
* Corresponding author: Stanley A. Omenai

Copyright © 2024 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0.

Numerical solution of the heat equation

Stanley A. Omenai *

Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.

World Journal of Advanced Engineering Technology and Sciences, 2024, 12(02), 468–478

Publication history: Received on 15 June 2024; revised on 27 July 2024; accepted on 30 July 2024

Article DOI: https://doi.org/10.30574/wjaets.2024.12.2.0322

Abstract

Numerical solution of the heat equation using finite difference approximation was developed to determine the
temperature distribution profile for cooling of a rectangular steel bar.

Temperature distribution plots were made at characteristic time steps describing the heat distribution along the steel
bar and ultimately depicting the time it takes for the steel bar to achieve isothermal equilibrium with the cooling
medium.

Keywords: Finite Difference; Time Step; Diffusion Number; Stability; Node

1. Introduction

1.1. Problem description

In the steel industry, it is typical to rapidly quench steel bars coming directly from a blast furnace in a reservoir of cold
water.

Consider a very long rectangular steel bar initially heated to a temperature (T0 = 1000 K) from the furnace and placed
in a reservoir of cold water (T∞ = 300 K).

Assume the following properties:

Length of slab, L = 10 cm

Width of slab, W = 10 cm

Convective Heat Transfer coefficient of Water, h = 100 W/m2-K

Thermal conductivity of Steel, k = 50 W/m-K

Density of Steel, ρ = 8000 kg/m3

Specific Heat Capacity of Steel, cp = 500 J/kg-K

Our task is to determine the temperature distribution profile for cooling of the steel bar by solving the heat equation
using numerical techniques.

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://www.wjaets.com/
https://doi.org/10.30574/wjaets.2024.12.2.0322
https://crossmark.crossref.org/dialog/?doi=10.30574/wjaets.2024.12.2.0322&domain=pdf

World Journal of Advanced Engineering Technology and Sciences, 2024, 12(02), 468–478

469

2. Methodology

This problem shall be solved numerically using finite difference approximation. The finite difference method shall be
explicit and forward-time, centred-space (FTCS).

MATLAB codes shall be developed to depict the temperature distribution in the slab at characteristic time steps.

The theory, assumptions, governing equations, and boundary conditions shall be provided with the solution steps.

A summary of the results (plots) shall be presented as part of the report.

3. Numerical solution

3.1. Assumptions

The steel bar is treated as very long such that there are no variations in the longitudinal axis (z), hence it is treated as a
2D slab (x,y)

The thermal conductivity of the material does not vary with space or time, i.e. material is isotropic

3.2. Methodology

 Discretize the domain into an m x n grid for analysis
 Consider a number of time steps p
 Use the forward-time and centred-space Finite Difference approach to obtain equations to describe the

temperature profile of the slab at every location (x,y) and time t
 Vary grid spacings and time steps to obtain a stable solution using the stability criteria
 Plot the temperature profile of the ingot at five characteristic time steps

3.3. Solution

Governing Equation:

3.3.1. Boundary Conditions

 At x = 0,

 At x = L,

 At y = 0,

 At y = W,

3.3.2. Initial Condition:

At t = 0, T = To

To obtain T, we need to solve the governing equation using Finite Difference method in the following steps:

 Replace the partial derivatives with finite difference approximations

World Journal of Advanced Engineering Technology and Sciences, 2024, 12(02), 468–478

470

 Replace the time derivative with first order forward difference approximations

 Replace the space derivatives with second order centred-difference approximations

The governing equation becomes;

(
𝑇𝑖,𝑗

𝑝+1
 − 𝑇𝑖,𝑗

𝑝

𝛥𝑡
) = 𝛼 ∗ [(

𝑇𝑖−1,𝑗
𝑝

 − 2 ∗ 𝑇𝑖,𝑗
𝑝

+ 𝑇𝑖+1,𝑗
𝑝

𝛥𝑥2
) + (

𝑇𝑖,𝑗−1
𝑝

 − 2 ∗ 𝑇𝑖,𝑗
𝑝

+ 𝑇𝑖,𝑗+1
𝑝

𝛥𝑦2
)]

Where i represents the node location along the x direction, j represents the node location along the y direction and p
represents the time step.

