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Abstract 

The challenge of the greenhouse effect today is to find ways to prevent CO2 emissions, as this harmful gas causes global 
negative changes. One eco-friendly energy source is solar power, which uses a solar array system composed of various 
components. A critical part of this system is the Maximum Power Point Tracker (MPPT), which ensures optimal power 
generation. The MPPT's signal is sent to an Insulated Gate Bipolar Transistor (IGBT) via a Pulse Width Modulator 
(PWM), adjusting the system's resistance. Traditional controllers used the Perturbation and Observation (P&O) 
algorithm, which struggled with rapid environmental changes. The new AI-based Artificial Neural Network (ANN) 
controller improves efficiency by instantly adapting to changes. This work compares the ANN controller with the use of 
three data sets of 104, 201, and 1001 with three DC-DC converters: Boost, Cuk, and Single-Ended Primary Inductor 
Converter (SEPIC) converters. 

Keywords: Artificial neural network; DC-DC boost converter; DC-DC cuk converter, DC-DC single-ended primary 
inductor converter; Maximum power point tracking; Photovoltaic system 

1. Introduction

The greenhouse effect is a pressing issue today because traditional energy generation methods release harmful gases 
into the atmosphere, contributing to global climate change. To address this, it's crucial to find solutions that eliminate 
CO2 emissions. Solar energy offers a clean, environmentally friendly alternative. Harnessing solar power involves using 
a solar array system with various components working together. The main challenge is that the solar system's resistance 
differs from the connected load's resistance. Directly connecting the solar system to a load result in minimal energy 
generation, so a DC-DC converter is needed to match the solar system's resistance with the load's resistance, ensuring 
maximum efficiency [1, 2]. 

A key component of this system is the Maximum Power Point Tracker (MPPT), which uses mathematical calculations 
and rules to adjust to changes in temperature and irradiance. When properly tuned, the MPPT guarantees optimal 
power generation. The MPPT's signal is sent to an Insulated Gate Bipolar Transistor (IGBT) via a Pulse Width Modulator 
(PWM), which adjusts the duty cycle to match the solar system's resistance to the load's resistance. This setup 
maximizes energy generation [3, 4]. 

The MPPT requires a controller to adjust its output. Traditional controllers used the Perturbation and Observation 
(P&O) algorithm, which struggled with rapid environmental changes, such as passing clouds or sudden temperature 
shifts. The new Artificial Intelligence (AI)-based controller, specifically an Artificial Neural Network (ANN), improves 
efficiency by instantly predicting and adapting to these changes [5]. The ANN controller can accurately predict the value 
to be sent to the MPPT, closely matching the solar array's generated values. ANN controllers need training with data 
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samples, and in this study, samples of 104, 201, and 1001 will be used [6]. The AI ANN controller utilizes inputs G and 
T, yielding outputs V and P. Using these outputs, specifically predicted and computed V and P values, we derive three 
additional parameters: R, I, and work (w). 

R represents the resistance, calculated as the ratio of the voltage (V) to the current (I) (R = V/I). This parameter is crucial 
for understanding how the electrical load affects the solar array’s performance, enabling more precise adjustments to 
optimize energy extraction under varying conditions. 

I stands for the current, a direct measure of the electrical flow generated by the solar array. Monitoring the current is 
essential for ensuring that the system operates within safe and efficient parameters, preventing potential overloading 
and ensuring optimal energy capture. 

w signifies the work done by the system, typically measured in joules or watt-hours. It provides a quantifiable measure 
of the energy transferred by the solar array over time. By analyzing the work done, we can assess the overall efficiency 
and effectiveness of the solar array, offering insights into its performance over different periods and conditions. 

These parameters—R, I, and work (w)—provide a comprehensive understanding of the solar array's performance and 
efficiency, allowing for real-time optimization and improved energy management. Our AI ANN controller design 
operates independently without requiring supplementary PI or PID controllers. Positioned upstream of the MPPT Block, 
the AI ANN design ensures the signal fed into the MPPT is precise, negating the necessity for control units within the 
MPPT Block itself, which is exclusively configured with a P&O algorithm [7, 8]. 

