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Abstract 

Steganography, an ancient technique for concealing information within seemingly benign data, has resurfaced in the 
digital age, finding widespread application across a variety of industries. However, its use confronts major hurdles, 
notably with image files that are susceptible to network transmission distortions and assaults. Pseudorandom Number 
Generators (PRNGs) emerge as critical safeguards in this setting, increasing the unpredictability of embedded data and 
thwarting malevolent manipulations. This study evaluates the usefulness of various PRNGs in reinforcing LSB 
steganography to secure the integrity and retrievability of concealed data after transmission. Six PRNGs, including LCG, 
PCG, and XORshift, were evaluated, and the results show that they are successful at preventing both distortions and 
attacks. Notably, non-randomized images of type PNG are resistant to transmission distortions but struggle with secret 
image retrieval post-attack. This research advances steganographic methodologies, offering insights into fortifying 
digital communication amidst real-world challenges. 
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1. Introduction

Steganography is the art of hiding information among other non-secret data, as it is as old as writing originally, yet it 
has come back into vogue in the digital era [1]. It is widely applied in several industries, from multimedia systems to 
secure communications. Steganography ensures that secret information can be conveyed in plain sight without drawing 
any attention by embedding concealed messages within photos, videos, or audio files. 

There are many challenges and difficulties that threaten steganography, specifically when talking about image files. 
Generally, images during transmission in the network, are vulnerable, as they are susceptible to compression artifacts, 
different types of noise, and malicious attacks that cause distortion to the hidden message [2]. When the stego-image is 
distorted or altered in any way, it becomes very challenging to retrieve the embedded secret. This vulnerability presents 
a serious risk, particularly in situations when it is imperative to preserve the integrity of hidden data. 

To mitigate the stego-images against these attacks and distortions, Pseudorandom Number Generators (PRNGs) have 
an essential role. The way secret data is embedded into an image can be made more unpredictable by using PRNGs, 
which are algorithms that use mathematical formulas to produce sequences of random numbers [3]. The main idea is 
to randomize the confidential data before steganographically embedding it. This will increase the data embedding 
pattern's resistance to attacks and distortions and make it less predictable. In spite of the typical difficulties experienced 
during picture transmission, this study attempts to assess how well different PRNGs improve the security of LSB (Least 
Significant Bit) steganography by guaranteeing that the secret data, once randomized and embedded, stays intact and 
retrievable post transmission through the network. 
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By exploring different types of PRNGs and studying the interplay between them and the LSB steganography, the goal of 
this research is to further the development of more resilient digital steganographic methods that can handle the 
challenges of handling data and communicating in the real world. 

2. Mathematical background 

A pseudorandom number generator (PRNG) is a mathematical function that can generate a value that seems random 
[4]. PRNGs are initialized with an arbitrary random value called the seed. Values from a PRNG are reproducible if the 
seed is known. PRNGs are also characterized by their ability to produce many results in short periods of time [5]. 

This paper utilizes PRNGs to randomize pixels of a secret image, which is later imbedded in a cover image through 
steganography. The PRNGs used in this paper are: SplitMix, Well Equi-distributed Long-period Linear (WELL), 
Mersenne Twister, XORShift , Linear Congruential Generator (LCG) and Permuted Congruential Generator (PCG).  

2.1. WELL 

The WELL generator is a form of linear feedback shift register and a set of non-linear transformations. It is very similar 
to Mersenne Twister, yet exhibits longer periods and better equidistribution [6]. A general framework of how the WELL 
generator updates the state is described below.  

Xi=(Xi−A ⊕ (Xi−B ≫s ) ⊕ (Xi−C≪t)) ⊕ T(Xi−D) 

Xi: the current state 
A, B, C, D: offset values which are predefined for each WELL variant. 
Xi−A, Xi−B, Xi−C, Xi−D: the previous states at offsets A, B,C,D 
T: Tampering function which includes other bitwise operations 

2.2. SplitMix 

The SplitMix generator is an object oriented and a splitable PRNG. While other PRNGs generate a value and update the 
state, this algorithm introduces the ability for an PRNG object to be split. In other words, an original PRNG object can be 
split into two pseudo-independent PRNG objects. The algorithm is especially useful in multithreaded programs, since 
the generation of pseudorandom numbers does not require synchronization [7]. The SplitMix algorithm is described 
below. The current state is updated by a fixed increment, where Y represents the next state. Y undergoes intermediate 
operations which are a series of right-shifting and multiplications.  

