
* Corresponding author: Tamer Rabie; Email:

Copyright © 2024 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0.

Effectiveness of pseudorandom number generators in secret image retrieval fidelity
for steganography

Rawan Khanfar, Hala Ghannam, Alya Alabdouli and Tamer Rabie *

Department of Computer Engineering, College of Computing and Informatics, University of Sharjah, U.A.E.

World Journal of Advanced Engineering Technology and Sciences, 2024, 12(01), 289–297

Publication history: Received on 04 May 2024; revised on 09 June 2024; accepted on 12 June 2024

Article DOI: https://doi.org/10.30574/wjaets.2024.12.1.0238

Abstract

Steganography, an ancient technique for concealing information within seemingly benign data, has resurfaced in the
digital age, finding widespread application across a variety of industries. However, its use confronts major hurdles,
notably with image files that are susceptible to network transmission distortions and assaults. Pseudorandom Number
Generators (PRNGs) emerge as critical safeguards in this setting, increasing the unpredictability of embedded data and
thwarting malevolent manipulations. This study evaluates the usefulness of various PRNGs in reinforcing LSB
steganography to secure the integrity and retrievability of concealed data after transmission. Six PRNGs, including LCG,
PCG, and XORshift, were evaluated, and the results show that they are successful at preventing both distortions and
attacks. Notably, non-randomized images of type PNG are resistant to transmission distortions but struggle with secret
image retrieval post-attack. This research advances steganographic methodologies, offering insights into fortifying
digital communication amidst real-world challenges.

Keywords: Pseudorandom Number Generator; PRNG; Secret Image; Retrieval Fidelity; Steganography; Information
Security

1. Introduction

Steganography is the art of hiding information among other non-secret data, as it is as old as writing originally, yet it
has come back into vogue in the digital era [1]. It is widely applied in several industries, from multimedia systems to
secure communications. Steganography ensures that secret information can be conveyed in plain sight without drawing
any attention by embedding concealed messages within photos, videos, or audio files.

There are many challenges and difficulties that threaten steganography, specifically when talking about image files.
Generally, images during transmission in the network, are vulnerable, as they are susceptible to compression artifacts,
different types of noise, and malicious attacks that cause distortion to the hidden message [2]. When the stego-image is
distorted or altered in any way, it becomes very challenging to retrieve the embedded secret. This vulnerability presents
a serious risk, particularly in situations when it is imperative to preserve the integrity of hidden data.

To mitigate the stego-images against these attacks and distortions, Pseudorandom Number Generators (PRNGs) have
an essential role. The way secret data is embedded into an image can be made more unpredictable by using PRNGs,
which are algorithms that use mathematical formulas to produce sequences of random numbers [3]. The main idea is
to randomize the confidential data before steganographically embedding it. This will increase the data embedding
pattern's resistance to attacks and distortions and make it less predictable. In spite of the typical difficulties experienced
during picture transmission, this study attempts to assess how well different PRNGs improve the security of LSB (Least
Significant Bit) steganography by guaranteeing that the secret data, once randomized and embedded, stays intact and
retrievable post transmission through the network.

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://www.wjaets.com/
https://doi.org/10.30574/wjaets.2024.12.1.0238
https://crossmark.crossref.org/dialog/?doi=10.30574/wjaets.2024.12.1.0238&domain=pdf

World Journal of Advanced Engineering Technology and Sciences, 2024, 12(01), 289–297

290

By exploring different types of PRNGs and studying the interplay between them and the LSB steganography, the goal of
this research is to further the development of more resilient digital steganographic methods that can handle the
challenges of handling data and communicating in the real world.

2. Mathematical background

A pseudorandom number generator (PRNG) is a mathematical function that can generate a value that seems random
[4]. PRNGs are initialized with an arbitrary random value called the seed. Values from a PRNG are reproducible if the
seed is known. PRNGs are also characterized by their ability to produce many results in short periods of time [5].

