 
in fault diagnosis issues. Thus, it is necessary to establish a deep architecture network for distinguishing the health 
conditions of machinery. 

Based on DNNs trained through deep learning, the article [5] proposes a novel intelligent diagnosis method to overcome 
the two deficiencies of the ANN-based methods in fault diagnosis of rotating machinery. In this method, DNNs are 
utilized to implement both fault feature extraction and intelligent diagnosis. The DNNs are first pre-trained by an 
unsupervised layer-by-layer learning and then fine-tuned with a supervised algorithm, where the unsupervised process 
helps the fault characteristic mining and the supervised process contributes to construct the discriminative fault 
characteristics for classification [5], [11]. The merits of the proposed method are summarized as follows. It is able to 
adaptively mine fault characteristics from the measured signals for various diagnosis issues. The method is good at 
establishing the non-linear mapping relationship between the different health conditions of machinery and the 
corresponding measured signals. Therefore, the proposed method is expected to obtain higher diagnosis accuracy 
compared with the methods based on shallow ANNs. 

2.3. Convolutional Neural Network for the Gearbox Condition Monitoring 

Table 1 Average testing accuracy and standard deviation of tested methods 

Methods Learning features Manual features 

Raw time 
data 

Freaquency 
data 

Time- 
frequncy data 

Time features Frequncy 
features 

Wavelet 
features 

CNN 82.30 ± 1.07 98.67 ± 0.52 95.54 ± 1.02 65.18 ± 1.62 84.61 ± 0.49 84.11 ± 0.66 

FNN 23.57 ± 4.56 54.34 ± 4.21 51.62 ± 4.28 65.40 ± 3.17 84.83 ± 0.65 84.23 ± 0.76 

SVM 23.87 ± 2.40 76.21 ± 1.51 71.61 ± 1.63 63.37 ± 1.30 84.84 ± 0.42 84.73 ± 0.47 

RF 42.56 ± 1.46 92.34 ± 1.18 81.31 ± 1.5 64.24 ± 1.06 88.26 ± 0.94 83.16 ± 1.26 

Convolutional neural network (CNN) as one of the main types of deep neural networks (DNN) [4], has been applied with 
great success to learn features from raw data and has become the dominant approach for almost all recognition and 
detection tasks in image and speech analysis. However, very few investigations have been conducted on the application 
of CNN in feature learning and fault diagnosis for a planetary gearbox or a gearbox with combined gear-bearing-shaft 
faults. At the same time, most of the studies of DNN based feature learning only focus on one type of raw data. The study 
of the different performance of feature learning from various types of data is still few. In the article [7] CNN is applied 
to learn features from raw vibration data in time domain, raw frequency spectrum of the data and their combination, 
and diagnose the health conditions of gearboxes. Manual features and three common intelligent methods, including 
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fully-connected neural network (FNN), support vector machine (SVM) and random forest (RF), are used as comparisons, 
as can be seen in Table 1.  

3. Material and methods 

3.1. Experimental Setup 

To keep the research as close as possible to the industrial scenario, the data is collected from different 4-axis horizontal 
CNC machining centers during production [8]. The machines are processing aluminum workpieces as depicted in Figure 
1. For the data acquisition, an indirect method by collecting accelerometer data from Bosch CISS sensors mounted to 
the rear end of the spindle housing is used. Other approaches opt for mounting the sensors in the machining area. This 
rear area remains unaffected by extreme machining environment, coolant or material chips and is available for 
retrofitting new sensors to brownfield machines. The sensor maintains a constant distance to the tool center point and 
the three axes of the accelerometer are in alignment with the linear motion axis of the machine. The sensor coordinate 
system is indicated in Figure 1. 

 

Figure 1 Schematic sketch of the experimental setup: 4-axis machining center with mounted sensor 

Using the low-cost tri-axial CISS sensor, acceleration data is collected with a sampling rate of 2 kHz. Most relevant 
frequencies to monitor the machining processes are low integer multiples of the spindle speed. For tool operations, 
these frequencies will be in the range of 75 Hz to 1 kHz. According to the Nyquist-Shannon theorem, a minimum 
sampling rate of 2 kHz is sufficient to detect machine anomalies. Sampling with this rate along the 3-axes produces an 
amount of 4.14 GB per day. Such volumes of data cannot be fully stored and processed in on-premise solutions. It 
demands a smart data mining system to collect, store, annotate, process and learn from the gathered data. 