Y= Xcurrent + increment 

Y =Y ⊕ (Y ≫ 30) × 0xbf58476d1ce4e5b9 

Y=Y ⊕ (Y ≫ 27) × 0x94d049bb133111eb 

Y=Y ⊕ (Y≫31) 

2.3. Mersenne Twister 

The Mersenne Twister is a PRNG known for its long period and effective randomness. It generates pseudo-random 
numbers by repeatedly executing a twisting operation, keeping an internal state vector, and starting with a seed value 
[8]. Twisting operation involves a series of bitwise, addition, and XOR operations to generates the next pseudo-random 
number in the sequence. It generates a long series of pseudo-random numbers with a period of 219937 −1 before 
repeating.  

Yi = Xi⊕ (( Xi>>u)&d) ⊕ (( Xi−m&a)) 

Xi: the current state vector 
Yi: the next pseudo-random number generated. 
u, d, and 𝑎: constants used in the algorithm. 
m: the length of the state vector. 

 

https://en.wikipedia.org/wiki/Xorshift
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2.4. XORShift 

The XORShift algorithm generates pseudo-random numbers by performing bitwise XOR and shift operations to a seed 
value. It functions directly on a single integer number without requiring the maintenance of an explicit state vector and 
is renowned for its simplicity and efficiency [9]. Although XORShift has a shorter duration than some other PRNGs, it is 
well-liked for its efficiency and speed in a range of applications. 

Xi+1= Xi⊕ (Xi⋘a) ⊕ (Xi⋙b) 

Xi: the current state value 
Xi+1: the next state value, which will be used to generate the next pseudo-random number 
a and b: constants that determine the number of bits to shift. 

2.5. LCG 

An approach that uses a discontinuous piecewise linear equation to create a series of pseudo-randomized numbers is 
known as a linear congruential generator (LCG). One of the most well-known and ancient pseudorandom number 
generator algorithms is represented by the technique [10]. Their theory is not too complex, and they can be quickly and 
simply implemented, especially on computer hardware that supports modular arithmetic via truncation. 

Xi+1= (a Xi+c) mod m 

Xi: the current state value 
a: the multiplier 
c: the increment 
m: the modulus 
Xo: is the seed or starting value 

2.6. PCG 

A more recent method for producing pseudorandom numbers is the Permuted Congruential Generator (PCG), which 
aims to provide higher randomness and better statistical features [11]. To increase unpredictability, the PCG combines 
output permutation with linear congruential generation. 

Xi+1=Xi-m+cmod2l 

Yi =permute (Xi) 
Xi: the current state 
m and c : constants 
2𝑙: the power of 2 defining the state size 
Yi: the output after applying a permutation function to 𝑋i 

3. Techniques and methods applied 

In this section, the model design of the proposed secure communication system will be introduced. As illustrated in 
figure 1, image randomization and steganography will be applied by the sender before transmitting the message. 
Similarly, the reversed methods will be applied to the received image to retrieve the original secret image.  
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Figure 1 Overview of the scheme 

First, the secret image shown in figure 2 will be randomized using 6 different randomization methods: SplitMix, WELL, 
Mersenne Twister, XORshift, LCG and PCG. Image randomization alters the pixel values in a random manner, making it 
more resistant to analysis. Afterwards, the randomized image will be hidden in the cover image using least significant 
bit (LSB) steganography. The embedding algorithm of LSB steganography is used to hide information, where each least 
significant bit of the cover image is sequentially replaced with a bit of the secret image.  

