
* Corresponding author: Stanley A. Omenai 

Copyright © 2024 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0. 

Numerical solution of the heat equation 

Stanley A. Omenai * 

Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA. 

World Journal of Advanced Engineering Technology and Sciences, 2024, 12(02), 468–478 

Publication history: Received on 15 June 2024; revised on 27 July 2024; accepted on 30 July 2024 

Article DOI: https://doi.org/10.30574/wjaets.2024.12.2.0322 

Abstract 

Numerical solution of the heat equation using finite difference approximation was developed to determine the 
temperature distribution profile for cooling of a rectangular steel bar. 

Temperature distribution plots were made at characteristic time steps describing the heat distribution along the steel 
bar and ultimately depicting the time it takes for the steel bar to achieve isothermal equilibrium with the cooling 
medium. 
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1. Introduction

1.1. Problem description 

In the steel industry, it is typical to rapidly quench steel bars coming directly from a blast furnace in a reservoir of cold 
water. 

Consider a very long rectangular steel bar initially heated to a temperature (T0 = 1000 K) from the furnace and placed 
in a reservoir of cold water (T∞ = 300 K). 

Assume the following properties: 

Length of slab, L = 10 cm 

Width of slab, W = 10 cm 

Convective Heat Transfer coefficient of Water, h = 100 W/m2-K 

Thermal conductivity of Steel, k = 50 W/m-K 

Density of Steel, ρ = 8000 kg/m3 

Specific Heat Capacity of Steel, cp = 500 J/kg-K 

Our task is to determine the temperature distribution profile for cooling of the steel bar by solving the heat equation 
using numerical techniques. 
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2. Methodology 

This problem shall be solved numerically using finite difference approximation. The finite difference method shall be 
explicit and forward-time, centred-space (FTCS). 

MATLAB codes shall be developed to depict the temperature distribution in the slab at characteristic time steps. 

The theory, assumptions, governing equations, and boundary conditions shall be provided with the solution steps. 

A summary of the results (plots) shall be presented as part of the report. 

3. Numerical solution 

3.1. Assumptions 

The steel bar is treated as very long such that there are no variations in the longitudinal axis (z), hence it is treated as a 
2D slab (x,y) 

The thermal conductivity of the material does not vary with space or time, i.e. material is isotropic 

3.2. Methodology 

 Discretize the domain into an m x n grid for analysis 
 Consider a number of time steps p 
 Use the forward-time and centred-space Finite Difference approach to obtain equations to describe the 

temperature profile of the slab at every location (x,y) and time t  
 Vary grid spacings and time steps to obtain a stable solution using the stability criteria 
 Plot the temperature profile of the ingot at five characteristic time steps 

3.3. Solution 

Governing Equation:  

 

3.3.1. Boundary Conditions 

 At x = 0,  

 At x = L,  

 

 At y = 0,  

 

 At y = W,  

3.3.2. Initial Condition: 

At t = 0,  T = To 

To obtain T, we need to solve the governing equation using Finite Difference method in the following steps: 

 Replace the partial derivatives with finite difference approximations 
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 Replace the time derivative with first order forward difference approximations 

 Replace the space derivatives with second order centred-difference approximations 

The governing equation becomes; 

(
𝑇𝑖,𝑗

𝑝+1
 −  𝑇𝑖,𝑗

𝑝

𝛥𝑡
) =  𝛼 ∗ [(

𝑇𝑖−1,𝑗
𝑝

 − 2 ∗ 𝑇𝑖,𝑗
𝑝

+  𝑇𝑖+1,𝑗
𝑝

𝛥𝑥2
) + (

𝑇𝑖,𝑗−1
𝑝

 − 2 ∗ 𝑇𝑖,𝑗
𝑝

+  𝑇𝑖,𝑗+1
𝑝

𝛥𝑦2
)] 

Where i represents the node location along the x direction, j represents the node location along the y direction and p 
represents the time step. 

