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Abstract 

This research addresses the critical challenge of maintaining network security and privacy in the face of emerging 
quantum computing technologies. While classical cryptographic methods have long been the cornerstone of network 
security, the advent of quantum computing threatens to render many of these techniques obsolete. While previously 
proposed solutions, such as post-quantum cryptography and quantum key distribution, are useful in some aspects of 
maintaining the security of communications between individuals or organizations, they are often insufficient to protect 
against the full range of security implications that arise from quantum computing, especially in open shared quantum 
computing environments. Research in this area is largely challenged by the immaturity of the quantum hardware, 
quantum error correction, and how to best design secure quantum-safe network architectures in the long term, lack of 
frameworks for cryptography, and we have very little idea about the best way to use quantum computers to perform 
certain types of cryptographic attacks for periods well into the future, known as ‘collect now, break later’ attacks.  This 
paper uses qualitative methodology which is based on systematic literature reviews, using case studies and a document 
analysis, with the purpose of providing an unabridged and precise assessment on the impact of quantum computing on 
network security. The study synthesizes the findings from several academic databases regarding the use of quantum 
technologies in real-world security applications. The findings highlight that quantum computing brings about 
breakthrough levels of computational power, as well as allowing for super-secure data transmission with quantum key 
distribution. But there are also new risks, such as crosstalk attacks, qubit sensing attacks and challenges from quantum 
decoherence and scalability. The paper identifies possible mitigation measures, including new techniques for quantum 
error correction, quantum-safe cryptography and novel approaches for quantum resources sharing. The findings are of 
significance for the economy and society as a whole, as they outline the urgency to shift security approaches for 
networks by developing quantum-safe algorithms and protocols, the importance of interdisciplinary collaboration to 
this end, and the need to develop policies to prepare for a post-quantum cryptographic era. This range of analysis offers 
to the researchers, policy-makers and industry professionals a roadmap and concrete guiding principles for future 
innovation and development of quantum-enhanced network security, concluding that although quantum computing 
poses as a profound security threat, it could, at the same time, offer revolutionary pathways for secure communications 
and data-protection when used properly.  
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1. Introduction

Quantum computing is a revolutionary field that leverages the principles of quantum mechanics to process information 
in fundamentally different ways compared to classical computing [1]. Classical computers use bits as the smallest unit 
of data, which can be either 0 or 1. In contrast, quantum computers use quantum bits or qubits, which can exist in a state 
of 0, 1, or both simultaneously due to the phenomenon known as superposition [2], [3]. Additionally, qubits can be 
entangled, meaning the state of one qubit can be directly related to the state of another, no matter the distance between 
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them. These properties allow quantum computers to perform complex calculations at exponentially faster rates than 
their classical counterparts for specific tasks. The potential applications of quantum computing are vast and 
transformative. In cryptography, quantum computers could break widely used encryption methods, necessitating the 
development of new cryptographic protocols [4]-[7]. In materials science, they could simulate molecular and atomic 
interactions with unprecedented accuracy, accelerating the discovery of new materials and drugs [8]. Quantum 
computing also holds promise for optimizing complex systems, such as supply chains and financial models [9]. Figure 1 
shows the architecture of a typical quantum computer. However, despite significant advancements, practical and 
scalable quantum computers are still in development, facing challenges like qubit stability and error correction [10]. As 
research progresses, quantum computing is poised to revolutionize numerous fields, offering computational power that 
could solve problems previously deemed intractable. 

Quantum computing is poised to revolutionize computer networks through the development of quantum 
communication and quantum cryptography [11], [12].  

 

Figure 1 Quantum computer architecture 

Quantum communication utilizes principles like entanglement and superposition to enable ultra-secure data 
transmission. Quantum key distribution (QKD), for instance, allows two parties to generate a shared, secret 
cryptographic key [13] using the properties of quantum mechanics. Any attempt to eavesdrop on the key exchange 
disturbs the quantum states involved, alerting the communicating parties to the presence of an intruder. This makes 
QKD exceptionally secure and has already been demonstrated in various experimental and real-world settings, 
heralding a new era of secure communications in computer networks [14]-[17]. Figure 2 gives a comparison between 
quantum and classical computers. 
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Figure 2 Comparison between classical and quantum computers 

Moreover, quantum computing can optimize network operations and enhance performance. Quantum algorithms have 
the potential to solve complex optimization problems that are central to network design and management more 
efficiently than classical algorithms [18]. For instance, quantum computing could improve routing algorithms, leading 
to more efficient data packet delivery and reduced latency [19] in networks. Additionally, quantum-enhanced machine 
learning could analyze vast amounts of network data to predict and mitigate issues such as congestion and failures [20]-
[24]. While practical quantum computing technology for widespread network integration is still under development, its 
future contributions promise significant advancements in the security, efficiency [25], and reliability of computer 
networks. 

2. The basics of quantum computing 

Quantum computing is based on the principles of quantum mechanics, a fundamental theory in physics that describes 
the behavior of particles at the atomic and subatomic levels [26]. Unlike classical computers, which use bits as the basic 
unit of information, quantum computers use quantum bits or qubits. Qubits can represent both 0 and 1 simultaneously, 
thanks to a property called superposition. This allows quantum computers to process a vast amount of information 
concurrently, offering the potential for exponential speedups in certain computational tasks [27]-[29]. 

Another key feature of quantum computing is entanglement, a phenomenon where qubits become interconnected in 
such a way that the state of one qubit directly influences the state of another, regardless of the distance between them 
[30]. Entanglement enables quantum computers to perform complex calculations and solve problems that are 
intractable for classical computers. Quantum gates, analogous to classical logic gates, manipulate qubits through 
operations that can exploit superposition and entanglement to perform quantum computations. Despite the immense 
potential, building practical and scalable quantum computers faces significant challenges, including maintaining qubit 
coherence and developing error-correction methods [31] to mitigate the effects of quantum decoherence and noise. 

