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Abstract 

This study was carried out to investigate and optimize conditions for enhanced cell growth and manganese peroxidase 
(MnP) enzyme activity in selected mushroom isolates. Single parameter optimization of different process variables was 
carried out for cell growth/enzyme production. The isolates used were Pleurotus porrigens, Gerronema chrysophyllum 
and Lepiota procera. The influence of temperature, pH, nitrogen sources, and metal ions were examined to determine 
their effects on both cell proliferation and MnP production of the isolates. Results showed that the optimum growth 
temperature for MnP enzyme activity for P. porrigens was 35oC. It was also revealed that all the isolates showed 
optimum growth rate at pH 5. P. porrigens showed the highest growth rate (OD 15.2). Peptone was the best nitrogen 
source, with P. porrigens having the highest growth rate (OD 0.184). Both Mn2+ and Cu2+ stimulated growth rate in all 
the isolates, with Mn 2+ (2Mm) stimulating the highest growth rate (OD 22.8) in P. porrigens. Hg2+, Fe3+, Zn2+ and Pb2+ 
were inhibitory to growth rate. All the isolates showed that the optimization of culture conditions enhanced growth rate 
of the isolates.  
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1. Introduction

The advancement of cell multiplication and enzyme activity is crucial in various fields, including biotechnology, 
pharmaceuticals, and biofuel production. One important enzyme that has gained significant attention is manganese 
peroxidase (MnP), which is a heme-containing glycoprotein produced by many white-rot fungi. MnP plays an essential 
role in lignin degradation and has potential applications in various industrial processes such as pulp bleaching, 
wastewater treatment, and organic synthesis. It plays a crucial role in the degradation of organic pollutants and has 
attracted considerable attention due to its wide range of applications in different industries. MnP catalyzes the oxidative 
breakdown of complex organic compounds, making it valuable in treating wastewater contaminated with recalcitrant 
substances like polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), dyes, pentachlorophenol, 
and heavy metals [1]. The capacity of MnP to remove toxic components enables better co-cultivation of energy crops 
and facilitates fermentation processes [2]. MnP exhibits potent antioxidant properties, rendering it useful in the food 
sector for preventing lipid peroxidation and extending product shelf life [3]. Furthermore, MnPs have been shown to 
decolorize various food-derived pigments, offering a potentially greener alternative to traditional bleaching agents [4]. 
However, the optimal conditions for improving cell growth and MnP enzyme activity are not well established.  
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Several factors contribute to the enhancement of MnP yield and performance, including nutrient availability, physical 
growth conditions, and genetic regulation [5]. For instance, alterations in carbon and nitrogen sources affect not only 
microbial proliferation but also MnP expression levels [6,7]. 

Recent studies have focused on optimizing cultural conditions to enhance MnP enzyme activity and cell growth. For 
instance, Zhang et al. [8]. investigated the effect of different carbon sources on MnP production by Phanerochaete 
chrysosporium and found that glucose and xylose significantly enhanced MnP activity compared to other carbon sources. 
Similarly, Gao et al. [9]. examined the impact of nitrogen sources on the growth and MnP activity of Irpex lacteus and 
reported that ammonium sulfate was the most favorable nitrogen source for both cell growth and MnP production. 
Moreover, Li et al. [10] studied the influence of temperature and pH on the activity and stability of MnP from 
Ceriporiopsis subvermispora and determined that the optimum temperature and pH were 50°C and 4.0, respectively.  

Despite these findings, there is still a need to evaluate the optimum conditions for advancing cell growth and MnP 
enzyme activity further. Therefore, this study was conducted to further evaluate the optimum conditions for improved 
cell growth and MnP enzyme activity in some selected mushrooms. 

2. Materials and methods 

2.1. Effect of pH on growth rate of mushroom isolates and their MnP activity 

The effect of pH (4, 5, 6, 7, 8, 9 and 10) on the growth rate of the mushrooms from previous study [11] was determined. 
Hydrochloric acid (0.1M) and Sodium hydroxide (0.1M) were used to adjust the pH of the nutrient broth to the required 
values. Ten millimeter (10ml) of the adjusted medium were dispensed into test tubes and 8mm agar plugs from 72 
hours-old cultures of the isolates were used to inoculate the tubes. Incubation was at room temperature for 7 days. The 
influence of pH on the growth rate of the mushroom isolates was measured by reading the optical density at 600nm. 
Also, the effect of pH on MnP activity at room temperature was studied using the assay procedure described by [12]. 
The following buffers were used to achieve the different pH ranges tested: Citrate phosphate, sodium phosphate and 
glycine-NaOH. 

