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Abstract 

In this paper, the Egret Swarm Optimization Algorithm (ESOA) and Zebra Optimization Algorithm (ZOA) are executed 
to solve different optimization problems. The results achieved by the two algorithms are evaluated using different 
criteria, such as stability, minimum, average, and maximum convergence. The evaluation of the results indicates that 
ESOA not only maintains a surprising stability through its execution but also provides a faster response time compared 
to ZOA. ESOA requires at most 20 iterations to reach the best value of the main objective functions of the first two 
selected optimization problems, while ZOA cannot. In the last two selected optimization problems, ESOA continuously 
shows its superiority over ZOA with its high stability and low utilization of iterations to reach the best value of the main 
objective functions. Considering these results, ESOA deserves powerful search methods, and the method is strongly 
recommended to optimize such optimization problems. 

Keywords: Egret Swarm Optimization Algorithm (ESOA); Zebra Optimization Algorithm (ZOA); Optimization 
problem; Convergence Speed; Stability; Objective Function; Constraints 

1. Introduction

Nowadays, optimization problems become very popular and often seen in different fields, primarily economics and 
engineering. Achieving the optimal solution in solving any optimization problem is the highest priority because an 
optimal solution can benefit both the engineering and economic aspects. An optimal solution must result in the 
minimum or maximum value of the main objective function featured by the given optimization problem and satisfy all 
the constraints involved. The importance of finding the optimal solution has led to the invention of different 
optimization methods that are soon known as Cuckoo search algorithms [1], constraint method [2], Krill Herd Algorithm 
[3], Multi-Objective Genetic Algorithm [4], Multi-Stage Hybrid Open-Circuit Fault Diagnosis Approach [5], Newton-
Raphson methods [6-7], etc. Next, meta-heuristic methods have been proposed, and almost all the mentioned downsides 
have been removed from the old-fashioned ones in term of efficiency and responding time while dealing with the large-
scale and complex optimization problems. These problems can feasibly handle by different meta-heuristic methods and 
results in the high quality of solution. Moreover, meta-heuristic methods also provide a faster response time and a much 
higher success rate in solving optimization problems. 

Due to the high effectiveness as mentioned while dealing with optimization problems, a vast number of meta-heuristic 
methods have been introduced and developed, such as evolutionary programming (EP) [8], genetic algorithm (GA) [9], 
particle swarm optimization (PSO) [10], bat algorithm (BA) [11], ant colony optimization (ACO) [12], Social Learning 
Optimization (SLO) [13], Quantum-inspired Algorithm for Resource Optimization (QARO) [14], Chaotic Harmony Search 
(CHS) [15], Fruit Fly Optimization Algorithm (FOA) [16], Ant Lion Optimizer (ALO) [17], Archimedes Optimization 
Algorithm (AOA) [18], Sine Cosine Algorithm (SCA) [19], Pathfinder algorithm (PFA) [20], Gravitational Search 
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Algorithm (GSA) [21], Bacterial Foraging Optimization  (BFO) [22], whale optimization algorithm (WOA) [23], water 
cycle algorithm (WCA) [24], Walrus Optimization Algorithm (WaOA) [25], Lyrebird Optimization Algorithm (LOA) [26], 
Green Anaconda Optimization (GAO) [27], and Harris hawks optimization (HHO) [28]. 

 In this study, two relatively new meta-heuristic methods, including the Egret Swarm Optimization Algorithm (ESOA) 
[29] and the Zebra Optimization Algorithm (ZOA) [30], are applied to investigate their actual performance while dealing 
with different optimization problems. Both ESOA and ZOA are proposed at the end of 2022. They are reported to surpass 
many other previous meta-heuristic methods in solving various optimization problems. ESOA is inspired by the hunting 
behavior of two egret species, the Great Egret and the Snowy Egret. ZOA is developed based on the living behavior of 
zebras, particularly their foraging and defense strategies. 

The main novelties and contributions of the whole study can be summarized as follows: 

 Apply two novel meta-heuristic algorithms, including ESOA and ZOA to solve different optimization problem. 
 Provide a detailed comparison between the two algorithms about their actual performance on each considered 

optimization problem using different criteria. 
 Indicated the best algorithm for solving the considered optimization problems between the two algorithms. 