Quantum computing relies on several fundamental elements that distinguish it from classical computing. The primary 
elements are qubits, superposition, entanglement, quantum gates, and quantum circuits. 
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 Qubits: The basic unit of information in quantum computing is the quantum bit, or qubit. Unlike classical bits, 
which can be either 0 or 1, qubits can exist in a state of 0, 1, or both simultaneously, thanks to superposition 
[32]-[34]. Physical implementations of qubits include trapped ions, superconducting circuits, and quantum 
dots, among others. Qubits can be manipulated and measured to perform computations and retrieve results. 

 Superposition: This principle allows qubits to exist in multiple states at once. In superposition, a qubit can 
represent a combination of 0 and 1 simultaneously, which enables quantum computers to process a vast amount 
of information in parallel [35], [36]. Superposition is harnessed through quantum gates to perform complex 
calculations more efficiently than classical computers. 

 Entanglement: Entanglement is a quantum phenomenon where pairs or groups of qubits become 
interconnected such that the state of one qubit directly influences the state of another, no matter the distance 
between them [37]. Entangled qubits share information instantaneously, which can be leveraged for highly 
efficient information processing and secure communication protocols [38], such as quantum key distribution 
(QKD). 

 Quantum Gates: Quantum gates are the building blocks of quantum circuits, analogous to classical logic gates in 
conventional computing [39]. They manipulate the state of qubits through various operations, such as the Pauli-
X, Hadamard, and CNOT gates [40], [41]. These gates enable the creation of complex quantum algorithms by 
applying specific transformations to qubits, utilizing superposition and entanglement. 

 Quantum Circuits: Quantum circuits are composed of sequences of quantum gates arranged to perform specific 
computations [42]. These circuits are designed to exploit the unique properties of qubits to solve complex 
problems [43], [44]. A quantum algorithm is implemented as a series of operations on a set of qubits using a 
well-defined quantum circuit. 

 These basic elements form the foundation of quantum computing, enabling it to perform certain types of 
computations much more efficiently than classical computers. Researchers continue to explore and refine these 
elements to build practical, scalable quantum computers capable of solving real-world problems. 

3. Methodology 

This research uses qualitative research methods to gather data from secondary sources and analyze it in an attempt to 
understand the phenomenon of quantum computing in enhancing network security. This study employs a systematic 
literature review by focusing on online published articles to gather comprehensive insights on the role of quantum 
computing in enhancing network security. This research utilizes several relevant academic databases such as google 
scholar, IEEE Xplore, PubMed among others with the aim of shedding more light on the contagious issue of enhancing 
network security using quantum computing. During the research, a detailed and specific keyword as well as different 
search methods were employed to help filter out articles that are more relevant to the topic of study. As such, to ensure 
quality of the selected articles or publications, the research include a strict inclusion and exclusion criteria which a focus 
on peer-reviewed articles and books that were published not more than ten years ago. This ensures relevance and latest 
report is used as a reference point in this study. 

The process of synthesizing the findings involved both the descriptive integration and critical integration as a way of 
summarizing the major findings and yet as a way of also highlighting the strength and the limitations of the studies 
done. Based on these results, we identified the impact of these results to the discipline of network protection especially 
on how quantum computing can improve security features. Further, the recommendations on integration of QC into 
network security were provided based on strengths, weaknesses, opportunities, and threats analyses of current 
literature, as well as the scope and the limitation of the current study This paper also highlighted the recommendations 
for the future research on the integration of quantum computing into network security. 

4. Role of quantum computing in computer security 

Quantum computing offers several promising advantages in the realm of computer security, enhancing both the 
strength and efficiency of cryptographic protocols [45] and enabling new approaches to secure communication. Here 
are the key roles quantum computing can play in improving computer security: 

4.1. Quantum Key Distribution (QKD) 

Quantum Key Distribution (QKD) is one of the most significant contributions of quantum computing to computer 
security [46]. QKD leverages the principles of quantum mechanics to enable two parties to securely share a secret key 
[47], [48]. The most well-known QKD protocol is BB84, proposed by Charles Bennett and Gilles Brassard in 1984. Here's 
how QKD enhances security: 
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 Eavesdropping Detection: In QKD, any attempt by an eavesdropper to intercept the key will inevitably disturb 
the quantum states of the particles being transmitted, due to the no-cloning theorem and the principle of 
measurement in quantum mechanics [49], [50]. This disturbance alerts the communicating parties to the 
presence of an intruder. 

 Unconditional Security: QKD offers security based on the laws of physics rather than computational 
assumptions. This means that even with unlimited computational resources [51], an attacker cannot gain 
information about the key without being detected [52]. 

4.2. Post-Quantum Cryptography 

While quantum computers pose a threat to classical cryptographic schemes, they also inspire the development of post-
quantum cryptography (PQC) [53]. PQC algorithms are designed to be secure against quantum attacks [54], ensuring 
long-term security for sensitive data. Some examples include: 

 Lattice-Based Cryptography: These algorithms rely on the hardness of lattice problems, which are believed to 
be resistant to quantum attacks [55], [56]. Lattice-based schemes support advanced functionalities such as fully 
homomorphic encryption and efficient digital signatures. 

 Code-Based Cryptography: McEliece and Niederreiter cryptosystems, based on error-correcting codes, are 
other candidates for post-quantum security [57]. 

 Multivariate Quadratic Equations: Cryptographic schemes based on the difficulty of solving systems of 
multivariate quadratic equations also show promise against quantum adversaries [58], [59]. 

4.3. Enhanced Random Number Generation 

True randomness is critical for cryptographic applications. Quantum Random Number Generators (QRNGs) use 
quantum processes to generate truly random numbers, offering a higher level of unpredictability than classical methods 
[60]-[63]. This enhances the security of cryptographic keys and protocols [64], as the randomness used is fundamentally 
unpredictable. 

4.4. Quantum-Safe Network Architectures 

Quantum computing enables the design of new network architectures that enhance security. For example: 

 Quantum Secure Direct Communication (QSDC): This approach allows the direct transmission of information 
without first establishing a key [65], [66]. The security is based on the quantum states used in the 
communication process. 

 Quantum Repeaters: For long-distance quantum communication, quantum repeaters can be used to extend the 
range without compromising security, addressing the problem of decoherence and loss in quantum channels 
[67], [68]. 

