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Abstract 

In today's society, the demand for clean energy is essential. Traditionally, renewable sources such as hydropower, wind, 
and solar have provided sustainable solutions. Photovoltaic (PV) systems generate electricity from sunlight using 
semiconductor PV cells, which have been effective for over 30 years. The efficiency of PV cells depends on irradiance 
(solar photon intensity) and temperature. Higher irradiance boosts efficiency, while higher temperatures reduce it. 
Despite their low voltage outputs, PV systems can be optimized with DC-DC Ultra Lift Luo converters to meet load 
requirements, improving system efficiency. The Ultra Lift Luo converter, a type of DC-DC converter, offers a higher 
voltage conversion gain than conventional boost converters. This converter belongs to the Luo converter family, which 
uses advanced techniques to achieve high voltage gain and efficiency. Solar irradiance fluctuates throughout the day, 
impacting PV cell output. Maximum Power Point Trackers (MPPTs) adjust the system's operating point to sustain peak 
efficiency. This study aims to design AI controllers for MPPT management. We will evaluate the performance of Artificial 
Neural Networks (ANN) and Recurrent Neural Networks (RNN) with three datasets to determine the most efficient AI 
controller for optimizing solar energy systems. 

Keywords: Artificial neural network; DC-DC Ultra lift luo converter; Maximum power point tracking; Photovoltaic 
system; Recurrent neural network 

1. Introduction

Traditionally, energy generation predominantly relied on the combustion of fossil fuels such as coal, oil, and natural gas. 
This method transformed the chemical energy contained in these fuels into heat, subsequently used to produce 
electricity through different techniques. However, the dependence on fossil fuels has considerably amplified the 
emission of greenhouse gases, especially carbon dioxide, over the past seven decades, exacerbating global climate 
change. To mitigate these adverse environmental effects, there is an increasing shift towards cleaner and more efficient 
energy conversion technologies, with a particular focus on photovoltaic (PV) systems [1]. 

Photovoltaic (PV) systems generate electricity directly from sunlight through PV cells. However, the electrical output 
from these cells typically has a low voltage, necessitating the use of DC-DC converters to elevate the voltage levels. The 
Ultra Lift Luo converter plays a pivotal role in this scenario [2]. This converter not only enhances the voltage output but 
also aligns the impedance between the PV system and its connected load, effectively tackling a major obstacle in 
maximizing the efficiency of PV systems [3]. 

Solar irradiance, which quantifies the strength of sunlight photons, fluctuates throughout the day. Concurrently, 
ambient temperature shifts due to environmental factors, influencing the performance of PV systems. To optimize 
energy capture and efficiency, a Maximum Power Point Tracker (MPPT) is employed [4]. The MPPT dynamically adjusts 
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the operating point of the PV system in real-time to ensure it functions at its maximum power point (MPP), where output 
power is maximized. This real-time adjustment is crucial as it corresponds to the varying maximum voltage curve of the 
PV cells over the course of the day. The MPPT signal directs the DC-DC Ultra Lift Luo converter, which incorporates 
components such as Insulated Gate Bipolar Transistor (IGBT) to manage its duty cycle. By modulating the duty cycle, 
the converter effectively adjusts the output voltage to meet the load requirements [5]. 

Due to the non-linear and ever-changing characteristics of solar irradiance (G) and temperature (T), conventional time-
domain controllers often struggle to manage these fluctuations effectively. As a result, artificial intelligence (AI) 
controllers present a superior alternative. This research explores two AI control strategies: Artificial Neural Networks 
(ANN) and Recurrent Neural Networks (RNN). These AI controllers are adept at managing non-linear variations in input 
values from PV cells, thereby optimizing control efficiency and improving the overall performance of the system [6]. 

Shifting from fossil fuels to renewable energy sources like photovoltaic (PV) systems is a vital step towards achieving 
sustainability. By leveraging cutting-edge technologies such as Maximum Power Point Trackers (MPPTs), DC-DC 
converters, and AI-based controllers, we can efficiently utilize solar energy, enhance system performance, and lower 
the environmental footprint. 