This paper compares the ANN controller with three different DC-DC controllers: Boost, Cuk, and Single-Ended Primary 
Inductance Converter (SEPIC) converters to determine which provides the highest efficiency [9]. 

In our proposed solar system, a DC-DC converter is essential for ensuring maximum efficiency by matching the system's 
resistance with the load. Due to the nonlinear changes in temperature and irradiance, a predictive method like an 
Artificial Neural Network (ANN) controller, which handles nonlinearity in its calculations, is required. 

This paper is sectioned as: 

Section 2: Material and methods  

PV System Description and Modeling 

 Comprehensive overview of the 213.15-Watt photovoltaic array design. 
 Breakdown of the fundamental block model for PV arrays. 
 Examination of the solar cell structure and functionality, focusing on p-n semiconductor junctions. 
 Description of the model's inputs (irradiance and temperature) and outputs (voltage and power). 
 Techniques employed to simulate and analyze the PV system's performance under various scenarios. 
 DC – DC Boost Converter Design and Model. 
 DC – DC Cuk Converter Design and Model. 
 DC – DC Single-Ended Primary Inductance Converter (SEPIC) Design and Model. 

Methodology of ANN Controller with DC-DC converters 

 Overview of AI-based control systems. 
 Detailed discussion of the Artificial Neural Network (ANN) model applied. 
 Insight into the application of the AI ANN controller for enhancing the performance of photovoltaic systems, 

with an emphasis on its capability to manage non-linear and dynamic inputs such as irradiance (G) and 
temperature (T). 

Section 3: Results and Discussion 

 Display of the outcomes achieved using the ANN controller. 
 Evaluation of the ANN's performance in enhancing photovoltaic systems. 
 Examination of the advantages and limitations of the ANN controller approach. 
 Analysis of the findings concerning the optimization efficiency and effectiveness of PV systems. 
 ANN Controller with a DC – DC Boost Converter Design and Model. 
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 ANN Controller with a DC – DC Cuk Converter Design and Model. 
 ANN Controller with a DC – DC Single-Ended Primary Inductance Converter (SEPIC) Design and Model. 
 Comparison of All Used ANN Controllers with DC-DC Boost, Cuk, and SEPIC Converters 

Section 4: Conclusion 

 Recap of the main discoveries from the research. 
 Highlights of the advancements made in renewable energy and photovoltaic system optimization. 
 Suggestions for areas of investigation in future studies. 
 Final thoughts on the potential benefits of employing AI controllers to improve PV system efficiency. 

2. Material and methods 

2.1.  PV System Model 

The proposed model includes a solar array system with a Photovoltaic (PV) array that functions as a two-input, two-
output element. The two inputs, temperature (T) and irradiance (G), are sent to the PV array to generate outputs of 
voltage (V) and current (I). Simultaneously, T and G are also fed into an ANN controller, which is trained using three 
data sets of 104, 201, and 1001 samples [10]. The PV array generates voltage based on T and G values, while the ANN 
controller predicts a corresponding voltage and power signals from these inputs, sending the voltage signal to the 
Maximum Power Point Tracker (MPPT) [11]. The MPPT calculates an unmodulated duty signal, which is then modulated 
by a Pulse Width Modulator (PWM) before being sent to the gate of an Insulated Gate Bipolar Transistor (IGBT) within 
a DC-DC converter subsystem. This process produces the output voltage (Vout), predicted and generated by the ANN 
algorithm [12]. 

2.2.  DC-DC Converter Model 

The block diagrams for the proposed solar system, including the DC-DC subsystem and load with the ANN model, is 
shown in Figure 1. Scopes are used to monitor changes in voltages, currents, and power of the PV array and system 
output at various calculated and predicted values [13]. 

 

Figure 1 Block Diagram for The Proposed Model 

2.2.1.  DC-DC Boost Converter Model 

The load resistance is not always equal to the resistance of the PV solar system. To align the PV system's resistance with 
that of the load, a DC-DC converter is necessary [14]. A DC-DC Boost converter model can adjust the system's resistance 
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by varying its voltage, ensuring maximum efficiency [15]. The output voltage of a DC-DC Boost converter at any duty 
cycle is higher than its input voltage, while the output current is lower than the input current. The capacitor (C) shown 
in Figure 2 filters out any ripples, providing a smooth output voltage [16]. 