2. Problem description  

Most optimization problems are constructed by two essential elements: an objective function and related constraints. 
The objective function is usually formulated as a mathematical expression showing the relationship among the 
variables. The related constraints are mainly about the allowed ranges of the variables. Note that a solution is considered 
legal if only all the variables are within their allowed ranges and the primary objective function reaches the desired 
value. 

2.1. The main objective function 

Generally, the main objective function of a typical optimization algorithm is established using the as below: 

𝑂𝐹(𝑥1, 𝑥2, . . . , 𝑥𝑛)  (1) 
Where, OF is the value the main objective function; 𝑥1, 𝑥2, . . . , 𝑥𝑛 are the variables that constituted the main objective 
function, and n is the number of variables needed to be found. 

2.2. The related constraints 

As mentioned above, relative constraints are the essential aspects that must be strictly imposed while solving any 
optimization problems. Related constraints include equal constraints and unequal constraints as follows: 

2.2.1. The equal constraints. 

The equal constraints are mostly used to determine the value of the dependent variable (if any) when solving a 
particular optimization problem. Assumed that 𝑥1  is selected the only dependent valriable, and 𝑥2 , 𝑥3 , …, 𝑥𝑛  are the 
control variables. The mathematical expression of an equal constraint is typically formulated as follows: 

𝛾𝑥1 +  𝜇𝑥2  +  𝛿𝑥3 + . . . − 𝜔𝑥𝑛 = 휀 (2) 
Where, 𝛾 , 𝜇 , 𝛿 , 𝜔 , and 휀  are the given factors featured by the considered opimization problem; 𝑦  is the dependent 
variable. 

Note that the value of the dependent variable can be calculated if only all the control variables are entirely determined 
and satisfy their allowed ranges, as shown in the next subjection: 

2.2.2. The unequal constraints 

Normally, the unequal constraints are used to generate the control variables at the beginning of the optimization process 
by the meta-heuristic algorithms as follows: 

𝑥2
𝑚𝑖𝑛 ≤ 𝑥2 ≤ 𝑥2

𝑚𝑎𝑥  (3) 

𝑥3
𝑚𝑖𝑛 ≤ 𝑥3 ≤ 𝑥4

𝑚𝑎𝑥  (4) 
. ..  
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𝑥𝑛
𝑚𝑖𝑛 ≤ 𝑥𝑛 ≤ 𝑥𝑛

𝑚𝑎𝑥  (5) 

In Equations (3) – (5), 𝑥2
𝑚𝑖𝑛 , 𝑥3

𝑚𝑖𝑛 , …, 𝑥𝑛
𝑚𝑖𝑛 are, respectively, the minimum values of 𝑥2, 𝑥3, …, 𝑥𝑛 , while 𝑥2

𝑚𝑎𝑥 , 𝑥4
𝑚𝑎𝑥 , …, 

𝑥𝑛
𝑚𝑎𝑥  are, respectively, the maximum values. 

2.2.3. The considered optimization problem in the paper 

The first optimization problem 

The mathematical expressions of the main objective function and other related constraints of the first optimization 
problem are given as below: 

𝐹1 =  ∑ 𝑥𝑛
2

𝑥𝑛

𝑛=1

 𝑤𝑖𝑡ℎ 𝑛 =  1, 2, . . . ,30 (6) 

And  

𝑥𝐹1
𝑚𝑖𝑛 ≤ 𝑥1, 𝑥2, . . . , 𝑥𝑛  ≤ 𝑥𝐹1

𝑚𝑎𝑥  (7) 
In Equations (6) and (7), 𝐹1 is the value of the main objective function; n is the number of variables that needed to be 
found for establishing a optimal solution corresponding to the best value of the main objective function; 𝑥𝐹1

𝑚𝑖𝑛 and 𝑥𝐹1
𝑚𝑎𝑥  

are the minimum and maximum value of variables 

The second optimization problem 

Similar to the first one, the second optimization problem is also described using the objective function and the involved 
constrained using specific equations as follows: 