This paper is sectioned as: 

Section 2: PV System Description and Modelling 

o Detailed Outline of the 213.15-Watt Photovoltaic (PV) Array Model. 
o Summary of the Basic Block Diagram of PV Arrays. 
o Examination of Solar Cell Design and Operation Using p-n Semiconductor Junctions. 
o Evaluation of the Inputs (Irradiance and Temperature) and Outputs (Voltage and Power) of the PV Array Model. 
o Techniques employed for simulating and assessing the PV system under various conditions. 
o Design and Modeling of the DC-DC Ultra Lift Luo Converter. 

Section 3: Methodology of ANN Controller 

o Overview of AI-based control systems. 
o Detailed outline of the Artificial Neural Network (ANN) model applied. 
o Discussion on the deployment of this AI ANN controller for optimizing the PV system, with a focus on its 

efficiency in managing non-linear and variable inputs, specifically irradiance (G) and temperature (T). 

 Section 4: Methodology of RNN Controller 

o Overview of artificial intelligence (AI) controllers. 
o Detailed description of the Recurrent Neural Network (RNN) model employed.  
o Discussion on the implementation of this AI RNN controller for enhancing the performance of the PV system, 

with an emphasis on its capability to manage non-linear and dynamic inputs such as irradiance (G) and 
temperature (T). 

Section 5: Results and Discussion 

o Evaluation of ANN and RNN performance in enhancing PV system optimization. 
o Examination of the advantages and disadvantages of each AI control technique. 
o Analysis of results concerning the efficiency and effectiveness of PV system optimization. 

Section 6: Conclusion 

o Overview of the Major Results of the Study. 
o Advancements to the Field of Renewable Energy and Optimization of PV Systems. 
o Suggestions for Future Research Paths. 
o Final Thoughts on the Influence of AI Controllers in Improving PV System Efficiency. 

2. PV System Description and Modelling 

We present a comprehensive description of the PV system model, detailing its components and the integration of ANN 
and RNN controllers. Block diagrams are included to illustrate the proposed models. The PV array model receives inputs 
of Solar Irradiance (G) and Temperature (T) and has two outputs for the ANN controller: Output Voltage and Output 
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Power, and one output for the RNN controller: Output Voltage [7]. A DC-DC Ultra Lift Luo Converter is employed, with 
the MPPT playing a crucial role in maximizing power output by adjusting the operating point. The reference voltage 
(Vpv) is generated based on calculations and predictions from ANN or RNN algorithms. The PV system is directly 
connected to a fixed load [8]. The block diagrams in Figure 1, and Figure 2, visually clarify the system’s architecture and 
control flow [9]. 

 

Figure 1 Block Diagram for The Proposed Designed ANN Model 

 

 

Figure 2 Block Diagram for The Proposed Designed RNN Model 

2.1. Mathematical Solar Array Modeling 

The single-diode model is commonly used for simulating photovoltaic (PV) cells. This model includes the following 
components: 
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 Photo-current source (Iph): Represents the current generated by the solar cell when exposed to sunlight. 
 Diode (D): Models the p-n junction of the solar cell, providing a path for the recombination of charge carriers. 
 Series Resistance (Rs): Represents the resistive losses within the cell. 
 Shunt Resistance (Rsh): Represents leakage currents within the cell. 

The equivalent circuit of a PV cell using the single-diode model can be represented as: 

I = Iph−ID−Ish ……………………………………………………………………………….. (1) 

Where: 
I is the output current of the PV cell. 
Iph is the photo-generated current. 
ID  is the current through the diode. 
Ish is the shunt leakage current. 