4.5. Quantum Algorithms for Security Analysis 

Quantum computing can also improve the analysis and enhancement of classical security systems: 

 Quantum Algorithms for Cryptanalysis: While Shor's algorithm poses a threat to classical encryption, it also 
provides a tool for analyzing and understanding the strength of cryptographic systems [69]. This dual-use can 
help in designing more robust [70] encryption methods. 

 Quantum Machine Learning (QML): QML algorithms can be applied to anomaly detection and threat prediction, 
improving the ability to detect and respond to security incidents in real-time [71], [72]. 

4.6. Blockchain and Distributed Ledger Technologies 

Quantum computing can bolster the security and efficiency of blockchain and distributed ledger technologies (DLTs): 

 Quantum-Resistant Consensus Mechanisms: By integrating quantum-safe cryptographic techniques, 
blockchains can be made resistant to future quantum attacks, ensuring the integrity and longevity of data stored 
on the blockchain [73]-[75]. 

 Enhanced Security Protocols: Quantum cryptographic techniques can enhance the security protocols [76] used 
in DLTs, providing stronger guarantees of data integrity and authenticity. 
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4.7. Secure Multi-Party Computation 

Quantum computing can enhance Secure Multi-Party Computation (SMPC), where multiple parties compute a function 
over their inputs while keeping those inputs private [77]-[81]. Quantum SMPC protocols can leverage quantum 
entanglement and superposition to provide stronger security guarantees and more efficient computations. 

4.8. Biometric Security 

Quantum computing can improve biometric security systems [82] by enabling more accurate and secure processing of 
biometric data. Quantum algorithms can efficiently analyze and match biometric patterns, reducing false positives and 
negatives, and enhancing the overall security of biometric authentication systems [83]-[87]. 

In a nutshell, quantum computing holds transformative potential for computer security, offering new methods for 
secure communication [88], cryptographic resilience, and advanced security analysis. While practical, large-scale 
quantum computers are still in development, ongoing research in quantum-safe cryptography and the implementation 
of quantum-enhanced security protocols is essential to prepare for the quantum era. By leveraging the unique 
properties of quantum mechanics, quantum computing promises to significantly bolster the security of digital 
information and communication systems. 

5. Role of quantum computing in network privacy 

Quantum computing offers transformative potential in enhancing network privacy through its unique properties of 
superposition, entanglement, and quantum cryptographic techniques. This section explores the key roles quantum 
computing plays in bolstering network privacy: 

5.1. Quantum Key Distribution (QKD) 

Quantum Key Distribution (QKD) is a groundbreaking application of quantum mechanics that ensures secure 
communication by enabling two parties to generate and share a secret cryptographic key with a high degree of security 
[89]. 

 Eavesdropping Detection: In QKD, any attempt to intercept the key introduces detectable anomalies due to the 
no-cloning theorem and the fundamental principles of quantum measurement [90]-[93]. This ensures that any 
eavesdropping [94] efforts are immediately apparent, alerting the communicating parties to potential breaches. 

 Unconditional Security: Unlike classical key distribution methods, whose security depends on computational 
difficulty, QKD’s security is based on the laws of quantum physics [95]. This offers unconditional security, 
making it invulnerable to the computational advancements, including those brought by quantum computers 
[96], [97]. 

5.2. Quantum Secure Communication 

Quantum computing enables various methods of secure communication that directly protect network privacy: 

 Quantum Secure Direct Communication (QSDC): This method allows for the secure transmission of information 
without first establishing a key [98]. Information is encoded in quantum states and transmitted directly, 
ensuring that any attempt to eavesdrop will disturb the quantum states and be detected [99]. 

 Quantum Teleportation: This technique allows the transmission of quantum information (qubits) between two 
distant parties without actually moving the physical particles that hold the information [100]. It utilizes 
entanglement and classical communication to ensure that the information remains secure during transit. 

5.3. Enhanced Random Number Generation 

Quantum Random Number Generators (QRNGs) leverage quantum mechanical processes to produce truly random 
numbers [101], which are crucial for cryptographic applications: 

 Unpredictability: Unlike classical random number generators, which rely on algorithms and can be potentially 
predictable, QRNGs provide genuine randomness based on quantum phenomena [102]- [106]. This 
unpredictability is essential for creating secure cryptographic keys that protect network privacy [107]. 

 Stronger Encryption: QRNGs enhance the security of encryption algorithms by providing high-quality random 
keys [108] that are immune to the predictability issues associated with classical methods. 
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5.4. Post-Quantum Cryptography 

As quantum computers have the potential to break many classical cryptographic schemes, the development of post-
quantum cryptography (PQC) is essential to maintaining network privacy: 

 Lattice-Based Cryptography: This cryptographic approach relies on mathematical problems that are believed to 
be hard for quantum computers to solve, ensuring the security of encrypted communications even in a post-
quantum world [109]. 

 Hash-Based Cryptography: Another promising area of PQC, hash-based cryptography, uses hash functions to 
create secure digital signatures resistant to quantum attacks [110], [111]. 

 Code-Based Cryptography: Utilizing error-correcting codes, code-based cryptography [112] offers another layer 
of protection against the potential threats posed by quantum computing. 

5.5. Quantum Privacy Amplification 

Quantum privacy amplification techniques help improve the security of shared keys in quantum communication 
protocols: 

 Error Correction: By identifying and correcting errors introduced by noise and potential eavesdropping [113], 
quantum privacy amplification ensures that the final key shared between parties remains secure and private 
[114]. 

 Key Distillation: This process involves generating a highly secure final key from a partially secure one by 
applying quantum operations that amplify privacy and security [115], [116]. 

5.6. Secure Multi-Party Computation (SMPC) 

Quantum computing enhances Secure Multi-Party Computation (SMPC), allowing multiple parties to jointly compute a 
function over their inputs while keeping those inputs private: 

 Quantum SMPC Protocols: Utilizing quantum entanglement and superposition, quantum SMPC protocols can 
provide stronger privacy guarantees and more efficient computations compared to classical methods [117], 
[118]. 

 Enhanced Privacy: Quantum SMPC can ensure that sensitive data [119] used in joint computations remains 
private, even from other parties involved in the computation. 