2.2. Effect of temperature on MnP activity of the mushroom isolates  

The effect of temperature on MnP activity was determined in the range of 30oC to 60oC with 5oC intervals. Eight 
millimeter agar plugs from test isolates were inoculated into 10ml nutrient broth in test tubes and incubated at room 
temperature for 7 days. After the incubation period, the samples were centrifuged and analyzed for MnP activity 
according to [12]. 

2.3. Effect of different nitrogen sources on the growth rate of the mushroom isolates and their MnP activities 

The effect of both organic (urea, peptone and beef extract) and inorganic ((NH4)2SO4, and NH4NO3) nitrogen sources on 
the growth rate and MnP production of the mushroom isolates were studied at various concentrations (1-5%). A 
minimal salt broth (MSB) was prepared without the nitrogen source and appropriate grams of the test nitrogen sources 
were weighed and added to the MSB. Agar plugs 8mm in diameter from 72 hours-old cultures of isolates were used to 
inoculate 10ml of the medium and test tubes were incubated at room temperature for 7 days. Effect of the nitrogen 
sources on the growth rate of the isolates was measured by reading the optical density at 600nm. Also, their effect on 
MnP production/activity was studied using the method described by [12]. 

2.4. Effect of metal ions on the growth rate of the mushroom isolates and their MnP activities 

The effect of metal ions (Fe3+, Cu2+, Hg2+, Pb2+, Zn2+ and Mn2+), using the salts of the metals; iron (II) sulphate 7-hydrate, 
copper (II) carbonate hydroxide, mercury (II) oxide red, lead (II) nitrate, zinc chloride and manganese sulphate on the 
growth rate and MnP production of the mushroom isolates were studied in the concentration range of 1-5Mm [13,14]. 
The appropriate grams of the salts were weighed and dissolved in prepared nutrient broth medium. The metal ion 
supplemented media were dispensed intro test tubes (10ml) and autoclaved. Eight millimeter agar plugs from 72 hours-
old cultures of isolates were used as inocula and samples incubated at room temperature for 7 days. After the incubation 
period, the effect of metal ions on the growth rate of isolates was measured by reading the optical density at 600nm. 
Also, the effect of metal ions on MnP production/activity was determined by the method described by [12]. 
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3. Results 

3.1. Effect of pH on growth rate of the mushroom isolates  

The effect of pH on the growth rate of the isolates is shown in Figure 1. All the isolates showed optimum growth rate at 
pH 5 and a decrease in growth rate with increasing pH values. P. porrigens had the highest growth peak at OD 15.2 while 
L. procera had the least at OD 7.9 

3.2. Effect of pH on MnP activity of the mushroom isolates  

The optimum pH for enzymes activity of MnP produced by the isolates was at pH 5, which coincided with the optimum 
pH for growth by isolates. P. porrigens showed the highest MnP activity (39.80U/ml), while L. procera had the least MnP 
activity (20.23U/ml) as shown in Figure 2. 

3.3. Effect of temperature on MnP activity of the mushroom isolates  

Figure 3 shows a graphical representation of the effect of temperature on enzyme activity of isolates. Optimum 
temperature for enzyme activity of L. procera was at 30oC (MnP: 20.8U/ml) while 35oC was the optimum temperature 
for enzyme activity of MnP produced by P. porrigens (MnP: 28.84U/ml). Further increase in temperature resulted in 
significant losses of activity in all isolates. 

3.4. Effect of different nitrogen sources on the growth rate of the mushroom isolates 

Isolates were able to grow in MSB without addition of nitrogen but grew better with added nitrogen sources. Organic 
sources of nitrogen were superior to inorganic sources. Increase in rate of supplementation of nitrogen sources beyond 
2% appeared to inhibit the growth of isolates. Peptone (2%) stimulated the highest growth in P. porrigens (OD 0.184) 
as shown in Table 1 

3.5. Effect of different nitrogen sources/concentration on MnP activities of the mushroom isolates 

The effect of nitrogen sources on MnP production/activities of isolates in shown in Table 2. Similar to their effect on 
growth rate, organic nitrogen sources stimulated more MnP production/activity than the inorganic sources. Inhibition 
in MnP production/activity was observed beyond 2%. The highest MnP production/activity was observed at 2% 
Peptone in P. porrigens (41.66U/ml). 