Considering equal grid spacing in the x and y directions, Δx = Δy, thus;

𝑇𝑖,𝑗
𝑝+1

 = 𝑇𝑖,𝑗
𝑝

 + (
𝛼 ∗ 𝛥𝑡

𝛥𝑥2) * [𝑇𝑖−1,𝑗
𝑝

+ 𝑇𝑖+1,𝑗
𝑝

 − 4 ∗ 𝑇𝑖,𝑗
𝑝

+ 𝑇𝑖,𝑗−1
𝑝

+ 𝑇𝑖,𝑗+1
𝑝

]

Let d = (
𝛼 ∗ 𝛥𝑡

𝛥𝑥2) ; where d – diffusion number,

The finite difference approximation of the equation becomes;

𝑇𝑖,𝑗
𝑝+1

 = 𝑇𝑖,𝑗
𝑝

 + d * [𝑇𝑖−1,𝑗
𝑝

+ 𝑇𝑖+1,𝑗
𝑝

 − 4 ∗ 𝑇𝑖,𝑗
𝑝

+ 𝑇𝑖,𝑗−1
𝑝

+ 𝑇𝑖,𝑗+1
𝑝

]

3.4. Notes

 The above method is an explicit method where temperatures Ti,j’s at future times (p+1) are directly obtained
based on Ti,j’s at present times as shown in the final equation above

 Explicit methods are conditionally stable. The stability criteria is given as d <= 0.25 (for 2D problems)
 Time step (Δt) needs to be small for more accuracy
 The error is of the order, O(Δt) + O(Δx2) + O(Δy2)

Next, we express the convective boundary condition equations as finite difference approximations.

Consider the 2D slab

Figure 1 2D Slab for evaluation of Internal and Side Nodes

Applying energy balance;

Δy * (
𝑇𝑚−1,𝑛

𝑝
−𝑇𝑚,𝑛

𝑝

𝛥𝑥
)+(

∆𝑥

2
) * (

𝑇𝑚,𝑛+1
𝑝

−𝑇𝑚,𝑛
𝑝

𝛥𝑦
) + (

∆𝑥

2
) * (

𝑇𝑚,𝑛−1
𝑝

−𝑇𝑚,𝑛
𝑝

𝛥𝑦
) + ℎ ∗ ∆𝑦 ∗ (𝑇∞ − 𝑇𝑚,𝑛

𝑝
) =

1

∝
 * (

𝛥𝑥

2
) *Δy*(

𝑇𝑚,𝑛
𝑝+1

−𝑇𝑚,𝑛
𝑝

𝛥𝑡
)

Substituting ∆x = ∆y and simplifying;

2 * (𝑇𝑚−1,𝑛
𝑝

− 𝑇𝑚,𝑛
𝑝

) + (𝑇𝑚,𝑛+1
𝑝

− 𝑇𝑚,𝑛
𝑝

)+ (𝑇𝑚,𝑛−1
𝑝

− 𝑇𝑚,𝑛
𝑝

) + (
2∗ℎ∗𝛥𝑥

𝑘
) * (T∞ –𝑇𝑚,𝑛

𝑝
) =

1

∝
(

𝛥𝑥2

𝑘
) *(

𝑇𝑚,𝑛
𝑝+1

−𝑇𝑚,𝑛
𝑝

𝛥𝑡
)

World Journal of Advanced Engineering Technology and Sciences, 2024, 12(02), 468–478

471

Simplifying further and substituting the following relations,

 Bi = (
ℎ∗𝛥𝑥

𝑘
), where Bi = Biot number

 Fo = (
𝛼∗𝛥𝑡

𝛥𝑥2), where Fo = Fourier number

The final expression for the convective boundary condition at the side node becomes;

 𝑇𝑚,𝑛
𝑝+1

= (𝐹𝑜) ∗ { (2 ∗ 𝐵𝑖) ∗ Tinf + 2 * 𝑇𝑚−1,𝑛
𝑝

 + 𝑇𝑚,𝑛+1
𝑝

+ 𝑇𝑚,𝑛−1
𝑝

+ [(
1

𝐹𝑜
) − (2 ∗ 𝐵𝑖) − 4] ∗ 𝑇𝑚,𝑛

𝑝
}

For stability of side nodes,

scs = Fo*(2+Bi) < 0.5

For the external nodes, we also obtain by similar analogy as follows;