In this research, we concentrate on the design and modeling of a 213.15-Watt photovoltaic (PV) array, a critical 
component for solar energy systems. The PV array is made up of interconnected solar cells that convert sunlight directly 
into electricity. The main inputs for the array are solar irradiance (G) and temperature (T) [10]. Solar irradiance, which 
measures the intensity of sunlight falling on the PV array in watts per square meter (W/m²), leads to higher photo-
generated current with increased irradiance. Temperature, measured in degrees Celsius (°C), represents the 
surrounding ambient temperature and impacts the efficiency and output of the PV cells, with higher temperatures 
typically reducing efficiency [11]. The key outputs of the PV array include the voltage output (V), representing the 
electrical voltage produced and influenced by both irradiance and temperature, and the power output (P) for the ANN 
controller, indicating the total electrical power generated by the PV array, calculated as the product of the voltage and 
current produced by the PV cells [12]. 

Understanding how the PV array operates across different levels of solar irradiance and temperature is essential to 
gauge its performance capabilities. Through simulating the PV array model in diverse environmental scenarios, we can 
anticipate its responses and refine its design to achieve optimal efficiency [13]. 

This research centers on intricately modeling a 213.15-Watt PV array, highlighting its fabrication using p-n 
semiconductor junctions and its responsiveness to solar irradiance and temperature changes. The voltage and power 
outputs serve as key indicators of the PV array's operational efficiency, pivotal for its integration into renewable energy 
setups [14]. Precise modeling facilitates AI-driven predictions and improvements in the PV array's performance across 
diverse environmental settings [15]. 

2.2. Modelling and Simulation of 213.15W PV array 

The photovoltaic (PV) array used in the designed PV system was carefully selected from the MATLAB/Simulink toolbox 
for simulation purposes. This selection provides detailed information about the array's electrical properties and 
includes visual aids demonstrating its performance under different temperature and irradiance conditions [16]. Figure 
3 displays a graphical representation of the chosen PV array model from MATLAB/Simulink, illustrating its response to 
varying environmental factors. Additionally, Table 1, outlines specific electrical parameters that characterize the PV 
array, offering a clear understanding of its capabilities and performance metrics under diverse operational scenarios 
[17]. 

 

Figure 3 Block Diagram for The Proposed Designed PV Array Model 
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Table 1 Electrical Characteristics of The PV Module 

Description User-defined 

Maximum power 312.15 W 

Voltage at Pmax (Vmax) 29.00V 

Current at Pmax (Im) 7.35 A 

Short Circuit current (Isc) 7.84 A 

Open circuit voltage 36.30 V 

Temperature coefficient Ki 0.102 A/°C 

The Voltage-Current (V-I) characteristics curve demonstrates how the voltage and current output of the PV array relate 
to each other under specified conditions, shown in Figure 4. At a temperature of 25 °C and 45 °C, this curve indicates 
that the current output remains stable until the voltage approaches a certain threshold (close to the open circuit 
voltage), beyond which the current decreases significantly [18]. 

 

Figure 4 Voltage-Current (V-I) Characteristics curve at a Temperature of 25 °C and 45 °C 

The Voltage Power (V-P) characteristics curve illustrates how the power output of the PV array changes with varying 
voltage levels, specifically at temperatures of 25 °C and 45 °C, as depicted in Figure 5. Typically, this curve exhibits a 
peak that signifies the maximum power point (MPP), where the PV array operates most efficiently [19]. Beyond this 
point, the power output declines as the voltage continues to increase [20]. 

 

Figure 5 Voltage Power (V-P) Characteristics curve at Temperatures of 25 °C and 45 °C 

The Voltage Current (V-I) characteristics curve, depicted in Figure 6, illustrates how the output current of the PV array 
changes with varying voltages under different levels of sunlight intensity. Higher levels of irradiance generally result in 
increased current outputs, while the overall shape of the curve remains consistent across varying irradiance levels [21]. 
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Figure 6 Voltage Current (V-I) Characteristics Curve Under Different Levels of Sunlight Intensity 

The Voltage Power (V-P) characteristics curve for specified irradiance levels illustrates how the power output changes 
with voltage under varying sunlight intensities. Like the temperature-dependent V-P curve shown in Figure 7, the curve 
influenced by irradiance also exhibits a peak at the maximum power point. Higher irradiance levels lead to higher peak 
power values, highlighting the direct relationship between sunlight intensity and PV array performance in generating 
electrical power [22]. 