This paper utilizes PRNGs to randomize pixels of a secret image, which is later imbedded in a cover image through
steganography. The PRNGs used in this paper are: SplitMix, Well Equi-distributed Long-period Linear (WELL),
Mersenne Twister, XORShift , Linear Congruential Generator (LCG) and Permuted Congruential Generator (PCG).

2.1. WELL

The WELL generator is a form of linear feedback shift register and a set of non-linear transformations. It is very similar
to Mersenne Twister, yet exhibits longer periods and better equidistribution [6]. A general framework of how the WELL
generator updates the state is described below.

Xi=(Xi−A ⊕ (Xi−B ≫s) ⊕ (Xi−C≪t)) ⊕ T(Xi−D)

Xi: the current state
A, B, C, D: offset values which are predefined for each WELL variant.
Xi−A, Xi−B, Xi−C, Xi−D: the previous states at offsets A, B,C,D
T: Tampering function which includes other bitwise operations

2.2. SplitMix

The SplitMix generator is an object oriented and a splitable PRNG. While other PRNGs generate a value and update the
state, this algorithm introduces the ability for an PRNG object to be split. In other words, an original PRNG object can be
split into two pseudo-independent PRNG objects. The algorithm is especially useful in multithreaded programs, since
the generation of pseudorandom numbers does not require synchronization [7]. The SplitMix algorithm is described
below. The current state is updated by a fixed increment, where Y represents the next state. Y undergoes intermediate
operations which are a series of right-shifting and multiplications.

Y= Xcurrent + increment

Y =Y ⊕ (Y ≫ 30) × 0xbf58476d1ce4e5b9

Y=Y ⊕ (Y ≫ 27) × 0x94d049bb133111eb

Y=Y ⊕ (Y≫31)

2.3. Mersenne Twister

The Mersenne Twister is a PRNG known for its long period and effective randomness. It generates pseudo-random
numbers by repeatedly executing a twisting operation, keeping an internal state vector, and starting with a seed value
[8]. Twisting operation involves a series of bitwise, addition, and XOR operations to generates the next pseudo-random
number in the sequence. It generates a long series of pseudo-random numbers with a period of 219937 −1 before
repeating.

Yi = Xi⊕ ((Xi>>u)&d) ⊕ ((Xi−m&a))

Xi: the current state vector
Yi: the next pseudo-random number generated.
u, d, and 𝑎: constants used in the algorithm.
m: the length of the state vector.

https://en.wikipedia.org/wiki/Xorshift
https://en.wikipedia.org/wiki/Linear_congruential_generator
https://en.wikipedia.org/wiki/Permuted_congruential_generator

World Journal of Advanced Engineering Technology and Sciences, 2024, 12(01), 289–297

291

2.4. XORShift

The XORShift algorithm generates pseudo-random numbers by performing bitwise XOR and shift operations to a seed
value. It functions directly on a single integer number without requiring the maintenance of an explicit state vector and
is renowned for its simplicity and efficiency [9]. Although XORShift has a shorter duration than some other PRNGs, it is
well-liked for its efficiency and speed in a range of applications.

Xi+1= Xi⊕ (Xi⋘a) ⊕ (Xi⋙b)

Xi: the current state value
Xi+1: the next state value, which will be used to generate the next pseudo-random number
a and b: constants that determine the number of bits to shift.

2.5. LCG

An approach that uses a discontinuous piecewise linear equation to create a series of pseudo-randomized numbers is
known as a linear congruential generator (LCG). One of the most well-known and ancient pseudorandom number
generator algorithms is represented by the technique [10]. Their theory is not too complex, and they can be quickly and
simply implemented, especially on computer hardware that supports modular arithmetic via truncation.

Xi+1= (a Xi+c) mod m

Xi: the current state value
a: the multiplier
c: the increment
m: the modulus
Xo: is the seed or starting value

2.6. PCG

A more recent method for producing pseudorandom numbers is the Permuted Congruential Generator (PCG), which
aims to provide higher randomness and better statistical features [11]. To increase unpredictability, the PCG combines
output permutation with linear congruential generation.