Figure 2 2D Slab for evaluation of External and Corner Nodes

Applying energy balance;

(
𝛥𝑦

2
) * (

𝑇𝑚−1,𝑛
𝑝

−𝑇𝑚,𝑛
𝑝

𝛥𝑥
)+ (

𝛥𝑥

2
) * (

𝑇𝑚,𝑛−1
𝑝

−𝑇𝑚,𝑛
𝑝

𝛥𝑦
)+

ℎ

𝑘
 * (

𝛥𝑦

2
) * (𝑇∞–𝑇𝑚,𝑛

𝑝
) +

ℎ

𝑘
 * (

𝛥𝑥

2
) * (𝑇∞ –𝑇𝑚,𝑛

𝑝
) =

1

∝
 * (

𝛥𝑥

2
) * (

𝛥𝑦

2
) *(

𝑇𝑚,𝑛
𝑝+1

−𝑇𝑚,𝑛
𝑝

𝛥𝑡
)

Substituting ∆x = ∆y and simplifying;

2*(𝑇𝑚−1,𝑛
𝑝

− 𝑇𝑚,𝑛
𝑝

) + 2 ∗ (𝑇𝑚,𝑛−1
𝑝

− 𝑇𝑚,𝑛
𝑝

) + (
4∗ℎ∗𝛥𝑥

𝑘
)*(𝑇∞–𝑇𝑚,𝑛

𝑝
) = (

𝛥𝑥2

𝛼∗𝛥𝑡
)*(𝑇𝑚,𝑛

𝑝+1
− 𝑇𝑚,𝑛

𝑝
)

Simplifying further and substituting as before, we obtain the final expression for the convective boundary conditions at
the edge nodes as follows;

𝑇𝑚,𝑛
𝑝+1

 = 2*(𝐹𝑜) ∗ {𝑇𝑚−1,𝑛
𝑝

 + 𝑇𝑚,𝑛−1
𝑝

+ (2 ∗ 𝐵𝑖1 ∗ 𝑇∞) + (−2 ∗ 𝐵𝑖 + (
1

2∗𝐹𝑜
) − 2) 𝑇𝑚,𝑛

𝑝
 }

For stability of corner nodes,

scc = Fo*(1+Bi) < 0.25

Thus, we have a set of nine (9) equations; one (1) governing equation which characterizes the internal nodes and eight
(8) equations corresponding to the four sides and four edges of the discretized 2D domain as follows:

Governing Equation

World Journal of Advanced Engineering Technology and Sciences, 2024, 12(02), 468–478

472

𝑇𝑖,𝑗
𝑝+1

 = 𝑇𝑖,𝑗
𝑝

 + d * [𝑇𝑖−1,𝑗
𝑝

+ 𝑇𝑖+1,𝑗
𝑝

 − 4 ∗ 𝑇𝑖,𝑗
𝑝

+ 𝑇𝑖,𝑗−1
𝑝

+ 𝑇𝑖,𝑗+1
𝑝

]

Boundary Condition BC1 (nodes along the right side)

 𝑇𝑚,𝑛
𝑝+1

= (𝐹𝑜) ∗ { (2 ∗ 𝐵𝑖) ∗ T∞ + 2 * 𝑇𝑚−1,𝑛
𝑝

 + 𝑇𝑚,𝑛+1
𝑝

+ 𝑇𝑚,𝑛−1
𝑝

+ [(
1

𝐹𝑜
) − (2 ∗ 𝐵𝑖) − 4] ∗ 𝑇𝑚,𝑛

𝑝
}

Boundary Condition BC3 (nodes along the left side)

 𝑇𝑚,𝑛
𝑝+1

= (𝐹𝑜) ∗ { (2 ∗ 𝐵𝑖) ∗ T∞ + 2 * 𝑇𝑚+1,𝑛
𝑝

 + 𝑇𝑚,𝑛+1
𝑝

+ 𝑇𝑚,𝑛−1
𝑝

+ [(
1

𝐹𝑜
) − (2 ∗ 𝐵𝑖) − 4] ∗ 𝑇𝑚,𝑛

𝑝
}

Boundary Condition BC2 (nodes along the bottom side)