 

Figure 7 Voltage Power (V-P) Characteristics Curve Under Varying Sunlight Intensities 

2.3. DC-DC Ultra Lift Luo Converter Model 

2.3.1. DC-DC Ultra Lift Luo Converter Model 

The DC-DC Ultra Lift Luo converter represents a sophisticated power electronics component engineered to effectively 
convert and control voltage levels. It is specifically tailored for applications in photovoltaic (PV) systems, where there 
is a requirement to elevate the typically low and unregulated output voltage to a level that is suitable for practical use 
[23]. 

2.3.2. Voltage Lift Technique 

Arithmetic Progression: In basic voltage boosting designs, the output voltage incrementally increases through 
sequential steps, adhering to a systematic arithmetic pattern. This method ensures a gradual and predictable rise in 
voltage levels, typically in straightforward voltage conversion and regulation mechanisms [24]. 

Geometric Progression: The Ultra Lift Luo converter enhances voltage amplification by utilizing geometric progression. 
This method results in greater and more efficient increases in output voltage, making the process significantly more 
effective [25]. 

2.3.3. Components and Circuit Design 

The converter employs inductors, capacitors, diodes, and an IGBT switch arranged strategically to achieve precise 
voltage alteration according to operational needs. This configuration ensures efficient transformation of electrical 
energy, maintaining stability and reliability throughout the conversion process, crucial for achieving the intended 
voltage output reliably and effectively [26]. 
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The converter's function is based on switching processes that regulate how energy is stored and released in its inductors 
and capacitors. This controlled energy management leads to a gradual increase in output voltage, which follows a 
systematic and incremental pattern, akin to an arithmetic progression [27]. 

2.3.4. Advantages Over Traditional Converters 

Higher Voltage Gain 

Traditional converters such as Boost, Cuk, and SEPIC are often constrained by their limited ability to increase voltage. 
In contrast, the Ultra Lift Luo converter stands out for its capability to achieve significantly higher voltage spans, 
leveraging a geometric progression mechanism that enhances its efficiency and performance in voltage transformation 
applications [28]. 

 Reduced Harmonics 

Excessive harmonics are problematic as they can interfere with operations and decrease power system efficiency [29]. 
The Ultra Lift Luo converter effectively mitigates harmonics, resulting in a cleaner and more efficient power output that 
enhances overall system performance. 

Improved Power Factor 

Conventional converters often struggle with undesirable high-power factors, which can result in inefficiencies within 
the system. In contrast, the Ultra Luo converter is specifically engineered to optimize and maintain a more favorable 
power factor. This design enhancement ensures that the converter operates more efficiently, minimizing energy losses 
and improving the overall performance and reliability of the power system [30]. 

Higher Efficiency 

The converter enhances efficiency through effective reduction of current ripples, resulting in decreased energy losses 
and improved overall system performance. By ensuring smoother and more stable current flow, the converter 
minimizes heat generation and switching losses, optimizing energy usage [31]. This enhanced efficiency not only 
conserves energy but also enhances the reliability and longevity of connected equipment. Reduced current ripples also 
contribute to maintaining high power quality, ensuring consistent and reliable operation of electrical systems. Overall, 
these advancements underscore the converter's ability to operate more efficiently while meeting stringent performance 
standards and enhancing system reliability [32]. 

Higher Voltage Span 

This converter's capability to achieve a broader voltage range makes it well-suited for applications needing significant 
voltage increases, such as linking photovoltaic systems to external loads. 

Practical Application in PV Systems 

Unregulated PV Output 

PV systems typically produce an unregulated output voltage that can vary with changes in solar irradiance and 
temperature. This unregulated output is often insufficient for directly powering loads or integrating with the grid. 