𝐹2 =  ∑|𝑥𝑛|

𝑥𝑛

𝑛=1

+ ∏|𝑥𝑛|

𝑥𝑛

𝑛=1

   𝑤𝑖𝑡ℎ 𝑛 =  1, 2, . . . ,30 (8) 

And  

𝑥𝐹2
𝑚𝑖𝑛 ≤ 𝑥1, 𝑥2, . . . , 𝑥𝑛  ≤ 𝑥𝐹2

𝑚𝑎𝑥  (9) 

In Equation (10), 𝑥𝐹2
𝑚𝑖𝑛 and 𝑥𝐹2

𝑚𝑎𝑥  are the minimum and maximum values of the variables that needed to be found for 
establishing an optimal solution.  

The third optimization problem 

Similar to the two optimization problems presented above, the mathematical expression of the objective function and 
the constraints of variables are given as follows: 

𝐹3 = |{(𝑥1, 𝑥2, . . . , 𝑥𝑛): ∑ 𝑥𝑛
2 = 𝑛 

𝑥𝑛

𝑛=1

}|   𝑤𝑖𝑡ℎ 𝑛 =  1, 2, . . . ,30 (10) 

And  

𝑥𝐹3
𝑚𝑖𝑛 ≤ 𝑥1, 𝑥2, . . . , 𝑥𝑛  ≤ 𝑥𝐹3

𝑚𝑎𝑥  (11) 

The fourth optimization problem. 

Similar to above, the mathematical expressions of the main objective function and the involved constraint are expressed 
as follows: 

𝐹4 = −20𝑒𝑥𝑝 [−0.2√0.5 × 𝑠𝑢𝑚(𝑥𝑛
2)/𝑛 − 𝑒𝑥𝑝[𝑠𝑢𝑚(𝑐𝑜𝑠2𝜋𝑥)/𝑛] + 20 + 𝑒𝑥𝑝(1)]  

𝑤𝑖𝑡ℎ 𝑛 =  1, 2, . . . ,30 
(12) 

And  

𝑥𝐹4
𝑚𝑖𝑛 ≤ 𝑥1, 𝑥2, . . . , 𝑥𝑛  ≤ 𝑥𝐹4

𝑚𝑎𝑥  (13) 
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3. The applied algorithms  

3.1. The Egret Swarm Optimization Algorithm (ESOA) 

The update method of ESOA is based on the sit-and-wait and the Aggressive strategies. The specific mathematical 
expression of these two strategies will be given as follows: 

3.1.1. The Sit and wait strategy 

𝑋𝑖
𝑛𝑒𝑤_1 = 𝑋𝑖 + 𝑆𝑇 × 𝑒𝑥𝑝(𝐶𝐼/0.1 × 𝑀𝐼) × 𝐺 × 𝐼𝐺 (14) 

Where 𝑋𝑖
𝑛𝑒𝑤_1 and  𝑋𝑖  are the new and the current location of the individual i of the population and i = 1, 2, …, Ps with Ps 

is the population size; ST is the length of step; 𝐶𝐼 and 𝑀𝐼 are the current and the maximum index of iteration number; G 
is the gap between the lowest and highest boundaries of the search space; IG is the integrated gradient calculated by the 
difference between the best solar individual and the considered one. 

3.1.2. The Aggressive strategy 

This strategy uses two phases, including the searching and encircling phases, while the Egret bird is hunting for its prey. 
The two phases are formulated by the two expressions as follows: 

𝑋𝑖
𝑛𝑒𝑤_𝑝1

= 𝑋𝑖 + 𝑆𝑇 × 𝑡𝑎𝑛(𝛾) ×
𝐺

1 + 𝐶𝐼
 (15) 

𝑋𝑖
𝑛𝑒𝑤_𝑝2

=  (1 − 𝛾 − 𝑅𝑛𝑑2) × 𝑋𝑖 + 𝑅𝑎𝑛𝑑1 × 𝐷𝐹1 + 𝑅𝑎𝑛𝑑2 × 𝐷𝐹2 (16) 

Where, 𝑋𝑖
𝑛𝑒𝑤_𝑝1

 and 𝑋𝑖
𝑛𝑒𝑤_𝑝2

 ar the new location of the individual i in phase 1 and phase 2; 𝛾  is the random value 

between 
−𝜋

2
 and 

𝜋

2
; Rnd1 and Rnd2 are the random values between 0 and 1; 𝐷𝐹1 and 𝐷𝐹2 are the differences between 

the best so far and the considered individual and the global best and the considered individual. 