 𝑇𝑚,𝑛
𝑝+1

= (𝐹𝑜) ∗ { (2 ∗ 𝐵𝑖) ∗ T∞ + 2 * 𝑇𝑚,𝑛−1
𝑝

 + 𝑇𝑚+1,𝑛
𝑝

+ 𝑇𝑚−1,𝑛
𝑝

+ [(
1

𝐹𝑜
) − (2 ∗ 𝐵𝑖) − 4] ∗ 𝑇𝑚,𝑛

𝑝
}

Boundary Condition BC4 (nodes along the top side)

 𝑇𝑚,𝑛
𝑝+1

= (𝐹𝑜) ∗ { (2 ∗ 𝐵𝑖) ∗ T∞ + 2 * 𝑇𝑚,𝑛+1
𝑝

 + 𝑇𝑚+1,𝑛
𝑝

+ 𝑇𝑚−1,𝑛
𝑝

+ [(
1

𝐹𝑜
) − (2 ∗ 𝐵𝑖) − 4] ∗ 𝑇𝑚,𝑛

𝑝
}

Boundary Condition at the top right corner

𝑇𝑚,𝑛
𝑝+1

 = 2 * (𝐹𝑜) ∗ {𝑇𝑚−1,𝑛
𝑝

 + 𝑇𝑚,𝑛+1
𝑝

+ (2 ∗ 𝐵𝑖 ∗ 𝑇∞) + (−2 ∗ 𝐵𝑖 + (
1

2∗𝐹𝑜
) − 2) 𝑇𝑚,𝑛

𝑝
 }

Boundary Condition at the bottom right corner

𝑇𝑚,𝑛
𝑝+1

 = 2 * (𝐹𝑜) ∗ {𝑇𝑚−1,𝑛
𝑝

 + 𝑇𝑚,𝑛−1
𝑝

+ (2 ∗ 𝐵𝑖 ∗ 𝑇∞) + (−2 ∗ 𝐵𝑖 + (
1

2∗𝐹𝑜
) − 2) 𝑇𝑚,𝑛

𝑝
 }

Boundary Condition at the bottom left corner

𝑇𝑚,𝑛
𝑝+1

 = 2 * (𝐹𝑜) ∗ {𝑇𝑚+1,𝑛
𝑝

 + 𝑇𝑚,𝑛−1
𝑝

+ (2 ∗ 𝐵𝑖 ∗ 𝑇∞) + (−2 ∗ 𝐵𝑖 + (
1

2∗𝐹𝑜
) − 2) 𝑇𝑚,𝑛

𝑝
 }

Boundary Condition at the top left corner

𝑇𝑚,𝑛
𝑝+1

 = 2 * (𝐹𝑜) ∗ {𝑇𝑚+1,𝑛
𝑝

 + 𝑇𝑚,𝑛+1
𝑝

+ (2 ∗ 𝐵𝑖 ∗ 𝑇∞) + (−2 ∗ 𝐵𝑖 + (
1

2∗𝐹𝑜
) − 2) 𝑇𝑚,𝑛

𝑝
 }

Next, we select and vary grid spacings and time steps to obtain a stable solution considering the stability criteria;

 Total time, t = 10,000s

 Number of time steps, nt = 25,000

 Number of grid spacings, nx = 20

 Slab length L= 0.1m

 Slab Width W= 0.1m

 ∆t = t/nt = 0.4s

 ∆x = L/nx = 0.005m

 Number of interior points, r = 441

 Number of points in a row, m =21

 Number of points in a column, n =21

 Time steps, p = (t/∆t) + 1=25,001

 Initial Temperature, To = 1000 K

 Ambient Temperature, T∞ = 300 K

 Density, ρ = 8000 kg/m3

 Specific Heat Capacity, cp = 500 J/kg-K

 Convection coefficient, h = 100W/m2-K

World Journal of Advanced Engineering Technology and Sciences, 2024, 12(02), 468–478

473

 Thermal conductivity, κ = 50W/m-K

 Thermal diffusivity, 𝛼 =
𝑘

𝜌𝑐𝑝
= 1.25 × 10−5 m2/s

 Fourier number, Fo = (
𝛼 × 𝛥𝑡

𝛥𝑥2) = (
1.25 x 10−5 x 0.36

0.0052) = 0.2

 Biot number, Bi = (
ℎ × 𝛥𝑥

𝑘
) = (

100 x 0.005

50
) = 0.01

3.5. Stability check

Diffusion number, d = α × ∆t/∆x2 = 0.2 < 0.25 [solution stable]

Stability of sides, scs = Fo × (2+Bi) = 0.2 × (2+0.01) = 0.402 < 0.5 [solution stable]

Stability of corners, scc = Fo × (1+Bi) = 0.2 × (1+0.01) = 0.202 < 0.25 [solution stable]

Finally, we develop a numerical code of the set of equations Using MATLAB to obtain an overall temperature profile for
the slab at any time (t) and location (x, y) (code is attached as Appendix).