 

Figure 2 Secret image and cover image  

During data transferring from the sender to the receiver through the transmission channel, some distortions or attacks 
may occur and modify the sent image. Therefore, three main distortions and attacks: noise addition, compression, and 
histogram attack, were applied on the transmitted image to test the robustness of the different randomization methods. 
Noise distortion was applied on the images using 20% and 50% strength rates, by adding random variations or 
disturbances into the pixel values. In addition, lossless compression was used, which reduces the size of the image 
without any loss of information. While noise addition and compression are caused by bad transmission, some attacks 
such as histogram attacks occur due to the analysis conducted by attackers.  

The histogram attack works on identifying the most frequent pixel intensities (histogram peaks) and then averages the 
identified peaks with their adjacent pixel values. In this paper, the top 20 histogram peaks were targeted. This attack, 
when applied to a non-randomized secret message, was able to reveal some content of the secret message. However, 
the success of this attack greatly depends on the nature of the images. 
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Figure 3 Stego image after histogram attack on 20 top peaks and 30 top peaks 

At the receiver side, LSB steganography extraction algorithm and derandomization are done to retrieve the secret 
message. Finally, three different image comparison matrices will be used to quantify the quality of the retrieved images: 
MSE (Mean Squared Error), PSNR (Peak Signal-to-Noise Ratio), and SSIM (Structural Similarity Index). MSE determines 
the average squared difference between pixels in the original and reconstructed images. PSNR measures the quality of 
a reconstructed or compressed signal by determining the amount of noise in the reconstructed signal in comparison to 
the original signal. Furthermore, SSIM compares the similarity of two images based on luminance, contrast, and 
structure. It is frequently used to determine the perceived quality of image compression. 

MSE = 
𝟏

𝑵
 ∑ (𝑰(𝒊) − Î(𝒊))𝑵

𝒊=𝟏
2 

PSNR=10⋅ log10 (MAX2/MSE) 

SSIM(x,y)= 
(𝟐𝝁𝒙 𝝁𝒚+𝑪𝟏)(𝟐𝝈𝒙𝒚+𝑪𝟐)

(𝝁𝒙
𝟐+𝝁𝒚

𝟐+𝑪𝟏)(𝝈𝒙
𝟐+𝝈𝒚

𝟐+𝑪𝟐)
 

N: the total number of pixels in the image. 
I(i), Î(i): the pixel values of the original and reconstructed images, respectively. 
𝜇𝑥 , 𝜇𝑦: the means of images 𝑥 and 𝑦 respectively. 

σx2, σy2: the variances of images 𝑥 and 𝑦 respectively. 
𝜎𝑥𝑦: the covariance of images 𝑥 and 𝑦. 

𝐶1, 𝐶2: constants to stabilize the division with weak denominator. 

4. Experimental results 

The randomized secret image was hidden in the cover image in figure 2 using LSB steganography. Then, it went through 
three different distortions, and the performance of each randomization method was measured. The performance is 
divided into two parts, numerical part using MSE, PSNR, and SSIM, which analyses the performance according to pixels, 
and the second part is visual, which analyses the readability of the retrieved image. 

4.1. Numerical Results 

Table 1 Retrieved image assessment after 20% noise addition 

Metric/ Scheme No Randomization SplitMix WELL Mersenne Twister XORshift LCG PCG 

MSE 0.28753 0.28811 105.07 0.28722  0.28706  0.28741   0.28762 

PSNR 53.543 53.535 27.915 53.549 53.551 53.5457 53.5425 

SSIM 0.10137 0.1012 0.068684 0.10185 0.10135 0.10128 0.10150 

First, the stego-image went through 20% noise addition, and after retrieving the image, it was compared with the 
original secret image before randomization. Table 1 shows the results of the 20% noise addition with six randomization 
methods and without randomization. 
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From the table below, WELL has the highest MSE, whereas the others, along with no randomization, have very close 
results of 28% error. Hence, randomization with SplitMix, Mersennse Twister, XORshift, LCG, and PCG, retrieve the 
image as without randomization (numerically). 