3.2. Zebra Optimization algorithm (ZOA) 

The update process of ZOA is described by the stages as follows: 

3.2.1. Phase 1: 

In the first phase, each zebra is updated its new location using the equation below: 

𝑋𝑖
𝑛𝑒𝑤_𝑝1

=  𝑋𝑖 + 𝐸𝐹 × (𝑋𝐵𝑒𝑠𝑡 − 𝑆𝑇1𝑋𝑖) 𝑤𝑖𝑡ℎ 𝑖 =  1. . . 𝑃𝑠 (17) 

Where 𝑋𝑖
𝑛𝑒𝑤,𝑆1  is the new position of  the zebra m in Stage 1; 𝑋𝑚  is the old location of the zebra i;; 𝑋𝐵𝑒𝑠𝑡  is the best 

location in population; 𝑆𝑇1 is the first step length and its value is set by 2; Ps is population size. 

3.2.2. Phase 2: 

In Phase 2, each zebra will be updated for new location using the following equation: 

𝑋𝑖
𝑛𝑒𝑤,𝑝2

= {
𝑋𝑖 + 𝑆𝑇2 × (2𝑆𝑇2 − 1) × (1 −

𝐶𝐼

𝑀𝐼
) 𝑋𝑖 ,        if    ε ≤ 0.5

𝑋𝑖 + 𝐴𝑇 × (𝑍𝑈𝑇 − 𝑆𝑇1𝑋𝑖),                                otherwise
 (18) 

Where 𝑋𝑖
𝑛𝑒𝑤,𝑆2 is the new location of the zebra i in Stage 2; 𝑆𝑇2 is the second step length and its value is set by 0.01; 𝐶𝐼 

and 𝑀𝐼 are the current and the maximum index of iteration; 𝑍𝑈𝐵  is zebra under threaten; ε is the probability deciding 
which method are used in in Phase 2. 

4. Results and discussions 

This section will apply both ESOA and ZOA to solve the four optimization problems, as shown in Section 2. The results 
achieved by the two algorithms are presented in the following subsections, each accompanied by a detailed analysis. 
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This analysis is crucial for understanding the performance of each algorithm and for making a fair comparison. To 
ensure this fairness, both ESOA and ZOA are initialized with the same parameters, including the population size and 
maximum number of iterations, which are set at 20 and 50, respectively, for all the optimization problems. Moreover, 
both algorithms are executed with 50 trial runs to obtain the best solutions. 

The whole study is implemented on a desktop with the following specifications: central processing units with 2.54 GHz 
of clock speed and 8 GB of random accessing memory (RAM). Additionally, all the related coding and simulation are 
employed by MATLAB programming language version 2019a.  

4.1. The results achieved at the first optimization problem 

For the first optimization problem, the effectiveness of the ESOA and ZOA is evaluated on different criteria, including 
the stability after 50 trial runs and the convergence speed to the optimal value, which can be observed through the 
minimum, average, and maximum convergences. Figure 1 shows the results of ESOA and ZOA after 50 trial runs. It is 
straightforward to see that ESOA provides higher stability than ZOA during 50 trial runs. 

 

Figure 1 The results achieved by the two algorithms after 50 trial runs while solving the first optimization problem. 

Figure 2a shows the maximum convergence, while Figures 2b and 2c show the average and the maximum convergence, 
respectively. Although the two algorithms can achieve the optimal value of the primary objective function in their best 
run, ESOA has shown a higher capability. At the same time, the method can reach the optimal value much faster than 
ZOA in all three convergences. Specifically, ESOA requires less than 20 iterations to reach all the best values of the three 
convergences, while ZOA can provide a different performance. This means ESOA can provide the same degree of 
effectiveness as ZOA but uses fewer computing resources and a much shorter response time. 

 

Figure 2 The minimum, average, and maximum convergences achieved by the two algorithms while solving the first 
optimization problem. 