5.7. Quantum-Enhanced Blockchain Technology 

Blockchain technology can significantly benefit from quantum enhancements, ensuring greater privacy and security: 

 Quantum-Resistant Blockchains: Developing quantum-resistant cryptographic algorithms for blockchain 
systems ensures that the privacy and integrity of transactions are maintained even in the presence of quantum 
computers [120], [121]. 

 Secure Consensus Mechanisms: Quantum computing can enhance the security of consensus mechanisms used in 
blockchain technology, protecting against potential attacks and ensuring the privacy of the transaction data 
[122], [123]. 

5.8. Privacy-Preserving Quantum Machine Learning (QML) 

Quantum machine learning (QML) can offer privacy-preserving solutions for analyzing and processing sensitive data: 

 Federated Learning: QML can enable privacy-preserving federated learning, where multiple parties 
collaboratively train a model without sharing their private data [124], [125]. This ensures data privacy while 
benefiting from shared knowledge. 

 Anomaly Detection: QML algorithms can enhance the detection of privacy breaches and anomalous activities in 
networks by analyzing large datasets more efficiently and accurately, ensuring timely responses to potential 
threats [126]-[128]. 

5.9. Biometric Data Privacy 

Quantum computing can enhance the security and privacy of biometric data: 
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 Secure Biometric Matching: Quantum algorithms can improve the accuracy and security of biometric matching 
processes, reducing the risk of false positives and negatives while ensuring the privacy of biometric information 
[129], [130]. 

 Encrypted Storage and Transmission: Quantum encryption techniques can be used to securely store and 
transmit biometric data, protecting it from unauthorized access [131] and ensuring that personal information 
remains private. 

It is clear that quantum computing holds immense promise for enhancing network privacy through its advanced 
cryptographic capabilities, secure communication methods, and privacy-preserving algorithms. By leveraging the 
unique properties of quantum mechanics, quantum computing can provide robust security solutions that protect 
sensitive information, detect potential breaches, and ensure the privacy of communications. As the technology 
continues to evolve, it will play an increasingly critical role in safeguarding network privacy in an increasingly 
interconnected world. 

6. Threats posed by quantum computing to network security 

Quantum computing, while offering transformative benefits, also poses significant threats to network security [132]. 
The potential of quantum computers to solve certain mathematical problems exponentially faster than classical 
computers could undermine many of the cryptographic systems that secure modern networks. Figure 3 shows a typical 
attack on the quantum channel. 

 

Figure 3 Quantum channel attack 

The following are the major threats posed by quantum computing to network security: 

6.1. Breaking Classical Cryptographic Algorithms 

One of the most prominent threats quantum computing poses is its ability to break widely used classical cryptographic 
algorithms: 

 Public-Key Cryptography: Shor's algorithm can efficiently factor large integers and compute discrete logarithms, 
which are the mathematical foundations of many public-key cryptosystems such as RSA, DSA, and Diffie-
Hellman [134]-[136]. Figure 4 illustrates the operation of public cryptosystem. 
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Figure 4 Operation of public-key cryptography 

Once a practical quantum computer is available, it could decrypt data encrypted with these methods, compromising the 
security of confidential communications, financial transactions, and sensitive data stored or transmitted over networks 
[137]. 

 Impact on Digital Signatures: Many digital signature schemes rely on the same mathematical principles as 
public-key encryption [138]-[140]. Quantum computers could forge digital signatures, undermining the 
integrity and authenticity of digital documents and communications. 

 Symmetric-Key Cryptography: Grover's algorithm provides a quadratic speedup for searching unsorted 
databases and solving problems like brute-forcing cryptographic keys [141], [142]. For symmetric-key 
cryptosystems [143], this means that the effective security of the key length is halved. For instance, AES-256 
would provide the equivalent security of AES-128 against a quantum adversary, necessitating the use of longer 
key lengths to maintain security. 

6.2. Vulnerability of Encrypted Data 

Quantum computing threatens the long-term confidentiality of data encrypted with current standards: 

 Harvest Now, Decrypt Later: As shown in Figure 5, adversaries might harvest encrypted data today, anticipating 
the future capability to decrypt it once quantum computers become powerful enough [144], [145]. This is 
particularly concerning for data that needs to remain confidential for long periods, such as government secrets, 
intellectual property, and personal information. I It refers to the strategy where adversaries collect and store 
encrypted data today, anticipating that future advancements in quantum computing will enable them to decrypt 
this data. Quantum computers, leveraging principles of quantum mechanics, have the potential to solve complex 
mathematical problems much faster than classical computers. This includes breaking widely used 
cryptographic algorithms, such as RSA and ECC, which rely on the difficulty of factoring large numbers and 
solving discrete logarithms. The HNDL threat underscores the urgency for developing and adopting quantum-
resistant cryptographic methods to secure sensitive information against future quantum attacks. This is a 
significant cybersecurity threat model emerging from the potential capabilities of quantum computing. The 
concept revolves around the idea that adversaries, recognizing the impending power of quantum computers, 
are actively harvesting and storing vast amounts of encrypted data with the expectation that these future 
quantum systems will eventually enable them to decrypt this data. The current encryption methods, primarily 
based on RSA and ECC, rely on the computational difficulty of factoring large numbers and solving discrete 
logarithms. Quantum computers, with their ability to perform complex calculations at unprecedented speeds 
using algorithms like Shor's algorithm, pose a real threat to these cryptographic schemes. This means that data 
encrypted today, presumed secure under classical computation assumptions, could be at risk of exposure once 
quantum computing reaches a certain level of maturity. 

The implications of HNDL are profound, as it suggests that sensitive information, including financial records, state 
secrets, and personal data, is vulnerable to future quantum attacks.  
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Figure 5 Illustration of harvest now, decrypt later 

This looming threat has spurred a global effort to develop and implement quantum-resistant cryptographic algorithms, 
which are believed to be secure against quantum attacks. Organizations and governments are increasingly prioritizing 
the transition to post-quantum cryptography (PQC) to safeguard data against this future risk. The National Institute of 
Standards and Technology (NIST) has been actively working on standardizing PQC algorithms to provide robust 
security solutions. The HNDL scenario highlights the need for proactive measures in cybersecurity, emphasizing that 
the protection of today's data must account for the technological advancements of tomorrow. 