Voltage Regulation 

The Ultra Lift Luo converter plays a vital role in elevating the voltage output of PV systems to a stable, regulated level, 
making it adaptable for a wide range of applications. This controlled voltage enhancement is essential to ensure the 
consistency and reliability of power supplied by the PV system, meeting the requirements of different electronic devices 
and systems. By maintaining a steady output, the converter enables efficient utilization of solar-generated electricity, 
enhancing overall system performance and reliability [33]. 

2.3.5. Connection to External Loads 

Utilizing the Ultra Lift Luo converter optimizes the PV system's ability to deliver consistent and reliable power to 
external loads. This converter guarantees that the voltage output meets specified standards, thereby improving the 
overall dependability and operational effectiveness of the PV system [34]. 
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The Ultra Lift Luo converter is designed with the following key components: 

Switch 

Insulated Gate Bipolar Transistor (IGBT) functions as a semiconductor switch crucial for regulating the converter's duty 
cycle and operational efficiency. 

Diodes 

Standard diodes (D1, D2, and D3) are essential components within the circuit, facilitating current flow in one direction 
while blocking reverse current to maintain proper operation and prevent undesired electrical feedback. 

Energy Storage Components: 

Inductors (L1, and L2) are utilized to store energy in the form of a magnetic field, facilitating consistent current flow 
and enhancing the stability of the electrical system. This ensures reliable operation by minimizing fluctuations and 
maintaining a steady flow of power through the circuit. 

Capacitors (C1, C2) also store energy but primarily smooth out voltage fluctuations, ensuring a consistent power supply. 
Both capacitors have identical values (C2 = C1), contributing equally to the stability and efficiency of the circuit's 
operation [35]. 

The converter employs the ultra-lift technique to consistently elevate the output voltage above the PV array's input 
voltage. This method incrementally increases the voltage in a geometric progression, ensuring that the output remains 
positively offset from the input. This design feature guarantees efficient power transformation, essential for maximizing 
the converter's performance in various applications. It ensures reliable operation by maintaining a stable and suitable 
output voltage, thereby optimizing the overall efficiency and functionality of the system [36]. 

The operational dynamics and behavior of the Ultra Lift Luo converter are defined by the set of equations below, which 
outline its functionality and how it responds to input parameters: 

Transfer Gain (K) represents the ratio of the output voltage (Vo) to the input voltage (Vin), elucidating how the 
converter amplifies the voltage from the input to the output: 

K =
Vo

Vin
 ………………..……………………………………………………………………………… (2) 

The connection between the input voltage (Vin), output voltage (Vo), and transfer gain (K) is defined by a mathematical 
equation that outlines how changes in Vin affect Vo, scaled by the factor K. This equation provides a quantitative 
understanding of how the converter amplifies the input voltage to produce a desired output voltage, crucial for 
determining its operational characteristics and efficiency in various applications: 

K =
VO

Vin
=
D(2−D)

(1−𝐷)
2  …………………………………………………………………………………………(3) 

The output current (Io) in the circuit can be determined using Ohm's law, which states that the current flowing through 
a conductor between two points is directly proportional to the voltage across the two points and inversely proportional 
to the resistance between them: 

VO = IOR …………………………………………………………………………………….(4) 

The DC-DC Ultra Lift Luo converter is an advanced and efficient device designed to elevate voltages without inverting 
them. It harnesses components like IGBTs, diodes, inductors, and capacitors to achieve substantial voltage increases 
while ensuring outputs are free from ripples and disturbances [37]. The operational equations it employs are crucial 
for engineers to effectively design, optimize, and assess the converter's functionality in diverse applications, especially 
when paired with PV systems. These equations provide insights into how the converter manages voltage 
transformation, ensuring reliable and efficient power conversion from photovoltaic sources to meet varying electrical 
demands [38]. 