 

Figure 1 Effect of pH on growth rate of the mushroom isolates 

 

 



World Journal of Advanced Engineering Technology and Sciences, 2024, 12(02), 575–583 

578 

3.6. Effect of different metal ions on the growth rate of the mushroom isolates 

Mn2+ and Cu2+ stimulated the growth of isolates but increase in concentration beyond 2mM was inhibitory to the growth 
of isolates. This is shown in Table 3. Fe2+, Hg2+, Pb2+ and Zn2+ were inhibitory to the growth of isolates and increase in 
concentration of these metal ions led to increased inhibition of growth rates. The highest inhibition was observed with 
Fe3+ 

3.7. Effect of different metal ions/concentrations on MnP activities of the mushroom isolates 

Similar to the effect of metal ions on growth rate of isolate, Mn2+ and Cu2+ stimulated MnP production/activity, but 
became inhibitory beyond 2mM, Mn2+ (2mM) stimulated the highest MnP production/activity in P. porrigens 
(34.41U/ml). Fe2+, Hg2+, Pb2+ and Zn2+ were inhibitory to MnP production/activity as shown in Table 4. 

 

Figure 2 Effect of pH on MnP activity of the mushroom isolates 

 

Figure 3 Effect of temperature on MnP activity of the mushroom isolates 
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Table 1 Effect of different nitrogen source on the growth rate of isolates in minimal salt broth (MSB) 

Isolates Nitrogen Sources(%) Control 

None 

1 2 3 4 5 

                      Enzyme activity (U/ml)         (No unit) 

Gerronema chrysophyllum  

Urea 

Peptone 

Beef Extract 

(NH4)2SO4 

NH4NO3 

0.096  

0.114 

0.111 

0.105 

0.109 

0.133 

 

0.168 

0.177 

0.162 

0.100 

0.107 

 

0.118 

0.140 

0.091 

0.062 

0.067 

 

0.091 

0.090 

0.084 

0.037 

0.054 

 

0.086 

0.082 

0.071 

0.032 

0.053 

Pluerotus porrigens  

Urea 

Peptone 

Beef Extract 

(NH4)2SO4 

NH4NO3 

0.087  

0.125 

0.122 

0.108 

0.099 

0.121 

 

0.173 

0.184 

0.171 

0.111 

0.092 

 

0.110 

0.161 

0.144 

0.056 

0.073 

 

0.083 

0.100 

0.082 

0.048 

0.061 

 

0.072 

0.070 

0.080 

0.040 

0.044 

 

Lepiota procera  

Urea 

Peptone 

Beef Extract 

(NH4)2SO4 

NH4NO3 

0.051  

0.108 

0.056 

0.063 

0.057 

0.059 

 

0.071 

0.125 

0.101 

0.063 

0.066 

 

0.061 

0.088 

0.073 

0.052 

0.042 

 

0.050 

0.069 

0.059 

0.038 

0.039 

 

0.046 

0.047 

0.044 

0.031 

0.030 

 

Table 2 Effect of different nitrogen sources/concentrations on MnP activities of isolates in minimal salt broth (MSB) 

Isolates Nitrogen Sources(%) None                    Enzyme activity (U/ml) 

1              2              3               4                    5  

Gerronema chrysophyllum  

Urea 

Peptone 

Beef Extract 

(NH4)2SO4 

NH4NO3 

22.12  

28.65 

27.62 

26.56 

24.21 

25.84 

 

33.01 

31.25 

25.34 

23.18 

24.14 

 

29.71 

29.41 

24.81 

19.23 

20.07 

 

20.88 

20.39 

20.42 

16.46 

18.53 

 

20.11 

18.74 

18.61 

12.87 

17.21 

Pluerotus porrigens  

Urea 

Peptone 

Beef Extract 

(NH4)2SO4 

NH4NO3 

23.64  

34.41 

38.48 

30.54 

26.31 

27.41 

 