4. Results and discussions

Using the numerical solution developed, we plot the temperature profile as a function of location (x, y) of the slab at the
initial condition and at five different characteristic times (t = 0.4s, 60s, 360s, 900s & 10,000s).

The results are presented in the following colormaps.

Figure 3 2D Temperature Plot at characteristic times (t = 0.4s, 60s, 360s, 900s & 10,000s)

World Journal of Advanced Engineering Technology and Sciences, 2024, 12(02), 468–478

474

Figure 4 Temperature Profiles as a function of location (x, y) at characteristic times (t = 0.4s, 60s, 360s, 900s &
10,000s)

Table 1 Temperature Range at Different Characteristic Times

S/n Time (s) Maximum temperature (k) Minimum temperature (k)

1 0 1000.0000 1000.0000

2 0.4 1000.0000 994.4000

3 60 980.7217 919.4122

4 360 810.1785 762.3811

5 900 602.5205 574.1781

6 10,000 300.0453 300.0410

Note: Maximum temperature occurs at the centre of the slab, while minimum temperature occurs at the corner edges

Notes

 The numerical solution gives an accurate description of the state of the slab at the initial condition (T = 1000K
everywhere).

 The solution depicts Newton’s cooling with the edges generally at lower temperatures than the centre of the
slab.

 The solution shows isothermal condition of the slab at around t =10,000s.

World Journal of Advanced Engineering Technology and Sciences, 2024, 12(02), 468–478

475

 The magnitude of the error in the numerical solution is of the order, O(∆t) + O(∆x2) + O(∆y2), i.e.
[0.4+0.0052+0.0052] = 0.40005.

 This error magnitude can be reduced by increasing the number of time steps, nt, thus reducing ∆t.
 Increasing the number of time steps significantly increases the time it takes for MATLAB to compute the

solution. For the case of 100,000 time steps, it takes over one hour with slight improvement in accuracy of
results.

 An unstable explicit numerical solution gives results that are not predictable, i.e. do not vary with time and
space in a predictable manner, thus, explicit numerical solutions require stability check.

5. Conclusion

In this study, we have successfully developed a numerical solution for the heat equation using the explicit forward-time,
centred-space (FTCS) finite difference method. The solution accurately captures the temperature distribution profile
for cooling of a typical rectangular steel bar.

The numerical solution presented in this study offers a valuable tool for understanding and predicting the temperature
distribution for steel structures during heating or cooling. Future work can extend this approach to more complex
geometry and boundary conditions, further enhancing its applicability in engineering and scientific research.

References

[1] David L. Powers. Boundary Value Problems and Partial Differential Equations, 5th Edition. Elsevier Academic
Press.

[2] David W. Hahn, M. Necati Özisik. Heat Conduction, 3rd Edition. John Wiley & Sons, Inc.

[3] Bergman, Theodore L.; Lavine, Adrienne S.; Incropera, Frank P.; Dewitt, David P. (2011). Fundamentals of heat
and mass transfer (7th ed.). Hoboken, NJ: Wiley.

[4] https://www.youtube.com/watch?v=Ip47nsJOQqs. Solve 2D Transient Heat Conduction Problem with
Convection Boundary Conditions using FTCS Finite Difference Method.