Xi+1=Xi-m+cmod2l

Yi =permute (Xi)
Xi: the current state
m and c : constants
2𝑙: the power of 2 defining the state size
Yi: the output after applying a permutation function to 𝑋i

3. Techniques and methods applied

In this section, the model design of the proposed secure communication system will be introduced. As illustrated in
figure 1, image randomization and steganography will be applied by the sender before transmitting the message.
Similarly, the reversed methods will be applied to the received image to retrieve the original secret image.

World Journal of Advanced Engineering Technology and Sciences, 2024, 12(01), 289–297

292

Figure 1 Overview of the scheme

First, the secret image shown in figure 2 will be randomized using 6 different randomization methods: SplitMix, WELL,
Mersenne Twister, XORshift, LCG and PCG. Image randomization alters the pixel values in a random manner, making it
more resistant to analysis. Afterwards, the randomized image will be hidden in the cover image using least significant
bit (LSB) steganography. The embedding algorithm of LSB steganography is used to hide information, where each least
significant bit of the cover image is sequentially replaced with a bit of the secret image.

Figure 2 Secret image and cover image

During data transferring from the sender to the receiver through the transmission channel, some distortions or attacks
may occur and modify the sent image. Therefore, three main distortions and attacks: noise addition, compression, and
histogram attack, were applied on the transmitted image to test the robustness of the different randomization methods.
Noise distortion was applied on the images using 20% and 50% strength rates, by adding random variations or
disturbances into the pixel values. In addition, lossless compression was used, which reduces the size of the image
without any loss of information. While noise addition and compression are caused by bad transmission, some attacks
such as histogram attacks occur due to the analysis conducted by attackers.

The histogram attack works on identifying the most frequent pixel intensities (histogram peaks) and then averages the
identified peaks with their adjacent pixel values. In this paper, the top 20 histogram peaks were targeted. This attack,
when applied to a non-randomized secret message, was able to reveal some content of the secret message. However,
the success of this attack greatly depends on the nature of the images.

World Journal of Advanced Engineering Technology and Sciences, 2024, 12(01), 289–297

293

Figure 3 Stego image after histogram attack on 20 top peaks and 30 top peaks

At the receiver side, LSB steganography extraction algorithm and derandomization are done to retrieve the secret
message. Finally, three different image comparison matrices will be used to quantify the quality of the retrieved images:
MSE (Mean Squared Error), PSNR (Peak Signal-to-Noise Ratio), and SSIM (Structural Similarity Index). MSE determines
the average squared difference between pixels in the original and reconstructed images. PSNR measures the quality of
a reconstructed or compressed signal by determining the amount of noise in the reconstructed signal in comparison to
the original signal. Furthermore, SSIM compares the similarity of two images based on luminance, contrast, and
structure. It is frequently used to determine the perceived quality of image compression.

MSE =
𝟏

𝑵
 ∑ (𝑰(𝒊) − Î(𝒊))𝑵

𝒊=𝟏
2

PSNR=10⋅ log10 (MAX2/MSE)

SSIM(x,y)=
(𝟐𝝁𝒙 𝝁𝒚+𝑪𝟏)(𝟐𝝈𝒙𝒚+𝑪𝟐)

(𝝁𝒙
𝟐+𝝁𝒚

𝟐+𝑪𝟏)(𝝈𝒙
𝟐+𝝈𝒚

𝟐+𝑪𝟐)

N: the total number of pixels in the image.
I(i), Î(i): the pixel values of the original and reconstructed images, respectively.
𝜇𝑥 , 𝜇𝑦: the means of images 𝑥 and 𝑦 respectively.

σx2, σy2: the variances of images 𝑥 and 𝑦 respectively.
𝜎𝑥𝑦: the covariance of images 𝑥 and 𝑦.

𝐶1, 𝐶2: constants to stabilize the division with weak denominator.