 

Figure 2 PV Circuit Diagram of a DC-DC Boost Converter Using an IGBT 

The observed output voltage is consistently higher than the input voltage, so the conversion ratio of a DC-DC Boost 
converter is given by: 

VO

VS
=

1

1−𝐷
     ………….(1) 

The duty cycle impacts the output voltage as described in equation number seven. One of the primary challenges in a 
DC-DC Boost converter is managing the inductor. The inductance is inversely proportional to the current ripple at the 
converter's output [17]. To reduce this ripple, a larger inductor is required, ensuring a smoother output voltage before 
it is connected to any load [18, 19]. 

2.2.2. DC-DC Cuk Converter Model 

A DC-DC Cuk converter can be powered by various DC sources, such as small to medium generators with DC output, 
lithium batteries, and PV solar panels. This converter changes DC voltage from one level to another, a concept known as 
DC-DC conversion. The Cuk converter can either increase or decrease the input voltage depending on its duty cycle, 
making it a step-up step-down converter. Utilizing an Insulated Gate Bipolar Transistor (IGBT), the DC-DC Cuk converter 
is suitable for low to medium current conduction and control [20]. IGBTs can handle high voltage and power, making 
them ideal for this application. A DC-DC Cuk converter using an IGBT is designed in MATLAB/Simulink, as illustrated in 
Figure 3 [21, 22]. 

 

Figure 3 PV Circuit Diagram of a DC-DC Cuk Converter Using an IGBT 

We can find the DC voltage transfer function of a DC-DC Cuk converter by the following equation: 

VO

VS
= −

D

1−𝐷
      ……………..(2) 
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2.2.3.  DC-DC Single Ended Primary Inductance Converter Model (SEPIC) 

A SEPIC converter can be powered by various DC sources, including DC generators, batteries, solar panels, and rectifiers. 
The process of converting one DC voltage to another is known as DC-DC conversion [23]. A SEPIC converter can adjust 
the output voltage to be either lower or higher than the input voltage, earning it the name "step-up step-down 
converter" since it can both increase and decrease the source voltage. In SEPIC converters, the output voltage varies 
without polarity reversal [24]. A DC-DC SEPIC converter utilizing a power MOSFET is suitable for low to medium current 
conduction and control. Given its ability to handle high voltage and power, an IGBT is often used. A DC-DC SEPIC 
converter with an IGBT has been designed in MATLAB/Simulink, with the circuit diagram shown in Figure 4 [25]. 

 

Figure 4 PV Circuit Diagram of a DC-DC SEPIC Converter Using an IGBT 

The DC voltage transfer function or duty cycle of a DC-DC SEPIC converter can be determined using the following 
equation: 

𝐷 =  
Vout

Vout+ Vin
      ………………… (3) 

2.3.  Artificial Neural Network (ANN) 

Artificial Intelligence (AI) controllers, particularly Neural Networks (NN), are utilized to enhance the Maximum Power 
Point (MPP) tracking of our PV array [26, 27]. Using the Levenberg-Marquardt algorithm in MATLAB, we train ten neural 
networks integrated within the controller, known for its efficiency in solving complex nonlinear least-squares problems. 
With the fluctuating irradiance and temperature, power generation and voltage outputs from the PV array exhibit 
nonlinear behavior [28]. 

The irradiance (G) and temperature (T) inputs are connected via weighted pathways to hidden layers within the neural 
network (NN), which then calculates and predicts two outputs: voltage (V) and power (P) [29, 30]. Achieving optimal 
performance relies on configuring the NN with the right number of hidden layers and neurons in each layer [31, 32]. 
The NN is trained using a trial-and-error method, featuring two neurons in the input layer (for G and T), two neurons in 
the output layer (for V and P), and a single hidden layer. The AI ANN controller was designed to sample at rates of 10.4, 
20.1, and 100.1 samples per second, resulting in more intelligent predictions and accurate outputs, comparable to the 
PV array output. In contrast, others have designed AI ANN controllers using only 1 sample per second for training [33]. 