Appendix – MATLAB code

clc;
clear all;
close all;

% Inputs

L = 0.1; %m
W = 0.1; %m
T_0 = 1000; %K
T_inf = 300; %K
h = 100; %W/m^2-K
kappa = 50; %W/m-K
rho = 8000; %kg/m^3
C_p = 500; %J/kg-K
alpha = kappa/(rho*C_p); %m^2/s
t = 10000; % s
nt = 25000;
delta_t = t/nt; % s
nx = 20;
delta_x = L/nx; % m
delta_y = delta_x; % m
Bi = (h*delta_x)/kappa;
Fo = alpha*delta_t/delta_x^2;

% Solution

m = (L/delta_x) + 1; % no. of points in a row
n = (W/delta_x) + 1; % no. of points in a column
r = n*m; % no. of interior points
p = (t/delta_t) + 1; % no. of time steps

https://www.wiley.com/en-us/search?pq=%7Crelevance%7Cauthor%3ADavid+W.+Hahn
https://www.wiley.com/en-us/search?pq=%7Crelevance%7Cauthor%3ADavid+W.+Hahn
https://www.wiley.com/en-us/search?pq=%7Crelevance%7Cauthor%3AM.+Necati+%C3%96zisik
https://www.youtube.com/watch?v=Ip47nsJOQqs

World Journal of Advanced Engineering Technology and Sciences, 2024, 12(02), 468–478

476

d = alpha*delta_t/delta_x^2; % diffusion number
scs=Fo*(2+Bi);
scc=Fo*(1+Bi);

% Stability Criteria

if d <= 0.25
 fprintf('\n')
 fprintf('solution stable at the interior nodes\nd = %8.4f', d)
else
 fprintf('\n')
 fprintf('solution unstable at the interior nodes\nd = %8.4f', d)
end
if scs <= 0.5
 fprintf('\n')
 fprintf('solution stable at the sides\nscs = %8.4f', scs)
else
 fprintf('\n')
 fprintf('solution unstable at the sides\nscs = %8.4f', scs)
end
if scc <= 0.25
 fprintf('\n')
 fprintf('solution stable at the corners\nscc = %8.4f', scc)
else
 fprintf('\n')
 fprintf('solution unstable at the corners\nscc = %8.4f', scc)
end

% Creating initial and boundary conditions

T = zeros(m,n,p);

% Creating initial conditions

for k = 1:1
 for j = 1:n
 for i = 1:m
 T(i,j,k) = T_0;
 end
 end
end
T;

% Creating boundary conditions

for k = 1:p-1
 for i = 2:m-1
 for j = 1:1
 T(i,j,k+1) = Fo*(2*Bi*T_inf + 2*T(i,j+1,k) + T(i+1,j,k) + T(i-1,j,k) + ((1/Fo) - 2*Bi - 4)*T(i,j,k));
 end
 end
 for i = m:m
 for j = 2:n-1
 T(i,j,k+1) = Fo*(2*Bi*T_inf + 2*T(i-1,j,k) + T(i,j+1,k) + T(i,j-1,k) + ((1/Fo) - 2*Bi - 4)*T(i,j,k));
 end
 end
 for i = 2:m-1
 for j = n:n
 T(i,j,k+1) = Fo*(2*Bi*T_inf + 2*T(i,j-1,k) + T(i+1,j,k) + T(i-1,j,k) + ((1/Fo) - 2*Bi - 4)*T(i,j,k));
 end
 end
 for i = 1:1
 for j = 2:n-1
 T(i,j,k+1) = Fo*(2*Bi*T_inf + 2*T(i+1,j,k) + T(i,j+1,k) + T(i,j-1,k) + ((1/Fo) - 2*Bi - 4) *T(i,j,k));
 end
 end
 T(1,1,k+1) = 2*Fo*(T(2,1,k) + T(1,2,k) + 2*Bi*T_inf + (- 2*Bi + (1/(2*Fo)) - 2)*T(1,1,k));
 T(m,1,k+1) = 2*Fo*(T(m-1,1,k) + T(m,2,k) + 2*Bi*T_inf + (- 2*Bi + (1/(2*Fo)) - 2)*T(m,1,k));

 T(m,n,k+1) = 2*Fo*(T(m-1,n,k) + T(m,n-1,k) + 2*Bi*T_inf + (- 2*Bi + (1/(2*Fo)) - 2)*T(m,n,k));

 T(1,n,k+1) = 2*Fo*(T(2,n,k) + T(1,n-1,k) + 2*Bi*T_inf + (- 2*Bi + (1/(2*Fo)) - 2)*T(1,n,k));

World Journal of Advanced Engineering Technology and Sciences, 2024, 12(02), 468–478

477

 for i = 2:m-1
 for j = 2:n-1
 T(i,j,k+1) = T(i,j,k) + d*(T(i+1,j,k) + T(i-1,j,k) + T(i,j+1,k) + T(i,j-1,k) - 4*T(i,j,k));
 end
 end
end
T(:,:,1);
T(:,:,2);
T(:,:,3);
T(:,:,p);
T;