6.3. Compromising Blockchain and Cryptocurrency Security 

Quantum computing poses a specific threat to the security of blockchain technologies and cryptocurrencies: 

 Breaking Blockchain Hash Functions: Many blockchain systems rely on cryptographic hash functions for security 
[146]-[148]. Quantum computers could potentially find collisions (two different inputs producing the same 
hash) much faster, threatening the integrity of blockchain records. 

 Compromising Wallet Security: Public-key cryptography [149] secures cryptocurrency wallets. Quantum 
computers could derive private keys from public keys, enabling unauthorized access and transfer of digital 
assets. 

6.4. Threats to Network Authentication Protocols 

Quantum computing can undermine network authentication mechanisms: 

 Compromised Authentication: Many network authentication protocols, such as those used in VPNs, SSL/TLS, and 
Wi-Fi security (e.g., WPA2), rely on public-key cryptography [150]-[152]. Quantum computers could potentially 
break these protocols, leading to unauthorized access to network resources and man-in-the-middle attacks. 

 Security Certificates: The security of SSL/TLS certificates, which are used to establish secure connections 
between clients and servers, could be compromised by quantum computers [153], [154]. This could lead to the 
forging of certificates and the undermining of the entire PKI (Public Key Infrastructure) system. 

6.5. Impacts on Internet of Things (IoT) Security 

Quantum computing threatens the security of IoT devices, which often rely on lightweight cryptographic protocols 
[155]: 

 Weak Cryptography: Many IoT devices use simplified cryptographic algorithms due to limited computational 
resources [156]-[161]. These simplified algorithms are more susceptible to quantum attacks, potentially 
compromising entire IoT ecosystems. 
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 Network Vulnerabilities: Quantum computing could enable new types of attacks on IoT networks, such as 
unauthorized device access, data interception, and control over IoT devices [162]. 

6.6. Compromising Secure Multi-Party Computation 

Secure Multi-Party Computation (SMPC) protocols, used for privacy-preserving computations among multiple parties, 
could be at risk: 

 Breakdown of Security Guarantees: Quantum computers could potentially break the cryptographic guarantees 
that underpin SMPC protocols [163], leading to the exposure of sensitive data during collaborative 
computations. 

6.7. Threats to Privacy-Preserving Technologies 

Quantum computing could undermine various privacy-preserving technologies, including: 

 Homomorphic Encryption: While homomorphic encryption allows computations on encrypted data without 
revealing the data itself [164], quantum attacks could potentially compromise the underlying cryptographic 
assumptions. As shown in Figure 6, homomorphic encryption is a form of encryption that allows computations 
to be performed directly on encrypted data without needing to decrypt it first.  

 

Figure 6 Homomorphic procedures 

This means that mathematical operations carried out on the encrypted data produce an encrypted result which, when 
decrypted, matches the result of the same operations performed on the original plaintext. This technology has profound 
implications for data privacy and security, enabling secure data processing in various fields such as cloud computing, 
financial services, and healthcare. By allowing computations on encrypted data, homomorphic encryption ensures that 
sensitive information remains protected even while it is being processed, thereby enhancing the security and privacy 
of data handling practices. 

 Zero-Knowledge Proofs: Quantum computers could break the cryptographic constructs used in zero-knowledge 
proofs [165], which are used to verify information without revealing the underlying data. As depicted in Figure 
7, Zero-knowledge proofs (ZKPs) are cryptographic protocols that enable one party (the prover) to prove to 
another party (the verifier) that they know a specific piece of information or that a particular statement is true, 
without revealing the information itself or any additional details. This concept was first introduced by 
researchers Shafi Goldwasser, Silvio Micali, and Charles Rackoff in the 1980s. The main advantage of ZKPs is 
their ability to maintain privacy and security, ensuring that sensitive information is not disclosed during the 
verification process. ZKPs are particularly useful in scenarios where trust is essential but direct information 
sharing is undesirable, such as in authentication systems, secure voting, and confidential financial transactions. 
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One of the practical applications of zero-knowledge proofs is in blockchain technology, where ZKPs can enhance privacy 
and scalability. For example, zk-SNARKs (Zero-Knowledge Succinct Non-Interactive Arguments of Knowledge) are a 
type of ZKP that allows for efficient and compact proof verification without interaction between the prover and verifier.  

 

Figure 7 Zero-knowledge proofs process 

This makes them ideal for use in cryptocurrencies like Zcash, where transaction details need to be kept private while 
still ensuring the validity and integrity of the transactions. Additionally, ZKPs can be employed in decentralized finance 
(DeFi) to provide secure and private smart contracts. By leveraging zero-knowledge proofs, systems can achieve a 
balance between transparency and privacy, offering robust security without compromising on confidentiality. 

6.8. Risks to Financial Systems and Digital Economy 

The financial sector, heavily reliant on cryptographic security, faces specific risks from quantum computing: 

 Transaction Security: Quantum attacks could compromise the security of financial transactions, leading to fraud, 
theft, and market manipulation [166], [167]. 

 Secure Communication: Financial institutions rely on secure communication channels to protect sensitive 
information [168], [169]. Quantum computing could break these channels, exposing confidential data and 
undermining trust in financial systems. 

7. Mitigation Strategies 

Addressing the threats posed by quantum computing requires proactive measures, including: 

 Development of Post-Quantum Cryptography (PQC): Research and adoption of cryptographic algorithms 
resistant to quantum attacks are crucial [170], [171]. This includes lattice-based, hash-based, code-based, and 
multivariate quadratic equation-based cryptographic schemes. 

 Quantum-Safe Protocols: Updating and designing network protocols to be quantum-safe, ensuring that 
authentication, encryption, and data integrity mechanisms remain secure against quantum adversaries [172], 
[173]. 

 Hybrid Cryptographic Systems: Implementing hybrid cryptographic systems that combine classical and 
quantum-resistant algorithms to provide security in the transition period before fully adopting quantum-
resistant technologies [174], [175]. 