The MPPT requires a controller to adjust its output. Traditional controllers used the Perturbation and Observation 
(P&O) algorithm, which struggled with rapid environmental changes, such as passing clouds or sudden temperature 
shifts. The new Artificial Intelligence (AI)-based controller, specifically an Artificial Neural Network (ANN), improves 
efficiency by instantly predicting and adapting to these changes. The ANN controller can accurately predict the value to 
be sent to the MPPT, closely matching the solar array's generated values. ANN controllers need training with data 
samples, and in this study, samples of 104, 201, and 1001 will be used. 
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The AI ANN controller utilizes inputs G and T, yielding two predicted outputs: V, and P, with three derived outputs R, I, 
and work (w). These additional outputs—R, I, and w—offer significant advantages over traditional methods, providing 
a more comprehensive analysis of the solar array's performance and offering cost-saving benefits. 

 R (Resistance): Resistance (R) is derived from the relationship R = V/I, where V is the voltage, and I is the 
current. Deriving resistance allows the ANN controller to offer insights into the array's internal characteristics 
and how external factors such as temperature and irradiance affect its performance. By accurately predicting R, 
the system can optimize the load to ensure maximum power extraction and efficient energy utilization under 
varying environmental conditions. This eliminates the need for external resistance measurement tools, 
reducing hardware costs. 

 I (Current): Current (I) is a direct measure of the rate of flow of electric charge generated by the solar array. 
Deriving the current is crucial for real-time monitoring of the system's output. Accurate current prediction 
allows the ANN controller to ensure safe operation within the system's limits, preventing potential issues like 
overloading or underperformance. Traditionally, measuring current requires current transformers (CTs), which 
add to the overall system cost. By predicting I, the ANN controller reduces the reliance on these additional 
measurement tools, resulting in cost savings. 

 w (Work): Work (w) represents the total energy output of the system over a given period, typically measured 
in joules or watt-hours. Deriving work provides a quantifiable measure of the energy transferred, helping to 
assess the system's efficiency and productivity over time. This parameter is essential for evaluating the overall 
performance of the solar array. By accurately predicting w, the ANN controller eliminates the need for external 
energy meters, further reducing hardware costs and simplifying system design. 

These additional derived parameters—R, I, and work (w)—provide a more detailed and nuanced understanding of the 
solar array's performance. Unlike traditional controllers that might focus solely on voltage prediction, the inclusion of 
these extra outputs by the ANN controller allows for a holistic approach to energy management and optimization. This 
multi-faceted analysis ensures that the solar array operates at peak efficiency, maximizing energy extraction and 
providing reliable performance even under fluctuating environmental conditions. 

Moreover, by deriving R, I, and w, the ANN controller significantly reduces the need for external measurement tools, 
such as current transformers (CTs) and energy meters, leading to substantial cost savings. This advantage not only 
lowers the initial setup costs but also reduces maintenance expenses and potential points of failure, enhancing the 
overall reliability and economic feasibility of the solar PV system. 

Our AI ANN controller design operates independently without requiring supplementary PI or PID controllers. 
Positioned upstream of the MPPT Block, the AI ANN design ensures the signal fed into the MPPT is precise, negating the 
necessity for control units within the MPPT Block itself, which is exclusively configured with a P&O algorithm. By 
leveraging the advanced predictive capabilities of the ANN controller, this approach provides a robust and adaptive 
solution to solar energy management, setting a new standard for MPPT systems. 

2.4. DC-DC Converters with ANN controller 

The suggested DC-DC converter incorporates an Artificial Neural Network (ANN) controller model with a photovoltaic 
(PV) array, taking irradiance (G) and temperature (T) as inputs and generating voltage (V) and current (I) as outputs 
[34]. Both G and T are supplied to the PV array and the ANN controller. The PV array generates a corresponding voltage, 
while the ANN controller calculates a voltage signal for maximum power point tracking (MPPT). The MPPT then 
generates a duty cycle signal sent to a pulse-width modulation (PWM) controller for controlling an IGBT in a DC-DC 
converter, thereby regulating the output voltage (Vo). This Vo, as predicted by the ANN algorithm, powers a connected 
load [35]. 