% Temperature Profile

T11 = T;

%T11 = rot90(T11);

% Initial Temperature Profile

figure(1)
subplot(3,2,1)
T12 = imagesc(T11(:,:,1));
colorbar;
colormap(jet);
title(['Temperature Profile ', '@ time(t) = ', num2str(0), ' s'])
caxis([300 1000]);
set(get(colorbar,'label'),'string','Temperature (K)');

% Intermediate Temperature Profiles

subplot(3,2,2)
T16 = imagesc(T11(:,:,2));
colorbar;
colormap(jet);
title(['Temperature Profile ', '@ time(t) = ', num2str(0.4), ' s'])
caxis([300 1000]);
set(get(colorbar,'label'),'string','Temperature (K)');
subplot(3,2,3)
T13 = imagesc(T11(:,:,151));
colorbar;
colormap(jet);
title(['Temperature Profile ', '@ time(t) = ', num2str(60), ' s'])
caxis([300 1000]);
set(get(colorbar,'label'),'string','Temperature (K)');
subplot(3,2,4)
T14 = imagesc(T11(:,:,901));
colorbar;
colormap(jet);
title(['Temperature Profile ', '@ time(t) = ', num2str(360), ' s'])
caxis([300 1000]);
set(get(colorbar,'label'),'string','Temperature (K)');
subplot(3,2,5)
T15 = imagesc(T11(:,:,2251));
colorbar;
colormap(jet);
title(['Temperature Profile ', '@ time(t) = ', num2str(900), ' s'])
caxis([300 1000]);
set(get(colorbar,'label'),'string','Temperature (K)');

% Final Temperature Profile

subplot(3,2,6)
T17 = imagesc(T11(:,:,p));
colorbar;
colormap(jet);
title(['Temperature Profile ', '@ time(t) = ', num2str(t), ' s'])
caxis([300 1000]);
set(get(colorbar,'label'),'string','Temperature (K)');

% Initial Temperature Profile

World Journal of Advanced Engineering Technology and Sciences, 2024, 12(02), 468–478

478

figure(2)
subplot(3,2,1)
T12 = surfc(T11(:,:,1));
axis ([0 m 0 n 300 1000]);
colorbar;
colormap(jet);
title(['Temperature Profile ', '@ time(t) = ', num2str(0), ' s'])
caxis([300 1000]);
set(get(colorbar,'label'),'string','Temperature (K)');

% Intermediate Temperature Profiles

subplot(3,2,2)
T16 = surfc(T11(:,:,2));
axis ([0 m 0 n 300 1000]);
colorbar;
colormap(jet);
title(['Temperature Profile ', '@ time(t) = ', num2str(0.4), ' s'])
caxis([300 1000]);
set(get(colorbar,'label'),'string','Temperature (K)');
subplot(3,2,3)
T13 = surfc(T11(:,:,151));
axis ([0 m 0 n 300 1000]);
colorbar;
colormap(jet);
title(['Temperature Profile ', '@ time(t) = ', num2str(60), ' s'])
caxis([300 1000]);
set(get(colorbar,'label'),'string','Temperature (K)');
subplot(3,2,4)
T14 = surfc(T11(:,:,901));
axis ([0 m 0 n 300 1000]);
colorbar;
colormap(jet);
title(['Temperature Profile ', '@ time(t) = ', num2str(360), ' s'])
caxis([300 1000]);
set(get(colorbar,'label'),'string','Temperature (K)');
subplot(3,2,5)
T15 = surfc(T11(:,:,2251));
axis ([0 m 0 n 300 1000]);
colorbar;
colormap(jet);
title(['Temperature Profile ', '@ time(t) = ', num2str(900), ' s'])
caxis([300 1000]);
set(get(colorbar,'label'),'string','Temperature (K)');

% Final Temperature Profile

subplot(3,2,6)
T17 = surfc(T11(:,:,p));
axis ([0 m 0 n 300 1000]);
colorbar;
colormap(jet);
title(['Temperature Profile ', '@ time(t) = ', num2str(t), ' s'])
caxis([300 1000]);
set(get(colorbar,'label'),'string','Temperature (K)');