 Quantum Key Distribution (QKD): Utilizing QKD to secure communication channels [176] with provable security 
based on the laws of quantum mechanics. As depicted in Figure 8, QKD is a secure communication protocol that 
uses the principles of quantum mechanics to generate and distribute cryptographic keys between two parties, 
typically referred to as Alice and Bob. The most well-known QKD protocol is BB84, proposed by Charles Bennett 
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and Gilles Brassard in 1984. QKD leverages the quantum properties of particles, such as photons, to ensure that 
any attempt to eavesdrop on the key transmission introduces detectable disturbances.  

 

Figure 8 Quantum key distribution protocol 

This allows Alice and Bob to detect the presence of an eavesdropper (Eve) and discard the compromised key, ensuring 
the security of the communication. By providing a method to establish a shared, secret key that is theoretically secure 
against any computational attack, including those from quantum computers, QKD represents a significant advancement 
in cryptographic security. 

8. Privacy Issues in Quantum Computing Networks 

As much as quantum computing is expected to be the best when it comes to network security and handling of 
vulnerabilities, it is still prone to some privacy issues [177]. Another serious threat is crosstalk noise, which is a type of 
interference where operations on one qubit end up affecting neighboring qubits (this can happen even when not one 
but multiple users access the same piece of quantum hardware day after day via cloud instances and share the qubits’ 
usage) [178]. If that happens, crosstalk noise could leak private information [179] or lead to other breaches of security. 
In real-world scenarios, other users’ computations can be disturbed by the interactions of your quantum programmed 
with a common piece of quantum hardware [180]. Just as a chat room with a loud participant can be annoyed by another 
loud participant, two different quantum programs computing simultaneously on the same quantum machine can get 
disturbed by one another’s choice of computing recipe, thanks to the strange nature of the quantum machine. An 
attacker could use a particularly complex quantum programme to generate so much crosstalk noise that it would 
destroy the quantum algorithms of others [181]. This in turn requires the isolation of relevant hardware components 
to completely prevent unintentional and malicious interference.  

Additionally, readout errors, especially in the measurement step of quantum computation, are another major source of 
leakage. Attacks that exploit readout errors usually occur as classical bit-flip errors [182]. In this scenario, letters in the 
victim’s quantum computing programme are taken erroneously, which makes the readout inaccurate and the whole 
computation unreliable. In particular, readout errors are correlated across qubits and are state-dependent [183], [184]. 
An error in one qubit can lead to errors in the neighbouring qubits as well, and the leakage occurs even if the attacker 
has no direct access, especially when two users share the same hardware. Hence, sensitive information of the victim’s 
quantum program can be leaked, implying the need for more effective error-mitigation measures, and better and more 
secure measurement protocols [185]. Some of these issues are as discussed below. 

8.1. Crosstalk Attacks 

Crosstalk noise is a type of interference that occurs in quantum computing the moment operations on qubit 
unintentionally influence neighboring qubits. This can cause faults in quantum computations; these are of particular 
concern, as states are fragile and operations require a great deal of accuracy [186]. In shared quantum computing 
environments, if many users share the same quantum hardware through cloud services, crosstalk noise may raise 
serious privacy and security concerns [187]. Shared quantum computing often takes place by running a quantum 
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program on the same physical quantum-processing unit simultaneously by several users. However, with this 
democratization of access to the cutting-edge quantum technology through a shared access model, certain trade-offs 
come. Users are effectively trying to run their computations in parallel on the same hardware, which means that the 
actions of one user can inadvertently or maliciously impact the computations of another user through mechanisms like 
crosstalk noise [188]. A crosstalk attack targets the facilitation of quantum computations by other users by use of the 
phenomenon called the crosstalk noise, in a disruptive or influential manner. In this regard, an attacker can create 
special quantum circuits that would generate excessive crosstalk noise and consequently propagate to the neighbouring 
qubits of other users. This type of intentional disruption will result in wrong computation results, hence effectively 
sabotaging the quantum algorithms corresponding to the other users [189]. These attacks exploit the physical closeness 
of qubits on the quantum processor, leaning on the hallmark features of hardware-intrinsic noise. 

8.2. Qubit Sensing Attack  

One major flaw with these powerful quantum computers lies in readout errors. Such an error occurs in the final phases 
of quantum computation majorly in the measurement phase [190]. More specifically, readout errors can be understood 
as classical bit-flip errors, in which the qubit in state "1" might be read as "0" and vice versa. It is quite a nasty type of 
error since it contaminates the accuracy [191] and reliability of quantum computations. Two of the critical 
characteristics of readout errors in these devices are state dependence and correlation across qubits. State dependence 
refers to the fact that the two states do not have equal probabilities for readout errors; that is, one is not equally likely 
to flip from "1" to "0" as when flipping from "0" to "1". In particular, qubit correlations mean that the error probabilities 
are not insulated; an error on one qubit is able to interact with and affect the errors on neighbouring qubits, further 
complicating the picture [192], [193]. Consequently, this attack type adduces tangible risk of privacy as it may 
tentatively lead to sensitive processed information by the victim’s quantum program leaked. The critical vulnerability 
in the current quantum computing systems is depicted by the action ability to infer outputs with high level of accuracy. 
This is more prone on shared environments where numerous users share the same hardware. 

8.3. Quantum Decoherence 

Quantum deceherence is one of the central aspects of quantum mechanics, and create a median opposition to quantum 
computing. Quantum decoherence is what happens to a quantum system that interacts with its environment [194]. It 
describes how a quantum system loses its intrinsic quantum behaviour, and goes from a coherent quantum state to an 
incoherent classical state. Losing quantum behaviour is a bad thing for quantum calculations [195]. Error accumulation 
sets in, and after a relatively short time, it is no longer possible to increase the number of steps taken before all is lost. 

Quantum systems obey another rule, one that stipulates that a particle can be in a superposition of states. That’s what 
a qubit, the quantum computing analogue of a bit, is all about; it can be both 0 and 1 at the same time, unlike a classical 
bit, which can be either 0 or 1, but not both. This super positional property is absolutely key to the power of the quantum 
computer, because it allows high-speed computations in a way that is practically impossible for classical computers. But 
quantum systems are also extremely susceptible to the environment [196], [197]. As soon as a quantum system connects 
with its surroundings, for example, with electromagnetic fields, or with thermal radiation or cosmic rays, those fine-
grained superposition states collapse due to decoherence. They collapse into classical states and lose their quantum 
coherence, because they begin to interact with each other. The coherence time of the qubit is the duration the qubit can 
maintains its quantum state before decohering. Because a quantum computation is merely the ability to maintain 
quantum coherence, this limits the time window of a computation before quantum computations accumulate large 
amounts of errors. 