The DC-DC Ultra Lift Luo converter's operational concept is elucidated by its block diagram, illustrating its key 
components and how electrical energy moves through the system. This schematic in Figure 8 offers a comprehensive 
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view of the converter's architecture, showcasing the interplay among components that include IGBTs, diodes, inductors, 
and capacitors. Understanding these interactions is essential for grasping how the converter achieves efficient voltage 
elevation without inversion, which is pivotal for its application in diverse electronic and energy systems [39]. 

 

Figure 8 The Designed Block Diagram of a DC-DC Ultra Lift Luo Converter 

The block diagram components and descriptions:  

PV Array (Input Voltage Source): 

The PV array produces a low and unregulated DC voltage as it converts solar energy into electrical power, which serves 
as the initial DC input voltage for the converter. 

Switch Control 

The component referred to as the Insulated Gate Bipolar Transistor (IGBT) integrates control circuitry responsible for 
managing the switching function. Through switch control, it modulates the IGBT's duty cycle, thereby regulating energy 
transfer and directing the switching element to control the voltage conversion process effectively [40]. 

The inductors (L1, and L2) play a critical role in the circuit dynamics by harnessing and storing energy within their 
magnetic field when the switch is turned on. When the switch deactivates, the inductors releases this stored energy, 
which helps in stabilizing the current flow and enabling efficient voltage amplification. This cycle of energy storage and 
release ensures smooth operation of the circuit, minimizing fluctuations and optimizing performance. By managing the 
flow of electrical energy, the inductors contributes significantly to maintaining stability and enhancing the overall 
efficiency of the circuit, supporting its function in various electronic applications [41]. 

Capacitors (Energy Storage) 

Two capacitors, C1 and C2, of equal value, function to store and filter energy within the circuit. They work together to 
ensure a steady output voltage, smoothing fluctuations and minimizing ripple effects, thereby contributing to a 
consistent and stable electrical output [42, 43]. 

Diodes 

Diodes D1, D2, and D3 serve the purpose of facilitating current flow in a single direction while preventing reverse flow, 
ensuring efficient energy transfer and supporting voltage elevation by maintaining a unidirectional current path [44, 
45]. 

Output Rectifier and Filter 

The setup includes capacitors and supplementary diodes designed to guarantee that the output voltage remains stable, 
devoid of noticeable fluctuations, thereby supplying a consistent high DC voltage to the load [46]. 

With the DC source providing an input voltage (Vpv = 10V) and applying the designated duty cycle D=0.6 to the DC-DC 
Ultra Lift Luo converter, we utilize this data to compute the anticipated output voltage (Vo = 52V). This calculation hinges 
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on the converter's operational parameters and the relationship between input voltage, duty cycle, and resulting output 
voltage, as outlined in the converter's specifications and operational principles [47, 48]. 

The transfer gain (K) and the equations previously outlined offer insights into how the input voltage relates to the output 
voltage, elucidating the conversion mechanism. By leveraging these equations, one can comprehend the transformation 
process from the input to the output voltage within the operational framework of the system [49, 50]. 

K = Vo / Vin = D(2-D) / (1-D)2 

K = 0.6(2-0.6) / (1-0.6)2 = 5.25 

K = 5.25. 

Now, set up the equation: 

K = Vo / Vin 

Cross-multiply to solve for Vo: 

5.25 ×10 = Vo 

Vo = 52.5V 

Verify the Gain (K) 

Now substitute Vo back into the gain formula to verify: 

K = 52.5 / 10 

K = 5.25 

The calculated gain K matches our initial calculation, confirming that K = 5.25. 

This computation validates the recorded output voltage of 52.5V when supplied with a 10V input and operated at a 60% 
duty cycle, affirming the accuracy of the simulation's outcomes [51]. 

Figure 9 depicts the experimental setup and simulation outcomes using a block diagram. The results confirm that by 
employing a 60% duty cycle, the converter effectively increases the input voltage of 10V from the DC source to 52.5V as 
demonstrated in the Ultra Lift Luo converter's output [52, 53].  