Considering equal grid spacing in the x and y directions, Δx = Δy, thus; 

𝑇𝑖,𝑗
𝑝+1

 = 𝑇𝑖,𝑗
𝑝

 + (
𝛼 ∗ 𝛥𝑡

𝛥𝑥2 ) * [𝑇𝑖−1,𝑗
𝑝

+ 𝑇𝑖+1,𝑗
𝑝

 − 4 ∗ 𝑇𝑖,𝑗
𝑝

+  𝑇𝑖,𝑗−1
𝑝

+ 𝑇𝑖,𝑗+1
𝑝

 ] 

Let d = (
𝛼 ∗ 𝛥𝑡

𝛥𝑥2 ) ; where d – diffusion number,  

The finite difference approximation of the equation becomes; 

𝑇𝑖,𝑗
𝑝+1

 = 𝑇𝑖,𝑗
𝑝

 + d * [𝑇𝑖−1,𝑗
𝑝

+ 𝑇𝑖+1,𝑗
𝑝

 − 4 ∗ 𝑇𝑖,𝑗
𝑝

+  𝑇𝑖,𝑗−1
𝑝

+ 𝑇𝑖,𝑗+1
𝑝

 ] 

3.4. Notes 

 The above method is an explicit method where temperatures Ti,j’s at future times (p+1) are directly obtained 
based on Ti,j’s at present times as shown in the final equation above 

 Explicit methods are conditionally stable. The stability criteria is given as d <= 0.25 (for 2D problems) 
 Time step (Δt) needs to be small for more accuracy 
 The error is of the order, O(Δt) + O(Δx2) + O(Δy2) 

Next, we express the convective boundary condition equations as finite difference approximations.  

Consider the 2D slab  

 

Figure 1 2D Slab for evaluation of Internal and Side Nodes 

Applying energy balance; 

Δy * (
𝑇𝑚−1,𝑛

𝑝
−𝑇𝑚,𝑛

𝑝

𝛥𝑥
)+(

∆𝑥

2
) * (

𝑇𝑚,𝑛+1
𝑝

−𝑇𝑚,𝑛
𝑝

𝛥𝑦
) + (

∆𝑥

2
) * (

𝑇𝑚,𝑛−1
𝑝

−𝑇𝑚,𝑛
𝑝

𝛥𝑦
) + ℎ ∗ ∆𝑦 ∗ (𝑇∞ − 𝑇𝑚,𝑛

𝑝
) = 

1

∝
 * (

𝛥𝑥

2
) *Δy*(

𝑇𝑚,𝑛
𝑝+1

−𝑇𝑚,𝑛
𝑝

𝛥𝑡
) 

Substituting ∆x = ∆y and simplifying; 

2 * (𝑇𝑚−1,𝑛
𝑝

− 𝑇𝑚,𝑛
𝑝

) + (𝑇𝑚,𝑛+1
𝑝

− 𝑇𝑚,𝑛
𝑝

 )+ (𝑇𝑚,𝑛−1
𝑝

− 𝑇𝑚,𝑛
𝑝

) + (
2∗ℎ∗𝛥𝑥

𝑘
)  * (T∞ –𝑇𝑚,𝑛

𝑝
) = 

1

∝
(

𝛥𝑥2

𝑘
) *(

𝑇𝑚,𝑛
𝑝+1

−𝑇𝑚,𝑛
𝑝

𝛥𝑡
) 
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Simplifying further and substituting the following relations, 

 Bi = (
ℎ∗𝛥𝑥

𝑘
), where Bi = Biot number 

 Fo = (
𝛼∗𝛥𝑡

𝛥𝑥2 ), where Fo = Fourier number 

The final expression for the convective boundary condition at the side node becomes; 

 𝑇𝑚,𝑛
𝑝+1 

= (𝐹𝑜) ∗ { (2 ∗ 𝐵𝑖) ∗ Tinf + 2 * 𝑇𝑚−1,𝑛
𝑝

 + 𝑇𝑚,𝑛+1
𝑝

+ 𝑇𝑚,𝑛−1
𝑝

+ [(
1

𝐹𝑜
) − (2 ∗ 𝐵𝑖) − 4] ∗ 𝑇𝑚,𝑛

𝑝
} 

For stability of side nodes,  

scs = Fo*(2+Bi) < 0.5 

For the external nodes, we also obtain by similar analogy as follows; 

 

Figure 2 2D Slab for evaluation of External and Corner Nodes 

Applying energy balance; 