Secondly, the stego-image went through 50% noise addition to see how increasing the noise can affect the performance 
of the randomization methods. Results are illustrated in table 2. 

Table 2 Retrieved image assessment after 50% noise addition 

Metric/ Scheme No Randomization SplitMix WELL Mersenne Twister XORshift LCG PCG 

MSE  0.46650 0.4674   105.22 0.45889  0.45875  0.46012   0.46008 

PSNR 51.442 51.433 27.909 51.514 51.515 51.502 51.502 

SSIM 0.052954 0.05229 0.04231 0.05286 0.05307 0.05268 0.05298 

From the results above, WELL is also performing the worst in terms of image retrieval, while other randomization 
methods have around 46% error, pixel-wise, where this percentage may not reflect visually. 

Thirdly, the stego-image went through compression, as it is very common for images to get compressed when 
transmitted. Table 3 below shows the numerical results for the PRNGs. 

Table 3 Retrieved image assessment after compression 

Metric/ Scheme No Randomization SplitMix WELL Mersenne Twister XORshift LCG PCG 

MSE  0.17310  0.17310 105.02   0.17311  0.74452 0.17310  0.17310  

PSNR 55.747 55.747 27.918 55.748 49.412 55.7476 55.747 

SSIM 0.99934 0.9993 0.09219 0.99934 0.00174 0.99934 0.99934 

According to table 3 above, the image was restored without randomization, as the SSIM is 0.999 that is very close to 1, 
which is due to using the “PNG” format in the image. Also, the image was restored successfully in SplitMix, Mersenne 
Twister, LCG, and PCG, whereas WELL and XORshift failed to retrieve the image after it got compressed, as their SSIM is 
closer to 0. 

Finally, the stego-image was exposed to a histogram attack to assess the performance of the PRNGs against malicious 
attacks. Results are illustrated in table 4. 

Table 4 Retrieved image assessment after histogram attack 

Metric/ Scheme No Randomization SplitMix WELL Mersenne Twister XORshift LCG PCG 

MSE 0.37686  0.38838   105.10 0.74688 0.29918  0.34993   0.38004 

PSNR 52.3689 52.238 27.914 49.398 53.372 52.6908 52.332 

SSIM 0.56501 0.28588 0.076652 0.00180 0.51939 0.29240 0.28663 

According to the results displayed in table 4, WELL and Mersenne Twister have the worst performance among all, where 
the SSIM is almost 0, and the MSE is very high. As for the others, they have almost the same error percentage close to 
35%, where no randomization and XORshift show the least noise, as their SSIM is around 0.5. 

4.2. Visual Results 

The visual results for each attack with each randomization technique are illustrated in table 5, which will be verifying 
the numerical results obtained. 
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Table 5 Visual results for image retrieval 

Metric/ Scheme No Attack 20% Noise Addition 50% Noise Addition Compression Histogram Attack 

No Randomization 

     

SplitMix 

     

WELL 
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Mersenne Twister 

     

XORshift 

 
    

LCG 

     

PCG 
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From table 5, it is clear that without randomization, the PNG image is restored well with compression and with 20% 
noise, whereas with the histogram attack, the image was not restored, and it has a lot of distortion. Generally, LCG, PCG, 
and XORshift have the best performance, where under all conditions, the secret image was successfully retrieved, and 
the text can be extracted from the images. For WELL, it has a bad performance among all attacks, whereas twister fails 
completely with the histogram attack. Finally, SplitMix is affected badly by increased addition of noise, and it stops 
retrieving the secret image. 

5. Conclusions 

With the challenges that affect steganography, PRNGs were used to prevent attacks and distortions from wiping away 
the secret image information from the stego-image. Six PRNGs were used, SplitMix, WELL, Mersenne Twister, XORshift, 
LCG, and PCG. From the results, it was concluded that PNG Images, without randomization, are resilient against 
distortions caused by transmission in the network. Additionally, without randomization, it is hard to retrieve the secret 
image when the stego-image is attacked. Finally, LCG, PCG, and XORshift are resilient against both distortions and 
attacks. 
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