3.2. Cloud Server 

To have reliable annotation, continuous data collection and simultaneous machine learning (ML) evaluation, an internet 
of things (IoT) architecture is required which enables: 

 central aggregation of selected anomalies and processes across different machining centers and locations, 
 local storage and processing of raw sensor data including event annotation by product experts, 
 aggregation of annotated data in a central database, 
 centralized training of ML models, and 
 management and deployment of models and modules from the cloud to the edge device. 

The data collection system presented in this work is characterized in an edge-to-cloud architecture. The main goal of 
this architecture is the simplification of data annotation, the use of expert knowledge in the shop floor, and the 
centralized storage of annotated data in the cloud. Through an anomaly detector module, potential events and anomalies 
are pre-selected for annotation.  
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Figure 2 Concept and interaction of containers in the edge stack 

The edge stack represented in Figure 2 describes the modules running in the production line on site. The modules are 
managed from the cloud side by an orchestration client running on the edge device. A messaging bus using the Message 
Queuing Telemetry Transport (MQTT) protocol provides a standardized interface for local inter application 
communication. The data gathering and annotation system involves multiple modules. Firstly, a data gathering module 
establishes a connection to the accelerometer sensor and triggers the read. The data stream is afterwards published on 
the message bus. Secondly, the data stream is subscribed by a ML module, which with predictions on the stream, 
supports the quality check process by pre-selecting the correct time frame for anomalies. This allows time-delayed 
annotations to be entered by the end-of-line quality check, while retaining the majority of data only in the edge time-
series database. Ultimately, a dashboard allows the visualization of the ML pseudo-labels and manual annotation via the 
user interface. Once an event is validated by the experts, the corresponding data segment gets acquired and queried for 
upload to the cloud. The major benefit of the architecture is the collaboration of data science and domain expertise. It 
allows additionally in-place distribution of updated ML modules, which support and improve data annotation. 

3.3. Initial Data 

The data is collected in a production plant from 3 different CNC machines (M01, M02 and M03) on a regular basis during 
the time interval of October 2018 to August 2021 [8]. The time frame is tagged as ”Month Year” and represents the 6-
month interval before the label. For example, ”Aug 2019” would refer to the period between February 2019 and August 
2019. The machine performs a sequence of several operations using different tools on aluminum parts to work the 
specified design. It is important to mention that the machines produce different parts and the process flow changes over 
time. To study the drift between machines and over time, the dataset is built with 15 different tool operations that run 
on all 3 machines at different time frames. Table 2 gives an overview on the characteristics of the different operations. 

During machining, the different process operations are conducted in high-speed, requiring a frequent mounting and 
unmounting of tools on the spindle chuck. These factors lead occasionally to process failures mainly caused by tool 
misalignment, chip clamping, chip in chuck, tool breakage. To reach the optimal product quality, after each batch an 
expert on the shop floor controls the resulting workpiece in a gauging station and annotate the process health. 
Nevertheless, labeling during production is still very challenging. Due to the manual drudgery gauging, some processes 
are wrongly labelled and precise annotations are missing. The published dataset focuses on the quality process failures: 
the OK class refers to a healthy process and NOK refers to a faulty process. Figure 3 shows an unbalance rate of 816:35 
between the OK/NOK in the dataset. In the real production, the number of OK samples are significantly higher. To 
provide an exemplary dataset, a reasonable number of OK processes were selected from the different time periods, 
which reduces the class imbalance. 
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Table 2 Tools operations collected from MO1, MO2 and MO3 

Tool operation Description speed [Hz] feed [mm*s-1] duration [s] 

OP00 Step Drill 250 100 132 

OP01 Step Drill 250 100 29 

OP02 Drill 200 50 42 

OP03 Step Drill 250 330 77 

OP04 Step Drill 250 100 64 

OP05 Step Drill 200 50 18 

OP06 Step Drill 250 50 91 

OP07 Step Drill 200 50 24 

OP08 Step Drill 250 50 37 

OP09 Straight Flute 250 50 102 

OP10 Step Drill 250 50 45 

OP11 Step Drill 250 50 59 

OP12 Step Drill 250 50 46 

OP13 T-Slot Cutter 75 25 32 

OP14 Step Drill 250 100 34 

 

 

Figure 3 Class distribution per process operation 

3.4. Building a Convolutional Neural Network 

To further verify the operability of the algorithms, the input data is divided into a test sample (necessary to determine 
the quality) and a training sample (on which the model is trained). The general algorithm for a classifier working process 
is shown in Figure 4. Tiny VGG architecture, as can be seen in Figure 5, was chosen to implement. 
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Figure 4 Classifier work algorithm 

 

 

Figure 5 Tiny VGG architecture 

3.5. Tiny VGG Layers 

3.5.1. Convolutional Layer 

The convolutional layers are the foundation of CNN [2], as they contain the learned kernels (weights), which extract 
features that distinguish different images from one another — this is what we want for classification! As you interact 
with the convolutional layer, you will notice links between the previous layers and the convolutional layers. Each link 
represents a unique kernel, which is used for the convolution operation to produce the current convolutional neuron’s 
output or activation map. 