(
𝛥𝑦

2
) * (

𝑇𝑚−1,𝑛
𝑝

−𝑇𝑚,𝑛
𝑝

𝛥𝑥
)+ (

𝛥𝑥

2
) * (

𝑇𝑚,𝑛−1
𝑝

−𝑇𝑚,𝑛
𝑝

𝛥𝑦
)+ 

ℎ

𝑘
 * (

𝛥𝑦

2
) * (𝑇∞–𝑇𝑚,𝑛

𝑝
) + 

ℎ

𝑘
 * (

𝛥𝑥

2
) * (𝑇∞ –𝑇𝑚,𝑛

𝑝
) = 

1

∝
 * (

𝛥𝑥

2
) * (

𝛥𝑦

2
)  *(

𝑇𝑚,𝑛
𝑝+1

−𝑇𝑚,𝑛
𝑝

𝛥𝑡
) 

Substituting ∆x = ∆y and simplifying; 

2*(𝑇𝑚−1,𝑛
𝑝

− 𝑇𝑚,𝑛
𝑝

) + 2 ∗ (𝑇𝑚,𝑛−1
𝑝

− 𝑇𝑚,𝑛
𝑝

 ) + (
4∗ℎ∗𝛥𝑥

𝑘
)*(𝑇∞–𝑇𝑚,𝑛

𝑝
) = (

𝛥𝑥2

𝛼∗𝛥𝑡
)*(𝑇𝑚,𝑛

𝑝+1
− 𝑇𝑚,𝑛

𝑝
) 

Simplifying further and substituting as before, we obtain the final expression for the convective boundary conditions at 
the edge nodes as follows; 

𝑇𝑚,𝑛
𝑝+1

 = 2*(𝐹𝑜) ∗ {𝑇𝑚−1,𝑛
𝑝

 + 𝑇𝑚,𝑛−1
𝑝

+ (2 ∗ 𝐵𝑖1 ∗ 𝑇∞) + (−2 ∗ 𝐵𝑖 +  (
1

2∗𝐹𝑜
)  − 2) 𝑇𝑚,𝑛

𝑝
 } 

For stability of corner nodes,  

scc = Fo*(1+Bi) < 0.25 

Thus, we have a set of nine (9) equations; one (1) governing equation which characterizes the internal nodes and eight 
(8) equations corresponding to the four sides and four edges of the discretized 2D domain as follows: 

Governing Equation 
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𝑇𝑖,𝑗
𝑝+1

 = 𝑇𝑖,𝑗
𝑝

 + d * [𝑇𝑖−1,𝑗
𝑝

+ 𝑇𝑖+1,𝑗
𝑝

 − 4 ∗ 𝑇𝑖,𝑗
𝑝

+  𝑇𝑖,𝑗−1
𝑝

+ 𝑇𝑖,𝑗+1
𝑝

 ] 

Boundary Condition BC1 (nodes along the right side) 

 𝑇𝑚,𝑛
𝑝+1 

= (𝐹𝑜) ∗ { (2 ∗ 𝐵𝑖) ∗ T∞ + 2 * 𝑇𝑚−1,𝑛
𝑝

 + 𝑇𝑚,𝑛+1
𝑝

+ 𝑇𝑚,𝑛−1
𝑝

+ [(
1

𝐹𝑜
) − (2 ∗ 𝐵𝑖) − 4] ∗ 𝑇𝑚,𝑛

𝑝
} 

Boundary Condition BC3 (nodes along the left side) 

 𝑇𝑚,𝑛
𝑝+1 

= (𝐹𝑜) ∗ { (2 ∗ 𝐵𝑖) ∗ T∞ + 2 * 𝑇𝑚+1,𝑛
𝑝

 + 𝑇𝑚,𝑛+1
𝑝

+ 𝑇𝑚,𝑛−1
𝑝

+ [(
1

𝐹𝑜
) − (2 ∗ 𝐵𝑖) − 4] ∗ 𝑇𝑚,𝑛

𝑝
} 

Boundary Condition BC2 (nodes along the bottom side) 