4. Experimental results

The randomized secret image was hidden in the cover image in figure 2 using LSB steganography. Then, it went through
three different distortions, and the performance of each randomization method was measured. The performance is
divided into two parts, numerical part using MSE, PSNR, and SSIM, which analyses the performance according to pixels,
and the second part is visual, which analyses the readability of the retrieved image.

4.1. Numerical Results

Table 1 Retrieved image assessment after 20% noise addition

Metric/ Scheme No Randomization SplitMix WELL Mersenne Twister XORshift LCG PCG

MSE 0.28753 0.28811 105.07 0.28722 0.28706 0.28741 0.28762

PSNR 53.543 53.535 27.915 53.549 53.551 53.5457 53.5425

SSIM 0.10137 0.1012 0.068684 0.10185 0.10135 0.10128 0.10150

First, the stego-image went through 20% noise addition, and after retrieving the image, it was compared with the
original secret image before randomization. Table 1 shows the results of the 20% noise addition with six randomization
methods and without randomization.

World Journal of Advanced Engineering Technology and Sciences, 2024, 12(01), 289–297

294

From the table below, WELL has the highest MSE, whereas the others, along with no randomization, have very close
results of 28% error. Hence, randomization with SplitMix, Mersennse Twister, XORshift, LCG, and PCG, retrieve the
image as without randomization (numerically).

Secondly, the stego-image went through 50% noise addition to see how increasing the noise can affect the performance
of the randomization methods. Results are illustrated in table 2.

Table 2 Retrieved image assessment after 50% noise addition

Metric/ Scheme No Randomization SplitMix WELL Mersenne Twister XORshift LCG PCG

MSE 0.46650 0.4674 105.22 0.45889 0.45875 0.46012 0.46008

PSNR 51.442 51.433 27.909 51.514 51.515 51.502 51.502

SSIM 0.052954 0.05229 0.04231 0.05286 0.05307 0.05268 0.05298

From the results above, WELL is also performing the worst in terms of image retrieval, while other randomization
methods have around 46% error, pixel-wise, where this percentage may not reflect visually.

Thirdly, the stego-image went through compression, as it is very common for images to get compressed when
transmitted. Table 3 below shows the numerical results for the PRNGs.

Table 3 Retrieved image assessment after compression

Metric/ Scheme No Randomization SplitMix WELL Mersenne Twister XORshift LCG PCG

MSE 0.17310 0.17310 105.02 0.17311 0.74452 0.17310 0.17310

PSNR 55.747 55.747 27.918 55.748 49.412 55.7476 55.747

SSIM 0.99934 0.9993 0.09219 0.99934 0.00174 0.99934 0.99934

According to table 3 above, the image was restored without randomization, as the SSIM is 0.999 that is very close to 1,
which is due to using the “PNG” format in the image. Also, the image was restored successfully in SplitMix, Mersenne
Twister, LCG, and PCG, whereas WELL and XORshift failed to retrieve the image after it got compressed, as their SSIM is
closer to 0.

Finally, the stego-image was exposed to a histogram attack to assess the performance of the PRNGs against malicious
attacks. Results are illustrated in table 4.

Table 4 Retrieved image assessment after histogram attack

Metric/ Scheme No Randomization SplitMix WELL Mersenne Twister XORshift LCG PCG

MSE 0.37686 0.38838 105.10 0.74688 0.29918 0.34993 0.38004

PSNR 52.3689 52.238 27.914 49.398 53.372 52.6908 52.332

SSIM 0.56501 0.28588 0.076652 0.00180 0.51939 0.29240 0.28663

According to the results displayed in table 4, WELL and Mersenne Twister have the worst performance among all, where
the SSIM is almost 0, and the MSE is very high. As for the others, they have almost the same error percentage close to
35%, where no randomization and XORshift show the least noise, as their SSIM is around 0.5.

4.2. Visual Results

The visual results for each attack with each randomization technique are illustrated in table 5, which will be verifying
the numerical results obtained.