39.45 

41.66 

27.16 

24.58 

25.78 

 

26.94 

26.14 

25.48 

21.26 

24.55 

 

22.31 

24.07 

21.09 

18.55 

21.81 

 

21.76 

20.12 

17.45 

14.71 

19.24 

Lepiota procera  

Urea 

Peptone 

Beef Extract 

14.37  

21.08 

18.19 

17.38 

 

20.16 

22.86 

19.75 

 

17.90 

20.44 

16.42 

 

13.36 

16.18 

14.04 

 

13.10 

12.41 

11.56 
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(NH4)2SO4 

NH4NO3 

16.46 

16.87 

18.73 

20.12 

15.52 

18.34 

10.80 

13.47 

8.87 

10.88 

 

Table 3 Effect of different metal ions on the growth rate of isolates in nutrient broth 

Isolates Metals (mM) None                   Conc. of metal ions 

1              2              3               4                    5  

Gerronema chrysophyllum  

HgO 

Fe2(SO4)3 

CH2Cu2O5 

MnSO4 

Pb(NO3)2 

ZnCl2  

0.082  

0.050 

0.058 

0.100 

0.122 

0.071 

0.075 

 

0.063 

0.064 

0.141 

0.160 

0.063 

0.081 

 

0.053 

0.051 

0.106 

0.104 

0.060 

0.068 

 

0.047 

0.043 

0.089 

0.085 

0.055 

0.061 

 

0.048 

0.040 

0.080 

0.071 

0.051 

0.053 

Pluerotus porrigens  

HgO 

Fe2(SO4)3 

CH2Cu2O5 

MnSO4 

Pb(NO3)2 

ZnCl2  

0.076  

0.056 

0.060 

0.093 

0.184 

0.062 

0.064 

 

0.061 

0.051 

0.132 

0.228 

0.066 

0.080 

 

0.046 

0.048 

0.099 

0.136 

0.057 

0.072 

 

0.042 

0.041 

0.081 

0.090 

0.054 

0.051 

 

0.035 

0.038 

0.068 

0.073 

0.049 

0.040 

Lepiota procera  

HgO 

Fe2(SO4)3 

CH2Cu2O5 

MnSO4 

Pb(NO3)2 

ZnCl2 

0.054  

0.050 

0.040 

0.072 

0.090 

0.050 

0.049 

 

0.052 

0.046 

0.087 

0.109 

0.048 

0.053 

 

0.046 

0.037 

0.066 

0.081 

0.041 

0.051 

 

0.040 

0.034 

0.059 

0.061 

0.036 

0.044 

 

0.034 

0.028 

0.038 

0.042 

0.033 

0.032 

 

Table 4 Effect of different metal ions/concentrations on MnP activities of isolates in nutrient broth 

Isolates Metals (mM) None 1 2 3 4 5 

   Enzyme activity (U/ml) 

Gerronema chrysophyllum  

HgO 

Fe2(SO4)3 

CH2Cu2O5 

MnSO4 

Pb(NO3)2 

ZnCl2  

23.73  

15.32 

17.71 

24.96 

26.00 

20.49 

21.65 

 

17.11 

19.66 

25.91 

27.51 

21.81 

22.45 

 

14.37 

16.24 

25.43 

25.34 

18.43 

20.33 

 

11.72 

15.10 

24.39 

24.49 

17.89 

17.77 

 

8.51 

13.44 

22.69 

17.77 

15.77 

15.13 

Pluerotus porrigens  

HgO 

Fe2(SO4)3 

CH2Cu2O5 

25.81  

16.26 

19.95 

26.66 

 

18.72 

18.42 

28.46 

 

17.02 

16.73 

27.89 

 

12.39 

15.89 

27.51 

 

10.40 

13.19 

22.03 
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MnSO4 

Pb(NO3)2 

ZnCl2  

31.29 

20.23 

24.39 

34.41 

21.80 

23.19 

27.13 

18.57 

21.84 

26.47 

16.17 

16.64 

24.77 

15.87 

16.07 

Lepiota procera  

HgO 

Fe2(SO4)3 

CH2Cu2O5 

MnSO4 

Pb(NO3)2 

ZnCl2 

16.55  

10.87 

14.00 

18.90 

20.61 

15.04 

13.43 

 