 𝑇𝑚,𝑛
𝑝+1 

= (𝐹𝑜) ∗ { (2 ∗ 𝐵𝑖) ∗ T∞ + 2 * 𝑇𝑚,𝑛−1
𝑝

 + 𝑇𝑚+1,𝑛
𝑝

+ 𝑇𝑚−1,𝑛
𝑝

+ [(
1

𝐹𝑜
) − (2 ∗ 𝐵𝑖) − 4] ∗ 𝑇𝑚,𝑛

𝑝
} 

Boundary Condition BC4 (nodes along the top side) 

 𝑇𝑚,𝑛
𝑝+1 

= (𝐹𝑜) ∗ { (2 ∗ 𝐵𝑖) ∗ T∞ + 2 * 𝑇𝑚,𝑛+1
𝑝

 + 𝑇𝑚+1,𝑛
𝑝

+ 𝑇𝑚−1,𝑛
𝑝

+ [(
1

𝐹𝑜
) − (2 ∗ 𝐵𝑖) − 4] ∗ 𝑇𝑚,𝑛

𝑝
} 

Boundary Condition at the top right corner 

𝑇𝑚,𝑛
𝑝+1

 = 2 * (𝐹𝑜) ∗ {𝑇𝑚−1,𝑛
𝑝

 + 𝑇𝑚,𝑛+1
𝑝

+ (2 ∗ 𝐵𝑖 ∗ 𝑇∞) + (−2 ∗ 𝐵𝑖 +  (
1

2∗𝐹𝑜
)  − 2) 𝑇𝑚,𝑛

𝑝
 } 

Boundary Condition at the bottom right corner 

𝑇𝑚,𝑛
𝑝+1

 = 2 * (𝐹𝑜) ∗ {𝑇𝑚−1,𝑛
𝑝

 + 𝑇𝑚,𝑛−1
𝑝

+ (2 ∗ 𝐵𝑖 ∗ 𝑇∞) + (−2 ∗ 𝐵𝑖 +  (
1

2∗𝐹𝑜
)  − 2) 𝑇𝑚,𝑛

𝑝
 } 

Boundary Condition at the bottom left corner 

𝑇𝑚,𝑛
𝑝+1

 = 2 * (𝐹𝑜) ∗ {𝑇𝑚+1,𝑛
𝑝

 + 𝑇𝑚,𝑛−1
𝑝

+ (2 ∗ 𝐵𝑖 ∗ 𝑇∞) + (−2 ∗ 𝐵𝑖 +  (
1

2∗𝐹𝑜
)  − 2) 𝑇𝑚,𝑛

𝑝
 } 

Boundary Condition at the top left corner 

𝑇𝑚,𝑛
𝑝+1

 = 2 * (𝐹𝑜) ∗ {𝑇𝑚+1,𝑛
𝑝

 + 𝑇𝑚,𝑛+1
𝑝

+ (2 ∗ 𝐵𝑖 ∗ 𝑇∞) + (−2 ∗ 𝐵𝑖 +  (
1

2∗𝐹𝑜
)  − 2) 𝑇𝑚,𝑛

𝑝
 } 

Next, we select and vary grid spacings and time steps to obtain a stable solution considering the stability criteria; 

 Total time, t = 10,000s 

 Number of time steps, nt = 25,000  

 Number of grid spacings, nx = 20 

 Slab length L= 0.1m 

 Slab Width W= 0.1m 

 ∆t = t/nt = 0.4s 

 ∆x = L/nx = 0.005m 

 Number of interior points, r = 441 

 Number of points in a row, m =21  

 Number of points in a column, n =21  

 Time steps, p = (t/∆t) + 1=25,001 

 Initial Temperature, To = 1000 K 

 Ambient Temperature, T∞ = 300 K 

 Density, ρ = 8000 kg/m3 

 Specific Heat Capacity, cp = 500 J/kg-K  

 Convection coefficient, h = 100W/m2-K 
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 Thermal conductivity, κ = 50W/m-K 

 Thermal diffusivity, 𝛼 =  
𝑘

𝜌𝑐𝑝
= 1.25 × 10−5 m2/s 

 Fourier number, Fo = (
𝛼 × 𝛥𝑡

𝛥𝑥2 ) = (
1.25 x 10−5 x 0.36 

0.0052 ) =  0.2 

 Biot number, Bi = (
ℎ × 𝛥𝑥

𝑘
) = (

100 x 0.005

50
) = 0.01 

3.5. Stability check 

Diffusion number, d = α × ∆t/∆x2 = 0.2 < 0.25 [solution stable] 

Stability of sides, scs = Fo × (2+Bi) = 0.2 × (2+0.01) = 0.402 < 0.5 [solution stable] 

Stability of corners, scc = Fo × (1+Bi) = 0.2 × (1+0.01) = 0.202 < 0.25 [solution stable] 

Finally, we develop a numerical code of the set of equations Using MATLAB to obtain an overall temperature profile for 
the slab at any time (t) and location (x, y) (code is attached as Appendix). 