 

Figure 9 ULL MATLAB/Simulink at 60% Duty Pulse Generator 
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The analysis and evaluation using calculations and block diagrams are consistent with the simulation outcomes, 
confirming the efficacy of the Ultra Lift Luo converter in elevating the voltage from a DC source. This converter efficiently 
enhances the input voltage, delivering a stable and elevated output voltage suitable for a wide range of applications [54, 
55]. 

The Ultra Lift Luo converter stands out for its efficiency in elevating voltage levels. Figure 10 illustrates how its output 
voltage rises swiftly and consistently, demonstrating superior performance compared to conventional converters like 
Cuk or Boost, which frequently experience overshooting and extended stabilization phases. Both theoretical 
calculations and simulations confirm the converter's robustness, highlighting its suitability for integrating photovoltaic 
systems with external loads that demand stable, regulated higher voltages [56, 57]. This capability ensures reliable 
power supply adaptation, crucial for applications requiring consistent energy delivery without fluctuations, thus 
enhancing the overall reliability and efficiency of renewable energy systems in practical use scenarios [58, 59]. 

 

Figure 10 Ultra Lift Luo Converter Time VS Voltage at 60% Duty Pulse Generator 

Artificial Intelligence (AI) controllers are becoming more prevalent in enhancing the effectiveness and efficiency of 
photovoltaic (PV) systems. One effective method involves integrating Artificial Neural Networks (ANNs) to optimize the 
Maximum Power Point (MPP) tracking of PV arrays. This AI-driven approach helps improve overall system performance 
by dynamically adjusting to changing environmental conditions and maximizing energy output from solar panels [60, 
61]. 

Training the ANN with a broad and varied dataset markedly improved the PV system's performance. Among the data 
sets tested, the ANN trained with 1001 samples proved most effective, ensuring robust and dependable operation under 
diverse conditions and maximizing efficiency in tracking the MPP [62, 63]. 

Upon analysis, the ANN controller trained with 1001 random data samples was integrated into the PV system to ensure 
consistent MPP tracking, optimize power output, and maintain efficiency across varying environmental conditions. 
Utilizing MATLAB/Simulink for simulation and training offered a solid foundation to develop and validate the ANN 
controller, confirming its efficacy for practical implementation in real-world scenarios [64]. 

2.4. Artificial Neural Network (ANN) 

To improve the performance and efficiency of photovoltaic (PV) systems, the integration of Artificial Intelligence (AI) 
controllers has become increasingly popular. One effective AI method is using Artificial Neural Networks (ANNs) to 
track the Maximum Power Point (MPP) of the PV array [65]. 

To ensure the optimal training and efficiency of the ANN controller for MPP tracking, a thorough comparison was 
performed using different random data sample sets. The aim was to identify the best random sample data set to achieve 
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the highest efficiency in tracking the MPP. The sample sets used in the comparison included 104, 201, and 1001 random 
data points. 

From the comparison, it was found that the ANN controller trained with 1001 random data samples provided the best 
results. Implementing this in the PV system ensured reliable MPP tracking, maximizing power output and maintaining 
efficient operation under varying environmental conditions. MATLAB/Simulink was used for simulation and training, 
offering a robust framework for developing and testing the ANN controller, and ensuring its effectiveness in real-world 
applications. 

2.5.  Recurrent Neural Network (RNN) 

To further improve the efficiency of the PV system, a Recurrent Neural Network (RNN) was introduced. The RNN's 
distinctive architecture, featuring feedback connections within its inner layers, makes it especially suitable for 
managing time-dependent data and nonlinear input variations. This capability is essential for real-time tracking of the 
maximum power point (MPP), ensuring the PV array operates at optimal performance [66]. 

To guarantee the optimal training and performance of the RNN controller for MPP tracking, an extensive comparison 
was carried out using different random data sample sets. The objective was to identify the most effective sample size 
for achieving the highest efficiency in MPP tracking. The sample sets used in the comparison consisted of 104, 201, and 
1001 random data points. 