13.14 

14.55 

20.80 

21.18 

14.75 

15.55 

 

8.79 

12.68 

18.34 

18.53 

13.33 

11.16 

 

8.23 

11.02 

17.59 

17.40 

11.71 

8.32 

 

6.71 

10.51 

8.79 

14.84 

11.00 

7.66 

4. Discussion 

The growth rate of organisms has a role to play on how rapid they can colonize/penetrate any substrate. Asamudo et 
al., [15] reported that the faster the growth rate/mycelia thickness, the higher the rate of mechanical penetration and 
breaking down of substrate and this leads to higher bioremediation capabilities. The finding that fungal isolates exhibit 
optimal growth at a lower pH of 5 and display diminishing growth rates as pH increases relates with the study reported 
by Zhao et al [16] that observed that pH 4 favored faster mycelial growth of Penicillium expansum when compared to 
neutral or alkaline conditions.  Li et al. [17] analyzed Colletotrichum gloeosporioides, reporting maximum proliferation 
in slightly acidified media mirroring the present observation with P. porrigens having the highest growth at OD 15.2 and 
L. procera at OD 7.9. Certain fungi thrive in low-pH conditions, suggesting that manipulating environmental acidity 
might prove beneficial in optimizing industrial fermentation procedures and managing unwanted microbial growth in 
various habitats.  

dos Santos et al. [18] evaluated Pleurotus ostreatus performance in various pH ranges and observed increased MnP 
efficiency at pH 5 which relates with the findings of this study. Another study by Karimiyan et al. [19] investigated 
Phlebia tremellosa, demonstrating optimal MnP production at pH 5. Also, Baharlouei et al. [20] examined Ceriporiopsis 
subvermispora functioning, confirming increased MnP yields under acidic conditions matching the described pH 5 
optima.  

Arora & Gill [21] investigated Irpex lacteus subjected to varied temperature and reported high MnP activity at 
30°C, Manavalan et al. [22] examined Pycnoporus sanguineus confirmed the temperature dependence of MnP yield, 
showing increased activity between 30-40°C. These findings relate with this study. MnP activity of fungal isolates 
responds differently based on temperature variations. Thermal stability profiles show increase corresponding to 
optimal MnP production. Appropriately adjusting temperature settings offers considerable promise for expanding the 
scope of commercial applications requiring efficient ligninolytic agents, such as biofuels, pulp, and paper industries, as 
well as organic pollutant remediation processes. 

Bhatt et al. [23] demonstrated that organic nitrogen provisions greatly enhanced Phlebia radiata colonization. In 
alignment with the mentioned study, the growth of P. porrigens was high with peptone (2%; OD 0.184) as opposed to 
alternative nitrogen sources tested. Gao et al. [24] studied Phlebia brevispora, noting enhanced growth and MnP activity 
when supplied with peptone and yeast extract, whereas ammonium tartrate usage led to lower outcomes. Salihi et al. 
[25] worked with Bjerkandera adusta and determined that tryptone and beef extract fueled robust growth and MnP 
synthesis compared to ammonium sulfate and sodium nitrate, which stunted development and impaired enzyme 
creation. Organic nitrogen drive optimal fungal growth and MnP production in fungi, pointing to promising possibilities 
for biotechnological exploitation in sectors demanding oxidative enzymes, such as pulp bleaching, textile processing, 
and bioremediation technologies.  

Rahman et al. [26] investigating the brown-rot Basidiomycota Serpula lacrymans recorded increased  hyphal extension 
and MnP activity with 2 mM concentration of Mn2+ and Cu2+ while Pandey et al. [27] focusing on Pleurotus ostreatus 
recorded MnP activity with same concentration of Mn2+ and Cu2+. This also aligns with the findings of this study. The 
presence of metals in some environments has been attributed to oil spillage. Their effects are often concentration 
dependent and also vary in their individual toxicity [13]. 
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5. Conclusion 

This study demonstrated that regulation of culture conditions offers great prospect for amplifying cell growth and MnP 
production, consequently expanding the applicability of this versatile enzyme in various industrial processes. 
Nevertheless, continued explorations should be pursued given the inherent complexity of biological systems and ever-
evolving technological landscapes. 
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