4. Results and discussions 

Using the numerical solution developed, we plot the temperature profile as a function of location (x, y) of the slab at the 
initial condition and at five different characteristic times (t = 0.4s, 60s, 360s, 900s & 10,000s). 

The results are presented in the following colormaps. 

 

Figure 3 2D Temperature Plot at characteristic times (t = 0.4s, 60s, 360s, 900s & 10,000s) 
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Figure 4 Temperature Profiles as a function of location (x, y) at characteristic times (t = 0.4s, 60s, 360s, 900s & 
10,000s) 

 

Table 1 Temperature Range at Different Characteristic Times 

S/n Time (s) Maximum temperature (k) Minimum temperature (k) 

1 0 1000.0000 1000.0000 

2 0.4 1000.0000 994.4000 

3 60 980.7217 919.4122 

4 360 810.1785 762.3811 

5 900 602.5205 574.1781 

6 10,000 300.0453 300.0410 

Note: Maximum temperature occurs at the centre of the slab, while minimum temperature occurs at the corner edges 

Notes 

 The numerical solution gives an accurate description of the state of the slab at the initial condition (T = 1000K 
everywhere). 

 The solution depicts Newton’s cooling with the edges generally at lower temperatures than the centre of the 
slab. 

 The solution shows isothermal condition of the slab at around t =10,000s. 
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 The magnitude of the error in the numerical solution is of the order, O(∆t) + O(∆x2) + O(∆y2), i.e. 
[0.4+0.0052+0.0052] = 0.40005. 

 This error magnitude can be reduced by increasing the number of time steps, nt, thus reducing ∆t. 
 Increasing the number of time steps significantly increases the time it takes for MATLAB to compute the 

solution. For the case of 100,000 time steps, it takes over one hour with slight improvement in accuracy of 
results. 

 An unstable explicit numerical solution gives results that are not predictable, i.e. do not vary with time and 
space in a predictable manner, thus, explicit numerical solutions require stability check. 

5. Conclusion 

In this study, we have successfully developed a numerical solution for the heat equation using the explicit forward-time, 
centred-space (FTCS) finite difference method. The solution accurately captures the temperature distribution profile 
for cooling of a typical rectangular steel bar. 

The numerical solution presented in this study offers a valuable tool for understanding and predicting the temperature 
distribution for steel structures during heating or cooling. Future work can extend this approach to more complex 
geometry and boundary conditions, further enhancing its applicability in engineering and scientific research. 
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Appendix – MATLAB code 

 

clc; 
clear all; 
close all; 

% Inputs 

L = 0.1; %m 
W = 0.1; %m 
T_0 = 1000; %K  
T_inf = 300; %K 
h = 100; %W/m^2-K 
kappa = 50; %W/m-K 
rho = 8000; %kg/m^3 
C_p = 500; %J/kg-K 
alpha = kappa/(rho*C_p); %m^2/s 
t = 10000; % s 
nt = 25000;  
delta_t = t/nt; % s 
nx = 20;  
delta_x = L/nx; % m 
delta_y = delta_x; % m 
Bi = (h*delta_x)/kappa; 
Fo = alpha*delta_t/delta_x^2; 

% Solution 

m = (L/delta_x) + 1; % no. of points in a row 
n = (W/delta_x) + 1; % no. of points in a column 
r = n*m; % no. of interior points 
p = (t/delta_t) + 1; % no. of time steps 

https://www.wiley.com/en-us/search?pq=%7Crelevance%7Cauthor%3ADavid+W.+Hahn
https://www.wiley.com/en-us/search?pq=%7Crelevance%7Cauthor%3ADavid+W.+Hahn
https://www.wiley.com/en-us/search?pq=%7Crelevance%7Cauthor%3AM.+Necati+%C3%96zisik
https://www.youtube.com/watch?v=Ip47nsJOQqs
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d = alpha*delta_t/delta_x^2; % diffusion number 
scs=Fo*(2+Bi); 
scc=Fo*(1+Bi); 