2.4.1.  DC-DC Boost Converter with ANN Controller 

Boost converter with ANN is best suited for systems where the PV panel voltage is consistently lower than the required 
load voltage. It offers high efficiency and fast response but is limited to step-up applications [36]. 

The proposed Boost converter integrates an ANN controller model with a PV array featuring inputs for irradiance (G) 
and temperature (T), producing outputs V and I. G and T values are fed into both the PV array and ANN controller inputs 
[37]. The PV array generates a corresponding voltage, while the ANN controller computes a voltage signal for MPPT. 
MPPT then produces a Duty signal sent to a PWM for IGBT control in a DC-DC Boost converter, regulating output voltage 
(Vo). This Vo, predicted by the ANN algorithm, powers a connected load. Figure 5 illustrates the block diagram of this 
proposed model [38]. 
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Figure 5 Proposed PV system with a DC-DC Boost converter with an ANN controller 

2.4.2. DC-DC Cuk Converter with an ANN Controller 

Cuk Converter with ANN is ideal for applications requiring both step-up and step-down voltage conversion with 
smooth current profiles. It offers versatile voltage conversion and low ripple, making it suitable for systems with 
variable input voltages [39]. 

The Cuk converter proposal combines an ANN model with a PV array utilizing inputs G (irradiance) and T (temperature) 
to generate outputs V (voltage) and I (current). G and T inputs are fed to both the PV array and the ANN controller [40]. 
The PV array produces a voltage output corresponding to these inputs, while the ANN controller calculates a voltage 
signal crucial for MPPT operation. MPPT generates a Duty signal directed to a PWM, which controls an IGBT in a DC-DC 
Cuk converter, ensuring the desired output voltage (Vo). This Vo, predicted by the ANN algorithm, supplies power to a 
connected load. Figure 6 depicts the block diagram illustrating this integrated model [41, 42]. 

 

Figure 6 Proposed PV System with a DC-DC Cuk Converter with an ANN Controller 

2.4.3.  DC-DC Single Ended Primary Inductance Converter (SEPIC) with an ANN Controller 

SEPIC Converter with ANN is excellent for PV systems with wide input voltage variations, providing stable and efficient 
voltage conversion without inverting the polarity. It is highly versatile and effective in tracking the maximum power 
point under varying solar conditions. 
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The proposed SEPIC converter integrates an ANN model with a PV array using inputs G (irradiance) and T (temperature) 
to produce outputs V (voltage) and I (current). Both G and T inputs are applied to the PV array and the ANN controller 
simultaneously [43]. The PV array generates a corresponding voltage output based on these inputs, while the ANN 
controller computes a voltage signal crucial for achieving MPPT. MPPT then generates a Duty signal sent to a Pulse 
Width Modulator (PWM), which controls the IGBT in a DC-DC SEPIC converter to achieve the desired output voltage 
(Vo) [44]. This output voltage, predicted by the ANN algorithm, is then connected to a load. Figure 7 illustrates the block 
diagram of this proposed model [45, 46]. 

 

Figure 7 Proposed PV System with a DC-DC SEPIC Converter with an ANN Controller 

After training the ANN controller using 104, 201, and 1001 data samples, a comparison was conducted across all three 
converters to determine the optimal dataset for achieving maximum efficiency [47]. Consequently, two alternative 
datasets were selected: 102 samples and 1001 samples, in addition to the existing 104 samples. Using these datasets, 
the ANN controller was comprehensively trained, and its performance was evaluated against PV efficiency [48]. The 
ANN controller with the lowest error output was chosen for further testing. The performance metrics of Boost, Cuk, and 
SEPIC converters in PV systems are presented in Table 1. 