 Decoherence injects noise and errors into a quantum computation. Suppose one of your qubits decohers, meaning they 
no longer ‘interfere’ as you need them to in order to produce the correct result for the quantum algorithm. Now they’re 
in the wrong superposition to give you the answer you were after! This hinders the trustworthiness of your 
computation.  

8.4. Quantum Error Correction (QEC) 

A key component of quantum computing that tackles the inherent fragility of quantum states is quantum error 
correction [198]. The development of QEC and its main obstacles are essential to the advancement of quantum 
computing. Quantum error correction is more involved than classical error correction [199] because of the peculiar 
properties of quantum information. One such peculiarity is the quantum no-cloning theorem, the idea that you can’t 
make an object that is an exact copy of an arbitrary unknown quantum state. Classical error correction doesn’t share 
this problem because you can duplicate the data and cross-check it against the original so as to be able to pinpoint and 
correct errors. Furthermore, qubit errors are more varied than classical bit errors [200]. While classical bits have only 
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the option to flip, going from 0 to 1, or 1 to 0. Qubits can suffer bit flips as well as phase flips, and/or some combination 
of the two. This variety in the kinds of errors possible demands more sophisticated error correction codes that can 
correct for several error types at once [201]. Beyond that, quantum errors are also more easily propagated because of 
qubit entanglement. When one qubit in an entangled pair experiences an error, this error gets copied into the other 
qubit and from there into the entire system, making the correction harder. 

8.5. Scalability 

Scalability concerns whether a quantum processor can continue to grow the number of quality qubits while minimising 
the impact of errors [202]. Major quantum information processing applications require many qubits to interact with 
each other in order to solve useful problems. In essence, collected qubits have to interact with one another, which can 
dramatically increase the rate of choice-indeterminacy errors [203]. As the number of qubits grows, keeping their 
quality and their interactions all intact is much harder to achieve. This is why scalability concerns whether a quantum 
processor can continue to grow the number of quality qubits while minimising the influence of errors. Quite simply, 
another obstacle to scalability is the extreme fragility of qubits. Qubits are extremely sensitive to their environment, 
and even the slightest perturbation can cause a process called decoherence error [204]. Adding more qubits also 
requires more physical space and control systems to manage their interactions, increasing the susceptibility [205] of 
the system as a whole to noise and operational errors, things that need to be corrected.  

8.6.  “Collect Now, Break Later" Attacks 

Quantum computing also introduces the risk of "collect now, break later" attacks. In this scenario, attackers could 
intercept and store encrypted data now, with the intention of decrypting it in the future when quantum computers 
become powerful and accessible enough [206]. This is a significant concern for sensitive data with a long shelf life, such 
as government, defense, financial, and medical information. The potential for such attacks means that organizations 
need to start thinking about quantum-safe encryption methods today to protect data that will still be sensitive in the 
future [207]. Quantum computing is believed to undermine most classical cryptographic algorithms currently in use in 
the public and private sector [208], [209]. These include RSA (Rivest-Shamir-Adleman), for protecting the 
confidentiality and integrity of communication, DSA (Digital Signature Algorithm), for providing authentication and 
non-repudiation, and ECC (Elliptic Curve Cryptography) [210], [211]. These algorithms are protections used in daily 
communications, most encrypted emails and secure online transactions rely on these methods. Quantum computers 
have the capability of solving hard combinatorial problems that are currently intractable for classical computers. Two 
of these are factoring large integers and computing discrete logarithms which underly RSA and ECC, respectively. Data 
of long-term value is particularly susceptible in this type of attack. Information in the federal, military, financial and 
medical fields is often of long-term interest, providing an ideal target. One part of the ‘collect now, break later’ threat 
that seems currently underappreciated is the long useful life of sensitive data. Classified information in government and 
defence communications could have dire national security consequences, even years after the communications took 
place. Financial records and transactions can impact matters of personal or corporate integrity. Medical records contain 
data that can be used to identify theft, other privacy violations or embarrassment [212], [213]. Since the quantum 
computers that might finally break today’s encryption might not exist for 10 or more years, the data that organisations 
want to keep secret for the long term needs to be protected as though it will finally fall to the implications of quantum 
computers.  

9. Discussion 

It has been shown that quantum computing offers immense computational power and enhanced network security, but 
significant privacy and security challenges, such as crosstalk attacks, qubit sensing attacks, quantum decoherence, error 
correction, and scalability concerns need to be addressed. These concerns are described in the sub-sections below. 

9.1. Security Issues in Quantum networks 

Quantum decoherence hinders the implementation of quantum computations due to its impact on the quantum system's 
behaviour. This loss of quantum nature, due to qubits' sensitive properties to environmental disturbances, reduces the 
accuracy of computations and reduces the trustworthiness of qubits, making it crucial to overcome decoherence in 
quantum computing technologies [214]. As such, Quantum error correction is a crucial development in quantum 
computing, enabling stable and reliable quantum computations [215]. Quanta are sensitive to their environment, and 
the quantum no-cloning theorem prevents exact copies of unknown states. Qubit errors, such as bit flips or phase flips, 
are easy to spread due to their entangled nature. Stable quantum computers can compute robust error correction 
schemes, enabling more precise quantum computation applications like factoring large numbers or simulating complex 
quantum many-body systems. Also, scalability is a significant challenge in quantum processor design and construction 
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[216]. It requires increasing the number of quality qubits while minimizing error impact on computation. This increases 
the rate of errors and requires maintaining control of interactions. Scaling the processor also requires scaling the 
quantum control systems, which may become large and noisy as qubits interact. 