The convolutional neuron performs an elementwise dot product with a unique kernel and the output of the previous 
layer’s corresponding neuron. This will yield as many intermediate results as there are unique kernels. The 
convolutional neuron is the result of all of the intermediate results summed together with the learned bias. 

3.5.2. Activation Layer 

ReLU function, as shown in Figure 6, applies much-needed non-linearity into the model. Non-linearity is necessary to 
produce non-linear decision boundaries, so that the output cannot be written as a linear combination of the inputs. If a 
non-linear activation function was not present, deep CNN architectures would devolve into a single, equivalent 
convolutional layer, which would not perform nearly as well. The ReLU activation function is specifically used as a non-
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linear activation function, as opposed to other non-linear functions such as Sigmoid because it has been empirically 
observed that CNNs using ReLU are faster to train than their counterparts. 

ReLU (x) = max (0 , x)………. (1) 

 

Figure 6 ReLU activation function graphed, which disregards all negative data 

3.5.3. Pooling Layer 

There are many types of pooling layers in different CNN architectures, but they all have the purpose of gradually 
decreasing the spatial extent of the network, which reduces the parameters and overall computation of the network. 
The type of pooling used in the Tiny VGG architecture is Max-Pooling. 

The Max-Pooling operation requires selecting a kernel size and a stride length during architecture design. Once selected, 
the operation slides the kernel with the specified stride over the input while only selecting the largest value at each 
kernel slice from the input to yield a value for the output.  

In the Tiny VGG architecture above, the pooling layers use a 2x2 kernel and a stride of 2. This operation with these 
specifications results in the discarding of 75% of activations. By discarding so many values, Tiny VGG is more 
computationally efficient and avoids overfitting. 

4. Result and Discussion 

The main visualization of the result of the work of the CNN is the error matrix, presented in Figure 7 – a matrix on the 
main diagonal of which there are the number of correctly classified objects, and outside of it – falsely classified. 

 

Figure 7 Error matrix of CNN classifier 

Metrics are calculated based on the error matrix of the binary classifier, as seen in Table 3: 
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Accuracy – proportion of correctly classified to the number of all signs: 

𝐴𝑖 =
∑ 𝑇𝑃 + 𝑇𝑁

∑ 𝑇𝑃+𝐹𝑁 + 𝑇𝑁 +𝐹𝑃
…………….(2) 

Loss – estimation of the proximity of true and predicted values: 

𝐻(𝑝, 𝑞) =  − ∑ 𝑝(𝑥)𝑙𝑜𝑔 (𝑞(𝑥))𝑥 ……………. (3) 

Precision – proportion of correct classifications to all classifications of the trait: 

𝑃𝑖 =
∑ 𝑇𝑃

∑ 𝑇𝑃 + 𝐹𝑃
……………. (4) 

Recall – proportion of correctly defined objects to all objects of this class: 

𝑅𝑖 =
∑ 𝑇𝑃

∑ 𝑇𝑃 + 𝐹𝑁
 ……………. (5) 

F-score – average harmonic of accuracy and completeness: 

𝐹1 = 2 ×
𝑃𝑖 × 𝑅𝑖

𝑃𝑖 + 𝑅𝑖
 ……………. (6) 

Table 3 CNN classifier performance metrics 

Architecture Accuracy Loss Precision Recall F1-score 

Tiny VGG 0.843 0.072 0.846 0.843 0.845 

5. Conclusion 

In conclusion, a technique for early detection of gearbox defects based on vibration sensor data using a deep learning 
model was proposed. The study of existing approaches and methods for the implementation of monitoring, data 
collection and analysis using classical machine learning and deep learning methods has been carried out. 

A method for implementing a binary classifier for determining the presence of a defect was proposed and one of the 
existing CNN architectures was built. 

The methodology for implementing the approach to early detection of defects has been tested on a set of historical data. 
The classification quality was determined using an error matrix and basic metrics: accuracy, loss, precision, 
completeness and F1-score. 

Furthermore, this project can be used in an existing manufacturing process to fully automate the process of monitoring 
the condition and fault detection of dynamic equipment. 
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