% Stability Criteria 

if d <= 0.25 
  fprintf('\n') 
  fprintf('solution stable at the interior nodes\nd = %8.4f', d) 
else 
  fprintf('\n') 
  fprintf('solution unstable at the interior nodes\nd = %8.4f', d) 
end 
if scs <= 0.5 
  fprintf('\n') 
  fprintf('solution stable at the sides\nscs = %8.4f', scs) 
else 
  fprintf('\n') 
  fprintf('solution unstable at the sides\nscs = %8.4f', scs) 
end 
if scc <= 0.25 
  fprintf('\n') 
  fprintf('solution stable at the corners\nscc = %8.4f', scc) 
else 
  fprintf('\n') 
  fprintf('solution unstable at the corners\nscc = %8.4f', scc) 
end 

% Creating initial and boundary conditions 

T = zeros(m,n,p); 

% Creating initial conditions 

for k = 1:1 
  for j = 1:n 
   for i = 1:m 
      T(i,j,k) = T_0; 
        end 
  end 
end 
T; 

% Creating boundary conditions 

for k = 1:p-1 
  for i = 2:m-1 
   for j = 1:1 
          T(i,j,k+1) = Fo*( 2*Bi*T_inf + 2*T(i,j+1,k) + T(i+1,j,k) + T(i-1,j,k) + ((1/Fo) - 2*Bi - 4)*T(i,j,k) ); 
   end 
  end 
    for i = m:m 
   for j = 2:n-1 
          T(i,j,k+1) = Fo*( 2*Bi*T_inf + 2*T(i-1,j,k) + T(i,j+1,k) + T(i,j-1,k) + ((1/Fo) - 2*Bi - 4)*T(i,j,k) ); 
   end 
  end       
     for i = 2:m-1 
   for j = n:n 
          T(i,j,k+1) = Fo*( 2*Bi*T_inf + 2*T(i,j-1,k) + T(i+1,j,k) + T(i-1,j,k) + ((1/Fo) - 2*Bi - 4)*T(i,j,k) ); 
   end 
  end  
    for i = 1:1 
   for j = 2:n-1 
          T(i,j,k+1) = Fo*( 2*Bi*T_inf + 2*T(i+1,j,k) + T(i,j+1,k) + T(i,j-1,k) + ( (1/Fo) - 2*Bi - 4) *T(i,j,k) ); 
   end 
  end  
          T(1,1,k+1) = 2*Fo*( T(2,1,k) + T(1,2,k) + 2*Bi*T_inf + (- 2*Bi + (1/(2*Fo)) - 2 )*T(1,1,k)); 
         T(m,1,k+1) = 2*Fo*( T(m-1,1,k) + T(m,2,k) + 2*Bi*T_inf + (- 2*Bi + (1/(2*Fo)) - 2 )*T(m,1,k)); 
 
         T(m,n,k+1) = 2*Fo*( T(m-1,n,k) + T(m,n-1,k) + 2*Bi*T_inf + (- 2*Bi + (1/(2*Fo)) - 2 )*T(m,n,k)); 
 
         T(1,n,k+1) = 2*Fo*( T(2,n,k) + T(1,n-1,k) + 2*Bi*T_inf + (- 2*Bi + (1/(2*Fo)) - 2 )*T(1,n,k)); 
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  for i = 2:m-1 
   for j = 2:n-1 
          T(i,j,k+1) = T(i,j,k) + d*( T(i+1,j,k) + T(i-1,j,k) + T(i,j+1,k) + T(i,j-1,k) - 4*T(i,j,k) ); 
   end 
  end 
end 
T(:,:,1); 
T(:,:,2); 
T(:,:,3); 
T(:,:,p); 
T; 

% Temperature Profile 

T11 = T; 

%T11 = rot90(T11); 