Table 1 Performance Metric of Boost, Cuk, and SEPIC converters in PV Systems 

Metric Boost Converter with ANN Cuk Converter with ANN SEPIC Converter with ANN 

Efficiency High in step-up mode High in both modes High in both modes 

Response Time Fast due to ANN’s adaptive 
nature 

Quick adaptation to varying 
conditions 

Rapid adjustment to input 
fluctuations 

Stability Improved under dynamic 
conditions 

Better handling of complex 
topology 

Enhanced stability over wide 
input range 

MPP Tracking Effective tracking, especially 
in lower voltage scenarios 

Efficient tracking in both high 
and low voltage conditions 

Excellent tracking across a wide 
input voltage range 

Ripple Moderate ripple in output 
voltage 

Low ripple due to dual-
inductor design 

Low ripple in both input and 
output currents 

Versatility Limited to step-up 
applications 

Versatile for both step-up and 
step-down 

Highly versatile for varying 
input voltages 



World Journal of Advanced Engineering Technology and Sciences, 2024, 12(02), 226–240 

234 

3. Results and Discussion 

3.1.  ANN Controller with a DC-DC Boost Converter 

We evaluated PV panels with a P&O controller, followed by integrating an ANN controller using 104 samples, then 
increasing to 201 samples, and finally to 1001 samples [49, 50]. Our research assessed the capability of these controllers 
to enhance energy production and maximize overall system performance across varying environmental scenarios. 

Using a P&O controller resulted in an efficiency improvement, reaching 94.7507%. Implementing an ANN controller 
with 104 samples further boosted efficiency to 95.0846%, surpassing the gains from the P&O controller [51]. Notably, 
using 201 samples produced even better results, achieving an efficiency of 95.9235%. Finally, increasing the sample 
size to 1001 led to an efficiency of 96.2275% [52]. 

Implementing this approach in a real PV plant is feasible with just 1001 samples to achieve peak power efficiency. 
Instantaneous G and T data from the PV will be input to the controller for prediction and PWM adjustments [53]. As 
Table 2 illustrates, comparing an ANN controller using 201 samples to one using 104 samples shows that the efficiency 
of the former exceeds that of the latter [54, 55]. 

Table 2 Comparison of All Used ANN Controllers with A DC – DC Boost Converter 

No. Controller Type Efficiency 

1 P&O 94.7507% 

2 ANN using 104 Random samples 95.0846% 

3 ANN using 201 Random samples 95.9235% 

4 ANN using 1001 Random samples 96.2275% 

3.2.  ANN Controller with a DC-DC Cuk Converter 

We assessed PV panels under several conditions: with a P&O controller, with an ANN controller using 104 samples, then 
with 201 samples, and finally with 1001 samples [56]. Our investigation delved into the potential of these controllers 
to significantly boost energy production and refine system efficiency across diverse environmental conditions. By 
examining their performance under varying irradiance and temperature scenarios, we aimed to identify the optimal 
configuration for maximum power output and system stability. This comprehensive assessment provided insights into 
the adaptability and robustness of the controllers, highlighting their capacity to enhance the overall efficacy of PV 
systems. 

Using a P&O controller resulted in a notable efficiency improvement, elevating the efficiency to 93.3229%. However, 
the introduction of an ANN controller with 104 samples brought about a more substantial increase in efficiency, 
reaching 93.4004%, which is significantly higher than the improvement achieved with the P&O controller [59]. When 
the sample size was increased to 201 samples, the results were even more impressive, with the efficiency climbing to 
93.7181%. This trend continued with the largest sample size tested; using 1001 samples, the efficiency peaked at 
93.8493%, demonstrating the benefit of using more data points in the ANN controller [60, 61]. 

The feasibility of implementing this method in a real PV plant is promising, as achieving optimal power efficiency is 
possible with just 1001 samples. This involves feeding instantaneous G and T data from the PV array into the controller, 
which then uses this data to make predictions and adjust the PWM accordingly to optimize performance. Table 3 
highlights this efficiency improvement, showing that an ANN controller using 201 samples performs better than one 
using only 104 samples. This increase in sample size enhances the controller's ability to accurately predict and adjust, 
thus maximizing the system's efficiency [62, 63]. 