 

 

a) b) c) 
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4.2. The results achieved at the second optimization problem  

In this subsection, the effectiveness of the ESOA and ZOA while dealing with the second optimization problem is also 
justified through the results of 50 trial runs and the three convergences similar to the previous section. Despite the 
complexity of the second optimization problem being increased more than the first one, ESOA still maintains its 
superiority to ZOA. Mainly, ESOA continuously showed surprising stability during the 50 trial runs, as shown in Figure 
3. In contrast, ZOA shows a higher fluctuation of the fitness values among the trial runs compared to the first considered 
problem. The observation of the minimum, average, and maximum convergence in Figures 4a, 4b, and 4c indicated that 
ESOA can produce the same optimal value as ZOA. However, the method requires fewer iterations and also provides a 
faster response time. Namely, ESOA also requires less than 20 iterations to reach all the best values of the three 
convergences. 

 

Figure 3 The results achieved by the two algorithms after 50 trial runs  while solving the second optimization 
problem. 

 

Figure 4 The minimum, average, and maximum convergences achieved by the two algorithms while solving the 
second optimization problem. 

4.3. The results achieved at the third optimization problem  

This subsection presents the results achieved by ESOA and ZOA when dealing with the third optimization problem. 
Similar to the first problem, ESOA still outperforms ZOA regarding stability and convergence speed, as shown in Figures 
5, 6a, 6b, and 6c, respectively. For instance, ESOA's stability while dealing with the third optimization problem is 
excellent compared to ZOA. 

 

a) b) c) 
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Figure 5 The results achieved by the two algorithms after 50 trial runs while solving the third optimization problem. 

Speaking of the minimum convergence in Figure 6a, ESOA only requires approximately 20 iterations to achieve the best 
value of the considered optimization problem. In comparison, ZOA needs over 40 iterations to do the same. Moreover, 
the observation also indicates more proof regarding the high efficiency of ESOA compared to ZOA. Specifically, ESOA 
utilizes over 30 to reach the best value in the average convergence and around 20 iterations in the maximum 
convergence. The number of iterations that ZOA needs to reach similar results as ESOA in the average convergence is 
over 45, and up to 48 iterations for the maximum convergence. 

 

Figure 6 The minimum, average, and maximum convergences achieved by the two algorithms while solving the 
second optimization problem. 

4.4. The results achieved at the fourth optimization problem  

This subsection presents and evaluates the results achieved by ESOA and ZOA while dealing with the fourth 
optimization problem. Similar to the above subsections, the stability and the convergence speed to the optimal values 
in different convergences of the two algorithms are also given in Figure 7 and Figure 8, respectively. In this last 
considered optimization problem, ESOA continuously shows higher stability than ZOA after 50 trial runs, as seen in 
Figure 7. 

 

a) b) c) 
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Figure 7 The results achieved by the two algorithms after 50 trial runs while solving the fourth optimization problem. 

Regarding the convergence speed, ESOA also provides a faster speed in all three convergences, including the minimum, 
the average, and the maximum, which can be observed in Figures 8a, 8c, and 8d. ESOA is entirely superior to ZOA in all 
comparison criteria.  

 

Figure 8 The minimum, average, and maximum convergences achieved by the two algorithms while solving the fourth 
optimization problem. 

5. Conclusions   

This study applies Egret Swarm Optimization Algorithm (ESOA) and the Zebra Optimization Algorithm (ZOA) to solve 
optimization problems and investigate their performances. The results of the two algorithms in each problem are 
compared using different criteria, such as stability and convergence speed, through minimum, average, and maximum 
convergence. Despite the complexity increase, ESOA showed surprising stability and convergence speed to the best 
value while dealing with the four optimization problems. In the first two considered optimization problems, ESOA 
requires less than 20 iterations to reach all the best values of the three convergences, while ZOA can achieve a different 
capability. In the last two optimization problems, ESOA still maintains its superiority to ZOA by showing surprising 
stability and requiring fewer iterations to achieve the best values of given convergences. By analyzing all the results, 
ESOA is acknowledged as a highly effective and powerful search method for solving different optimization problems.  

 

a) b) c) 
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