The results indicated that the RNN controller trained with 1001 random data samples provided the best performance. 
Implementing this configuration in the PV system ensured reliable MPP tracking, maximized power output, and 
maintained efficient operation under a variety of environmental conditions. The use of MATLAB/Simulink for 
simulation and training offered a robust framework for developing and testing the RNN controller, ensuring its 
effectiveness in practical applications. 

3. Results and Discussion 

3.1.  Artificial Neural Network (ANN) 

In Table 2, employing a P&O controller achieved an efficiency of 88.4776%. Introducing an ANN controller with 104 
samples increased efficiency to 92.7422%, 92.9241% for 201 samples, and 94.8043% for 1001 samples, surpassing the 
P&O controller's performance. The significant improvement from 104 to 1001 samples highlights the critical role of a 
larger and diverse dataset in effectively training the ANN controller. Integrating ANN controllers, particularly with 
extensive sample sizes, markedly enhances PV system efficiency compared to conventional P&O controllers. These 
findings underscore the efficacy of AI techniques in maximizing power output and enhancing overall system 
performance across diverse environmental conditions. Implementing an ANN controller for MPP tracking in PV systems 
notably improves overall efficiency compared to traditional P&O methods. The benefits of larger training datasets are 
evident in the ANN's enhanced ability to accurately predict and track MPP under varying environmental conditions, 
ensuring optimal system operation and energy yield. 

Table 2 Comparison of All Used ANN Controllers 

No. Controller Type Efficiency 

1 P&O 88.4776% 

2 ANN using 104 Random samples 92.7422% 

3 ANN using 201 Random samples 92.9241% 

4 ANN using 1001 Random samples 94.8043% 

3.2.  Recurrent Neural Network (RNN) 

Table 3 illustrates that employing a P&O controller yielded an efficiency of 95.4102%. Introducing an RNN controller 
with 104 data samples resulted in a decrease to 92.5256%, followed by improvements to 95.8761% and 97.7182% with 
201 and 1001 samples, respectively, outperforming the P&O controller. This notable enhancement from 104 to 1001 
samples underscores the critical role of a larger and more diverse dataset in effectively training the RNN controller. 
Integrating RNN controllers, particularly with larger sample sizes, significantly boosts PV system efficiency compared 
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to conventional P&O controllers. These findings underscore the efficacy of AI techniques in maximizing power 
generation and enhancing overall system performance under varying environmental conditions. Implementing an RNN 
controller for MPP tracking alongside a DC-DC Ultra Lift Luo converter in PV systems substantially improves overall 
efficiency compared to traditional P&O methods, particularly with expanded training datasets. These outcomes 
highlight the RNN's superior capability to precisely predict and maintain MPP under diverse environmental conditions, 
emphasizing the pivotal importance of dataset size in optimizing performance. 

Table 3 Comparison of All Used RNN Controllers 

No. Controller Type Efficiency 

1 P&O 95.4102% 

2 RNN using 104 Random samples 92.5256% 

3 RNN using 201 Random samples 95.8761% 

4 RNN using 1001 Random samples 97.7182% 

4. Conclusion 

In conclusion, our study successfully implemented AI-based ANN and RNN controllers using MATLAB/Simulink to 
optimize PV system performance. We compared these controllers using varied sample sizes and integrated them with 
a DC-DC Ultra Lift Luo converter for voltage boosting and impedance matching. Both ANN and RNN controllers predicted 
maximum output voltage based on nonlinear inputs like irradiance and temperature. The RNN showed superior 
accuracy and efficiency, especially with a 1001-sample set, highlighting its robust MPP tracking capability. An RNN 
controller for the DC-DC Ultra Lift Luo converter achieved higher efficiency reaching 97.7182%. Real PV systems, 
controlled by an RNN controller, will now be efficiently managed with almost 17% increase in efficiency compared to 
not using a controller at all. Future research should explore larger data sets and diverse AI approaches to further 
enhance PV system efficiency and reliability in real-world applications, advancing renewable energy technology 
effectively. 
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