% Initial Temperature Profile 

figure(1) 
subplot(3,2,1) 
T12 = imagesc(T11(:,:,1)); 
colorbar; 
colormap(jet); 
title(['Temperature Profile ', '@ time(t) = ', num2str(0), ' s']) 
caxis([300 1000]); 
set(get(colorbar,'label'),'string','Temperature (K)'); 

% Intermediate Temperature Profiles 

subplot(3,2,2) 
T16 = imagesc(T11(:,:,2)); 
colorbar; 
colormap(jet); 
title(['Temperature Profile ', '@ time(t) = ', num2str(0.4), ' s']) 
caxis([300 1000]); 
set(get(colorbar,'label'),'string','Temperature (K)'); 
subplot(3,2,3) 
T13 = imagesc(T11(:,:,151)); 
colorbar; 
colormap(jet); 
title(['Temperature Profile ', '@ time(t) = ', num2str(60), ' s']) 
caxis([300 1000]); 
set(get(colorbar,'label'),'string','Temperature (K)'); 
subplot(3,2,4) 
T14 = imagesc(T11(:,:,901)); 
colorbar; 
colormap(jet); 
title(['Temperature Profile ', '@ time(t) = ', num2str(360), ' s']) 
caxis([300 1000]); 
set(get(colorbar,'label'),'string','Temperature (K)'); 
subplot(3,2,5) 
T15 = imagesc(T11(:,:,2251)); 
colorbar; 
colormap(jet); 
title(['Temperature Profile ', '@ time(t) = ', num2str(900), ' s']) 
caxis([300 1000]); 
set(get(colorbar,'label'),'string','Temperature (K)'); 

% Final Temperature Profile 

subplot(3,2,6) 
T17 = imagesc(T11(:,:,p)); 
colorbar; 
colormap(jet); 
title(['Temperature Profile ', '@ time(t) = ', num2str(t), ' s']) 
caxis([300 1000]); 
set(get(colorbar,'label'),'string','Temperature (K)'); 

% Initial Temperature Profile 
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figure(2) 
subplot(3,2,1) 
T12 = surfc(T11(:,:,1)); 
axis ([0 m 0 n 300 1000]); 
colorbar; 
colormap(jet); 
title(['Temperature Profile ', '@ time(t) = ', num2str(0), ' s']) 
caxis([300 1000]); 
set(get(colorbar,'label'),'string','Temperature (K)'); 

% Intermediate Temperature Profiles 

subplot(3,2,2) 
T16 = surfc(T11(:,:,2)); 
axis ([0 m 0 n 300 1000]); 
colorbar; 
colormap(jet); 
title(['Temperature Profile ', '@ time(t) = ', num2str(0.4), ' s']) 
caxis([300 1000]); 
set(get(colorbar,'label'),'string','Temperature (K)'); 
subplot(3,2,3) 
T13 = surfc(T11(:,:,151)); 
axis ([0 m 0 n 300 1000]); 
colorbar; 
colormap(jet); 
title(['Temperature Profile ', '@ time(t) = ', num2str(60), ' s']) 
caxis([300 1000]); 
set(get(colorbar,'label'),'string','Temperature (K)'); 
subplot(3,2,4) 
T14 = surfc(T11(:,:,901)); 
axis ([0 m 0 n 300 1000]); 
colorbar; 
colormap(jet); 
title(['Temperature Profile ', '@ time(t) = ', num2str(360), ' s']) 
caxis([300 1000]); 
set(get(colorbar,'label'),'string','Temperature (K)'); 
subplot(3,2,5) 
T15 = surfc(T11(:,:,2251)); 
axis ([0 m 0 n 300 1000]); 
colorbar; 
colormap(jet); 
title(['Temperature Profile ', '@ time(t) = ', num2str(900), ' s']) 
caxis([300 1000]); 
set(get(colorbar,'label'),'string','Temperature (K)'); 

% Final Temperature Profile 

subplot(3,2,6) 
T17 = surfc(T11(:,:,p)); 
axis ([0 m 0 n 300 1000]); 
colorbar; 
colormap(jet); 
title(['Temperature Profile ', '@ time(t) = ', num2str(t), ' s']) 
caxis([300 1000]); 
set(get(colorbar,'label'),'string','Temperature (K)'); 