The implementation of ANN controllers in PV systems significantly enhances efficiency compared to traditional P&O 
controllers [64, 65]. The study's findings indicate that even with a relatively small increase in sample size, the ANN 
controller's performance improves markedly [66]. This improvement is crucial for real-world applications, where 
maximizing efficiency directly impacts the overall energy yield of the PV plant [67]. Therefore, adopting ANN controllers 
with adequate sample sizes, such as 1001 samples, can lead to substantial gains in efficiency, making it a viable and 
beneficial approach for optimizing PV system performance [68, 69]. 
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Table 3 Comparison of All Used ANN Controllers with A DC – DC Cuk Converter 

No. Controller Type Efficiency 

1 P&O 93.3229% 

2 ANN using 104 Random samples 93.4004% 

3 ANN using 201 Random samples 93.7181% 

4 ANN using 1001 Random samples 93.8493% 

3.3.  ANN Controller with a DC-DC SEPIC Converter 

We evaluated the performance of PV panels under various conditions: with a P&O controller, and with an ANN controller 
using 104, 201, and 1001 samples [70, 71]. Our study also examined the effectiveness of these controllers in optimizing 
energy output and improving overall system efficiency under different environmental conditions. 

Introducing a P&O controller improved efficiency to 94.6034%. However, implementing an ANN controller with 104 
samples resulted in a slightly lower efficiency of 93.1865% [72]. When the sample size was increased to 201, efficiency 
climbed to 94.8474%. The highest efficiency was observed with 1001 samples, peaking at 95.5062%, demonstrating 
the benefits of using more data points in the ANN controller [73, 74]. 

The feasibility of applying this method in a real PV plant is promising, as optimal power efficiency can be achieved with 
just 1001 samples [75, 76]. This involves feeding instantaneous G and T data from the PV array into the controller, which 
then uses this data to make predictions and adjust the PWM accordingly to optimize performance. Table 4 highlights 
the efficiency improvement, showing that an ANN controller with 201 samples outperforms one with only 104 samples 
[77]. Increasing the sample size enhances the controller's ability to predict and adjust accurately, maximizing system 
efficiency. 

Implementing ANN controllers in PV systems significantly enhances efficiency compared to traditional P&O controllers. 
The study indicates that even a small increase in sample size markedly improves the ANN controller's performance [78]. 
This improvement is crucial for real-world applications, where maximizing efficiency directly impacts the overall 
energy yield of the PV plant [79]. Therefore, adopting ANN controllers with adequate sample sizes, such as 1001 
samples, can lead to substantial efficiency gains, making it a viable and beneficial approach for optimizing PV system 
performance [80]. 

Table 4 Comparison of All Used ANN Controllers with A DC – DC SEPIC Converter 

No. Controller Type Efficiency 

1 P&O 94.6034% 

2 ANN using 104 Random samples 93.1865% 

3 ANN using 201 Random samples 94.8474% 

4 ANN using 1001 Random samples 95.5062% 

3.4.  Comparison of All Used ANN Controllers with DC-DC Boost, Cuk, and SEPIC Converters 

Figure 8 shows a comparison of all used ANN controllers with DC-DC Boost, Cuk, and SEPIC converters efficiency, The 
bars represent the efficiency of each converter with different controllers, allowing for an easy visual comparison of their 
performance. 
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Figure 8 Comparison of P&O and All Used ANN Controllers with DC-DC Converters 

 The Boost Converter generally shows the highest efficiency when using ANN controllers. 
 The Cuk Converter has slightly lower efficiency compared to the Boost Converter but still benefits from ANN 

controllers. 
 The SEPIC Converter shows varying efficiency, with ANN controllers improving performance significantly 

compared to no controller and P&O. 

4. Conclusion 

The ANN control method outperforms the perturb and observe (P&O) algorithm by accurately forecasting output power 
and voltage in PV arrays, thereby improving the efficiency of solar PV systems. Using ANN controllers for MPPT 
optimizes power extraction, achieving a peak efficiency of 96.2275% with a DC-DC Boost converter that employs an 
ANN controller designed with 1001 samples. Although increasing the sample size beyond 1001 might appear 
advantageous, our research indicates it can decrease the performance of the ANN controller. Therefore, utilizing 1001 
samples with a DC-DC Boost Converter ensures optimal ANN controller performance, emphasizing its effectiveness in 
maximizing solar PV system efficiency. 
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