World Journal of Advanced Engineering Technology and Sciences, 2024, 12(01), 289–297

295

Table 5 Visual results for image retrieval

Metric/ Scheme No Attack 20% Noise Addition 50% Noise Addition Compression Histogram Attack

No Randomization

SplitMix

WELL

World Journal of Advanced Engineering Technology and Sciences, 2024, 12(01), 289–297

296

Mersenne Twister

XORshift

LCG

PCG

World Journal of Advanced Engineering Technology and Sciences, 2024, 12(01), 289–297

297

From table 5, it is clear that without randomization, the PNG image is restored well with compression and with 20%
noise, whereas with the histogram attack, the image was not restored, and it has a lot of distortion. Generally, LCG, PCG,
and XORshift have the best performance, where under all conditions, the secret image was successfully retrieved, and
the text can be extracted from the images. For WELL, it has a bad performance among all attacks, whereas twister fails
completely with the histogram attack. Finally, SplitMix is affected badly by increased addition of noise, and it stops
retrieving the secret image.

5. Conclusions

With the challenges that affect steganography, PRNGs were used to prevent attacks and distortions from wiping away
the secret image information from the stego-image. Six PRNGs were used, SplitMix, WELL, Mersenne Twister, XORshift,
LCG, and PCG. From the results, it was concluded that PNG Images, without randomization, are resilient against
distortions caused by transmission in the network. Additionally, without randomization, it is hard to retrieve the secret
image when the stego-image is attacked. Finally, LCG, PCG, and XORshift are resilient against both distortions and
attacks.

Compliance with ethical standards

Disclosure of conflict of interest

No conflict of interest to be disclosed.

References

[1] Kaspersky (2023) What is steganography? definition and explanation, www.kaspersky.com. Available at:
https://www.kaspersky.com/resource-center/definitions/what-is-steganography (Accessed: 03 May 2024).

[2] A. A. Abdulla, Digital Image Steganography: Challenges, investigation, and recommendation for the future
direction,” Soft Computing, Sep. 2023. doi:10.1007/s00500-023-09130-8.

[3] GeeksforGeeks, Pseudo random number generator (PRNG), GeeksforGeeks,
https://www.geeksforgeeks.org/pseudo-random-number-generator-prng/ (accessed May 3, 2024).

[4] V. Tilborg, Encyclopedia of cryptography and security. New York: Springer, 2011.

[5] Tom St Denis and S. Johnson, Cryptography for developers. Rockland, Ma: Syngress Publishing, Inc, 2007.

[6] P. L’Ecuyer and F. Panneton, “Improved Long-Period Generators Based on Linear Recurrences Modulo 2,” Les
Cahiers du GERAD, pp. 1–17, Aug. 2004.

[7] G. L. Steele, D. Lea, and C. H. Flood, Fast splittable pseudorandom number generators,” SIGPLAN notices, vol. 49,
no. 10, pp. 453–472, Oct. 2014, doi: https://doi.org/10.1145/2714064.2660195.

[8] Matsumoto, M. and Nishimura, T. (1998) ‘Mersenne twister’, ACM Transactions on Modeling and Computer
Simulation, 8(1), pp. 3–30. doi:10.1145/272991.272995.

[9] Panneton, F. and L’Ecuyer, P. (2005) ‘On the XORshift random number generators’, ACM Transactions on
Modeling and Computer Simulation, 15(4), pp. 346–361. doi:10.1145/1113316.1113319.

[10] Linear Congruential Generator, Wikipedia, https://en.wikipedia.org/wiki/Linear
congruential_generator#:~:text=A%20linear%20congruential%20generator%20(LCG,known%20pseudorand
om%20number%20generator%20algorithms. (accessed May 3, 2024).

[11] Permuted Congruential Generator, Wikipedia, https://en.wikipedia.org/wiki/Permuted
congruential_generator#:~:text=A%20permuted%20congruential%20generator%20(PCG,2n%20linear%20co
ngruential%20generator. (accessed May 3, 2024).