With ‘collect now, break later’ attacks, attackers intercept and store encrypted communications traffic now for possible 
decryption later, when the quantum computers of the future become powerful enough to break conventional ‘classical’ 
cryptography [217]. That future might come sooner than expected, since the most secure cryptographic algorithms 
[218] available today use informational inefficiencies of their own to withstand attackers. Quantum computers could 
solve otherwise-intractable problems such as integer factorisation (for example, breaking RSA encryption) and 
computing discrete logarithms (for example, breaking ECC, used by many mobile devices). Currently held encrypted 
secrets, such as government, defence, financial and healthcare data with a long-term lifespan, would be vulnerable to 
such collect now break later attacks until we have developed quantum-safe encryption methods [219]. This means that 
organisations handling highly sensitive information should begin moving toward quantum-safe encryption of their most 
sensitive data today, while it is still in storage. While we may not know exactly when we will need to ‘go quantum’ in 
order to protect ourselves from future quantum decryption capabilities, preparing to do so now will ensure data 
security in the quantum age. 

9.2. Solutions to the security and privacy issues in quantum computing 

The mitigation of the security and privacy issues in quantum computing involves developing quantum-resistant 
cryptographic algorithms and leveraging advanced cryptographic techniques such as post-quantum cryptography 
(PQC) and quantum key distribution (QKD). PQC focuses on creating algorithms that are secure against both classical 
and quantum attacks, ensuring the long-term protection of sensitive data. QKD, on the other hand, uses the principles 
of quantum mechanics to securely distribute cryptographic keys, providing a robust method for secure communication. 
Additionally, the implementation of homomorphic encryption and zero-knowledge proofs can further enhance data 
security and privacy by allowing computations on encrypted data and verifying statements without revealing sensitive 
information. These combined efforts aim to safeguard data against the potential threats posed by the advent of powerful 
quantum computers. The sub-sections below gives a description of these techniques. 

9.2.1. Mitigation against quantum error correction 

Another type of attack to mitigate is ‘quantum error correction (QEC) attacks’. These require protecting from 
interference or exploitation the processes and mechanisms that safeguard the robustness of quantum computations. A 
critical example is the secure implementation of QEC codes [220] which redundantly encode quantum information (a 
qubit being encoded into multiple qubits] so that errors can be detected and corrected without measuring the quantum 
state directly [221]. Verification of the integrity of the encoding and decoding processes can protect against remote 
interference or tampering with the correctness of the processes by attackers [222]. For example, authenticated 
encoding and authenticated decoding could be used to safeguard the integrity and authenticity of the QEC operations. 
Also, a very important issue to address is the secure use of error syndromes in QEC [223]. Error syndromes are 
information derived from measurements used to detect errors in quantum states. We need to be able to prove to each 
other that the syndromes have been recorded and not tampered with or ‘injected’ with fake signals. Cryptographic 
techniques [224] can be used to encrypt and authorize syndromes and error-correction data so that only the relevant 
parties can read or change it. 

 Equally important are physical security measures, which limit the possibility of direct assaults upon qubits and 
quantum hardware. The importance of security provisions, like unregistered facility access and authentication 
protocols to ensure that users are who they say they are. There are mutual-exclusion protocols [225], and tamper-
resistant hardware that limit the risk of physical access to and tampering with quantum computing components. 
Further, these methods of forming quantum firewalls can cordon off modules for error correction within the quantum 
system such that unauthorised access to QEC operations cannot infect the larger operation of quantum computations. 
Continuous monitoring, such as intrusion detection systems [226], can help pinpoint the possibility of intrusions into a 
quantum computing environment, attempting to access information through improper means, or displaying unusual 
behaviour where it is not expected. Monitoring in real time can alert stakeholders to possible QEC attacks when they 
are in progress, and as soon as they occur. The computer-aided mitigation of the attack can be deployed as quickly as 
possible to minimize the damage to quantum information. Besides, quantum key distribution, or QKD, protocols can be 
used to improve security. These protocols encode messages in light particles and enable provable security of 
communication channels within the quantum system, which can be used to create unbreakable encryption keys [227[ 
for sensitive data and communication, even during the error-correcting process. 
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9.2.2. Mitigation against quantum decoherence  

Traditional light, which doesn’t take advantage of quantum coherence, maximises the coding bandwidth for storing 
information and maximises the signal-to-noise ratio of detectors by avoiding quantum indeterminism. However, from 
recent findings in metrology, we know that quantum coherence is essential to achieve the best sensitivity of a high-
precision force sensor based on laser interferometric force sensing [228], [229]. In particular, both gravitational-wave 
detection and optomechanics widely rely on the squeezing of quantum-correlated light. Light squeezed on the phase or 
amplitude quadrature generally enjoys better noise reduction than ordinary light, which supports the development of 
advanced experiments. However, quantum indeterminism does come with some downsides, such as quantum 
decoherence. The effects of squeezing the light within the cavity are thought to be able to without significantly distorting 
the measurement outcomes, beat down the detrimental quantum decoherence effects. 

9.2.3. Mitigation to collect now break later attacks 

Against ‘collect now break later’ attacks that are beginning to emerge, the only approach is for organisations to combine 
several mitigations in order to harden their cryptographic defenses, especially for the post-quantum world. The first 
step towards improving the security of any encryption is to minimize the risk of breach of encrypted data [230]. 
Operational measures to reduce the scope of a breach include ‘micro-segmentation’ of data. Meaning that data is broken 
up into smaller segments that are encrypted and independently controlled by separate access controls [231]. In this 
way, breaches of individual segments will have a much lower chance of compromising all data across an organisation. 
Another processing policy is to use different rotation schedules for encryption keys for data of different classification 
[232]; this means that if their control is breached, encryption keys for one type of data or transaction simply won’t apply 
to others. Furthermore, the most obvious, it’s essential to keep encryption software up to date with the latest security 
patches and improvements [233]. This mitigates ‘chinks in the armour’ that could be exploited in future, whether for 
years or decades to come. Moreover, organisations who store important data such as trade secrets or medical records 
are encouraged to use higher grades of encryption. This ensures that measures are in place to protect data against any 
future ability to decrypt it, which would otherwise be possible by exploiting new quantum computer capabilities [234]. 

We also suggest a phased approach to transitioning cryptography. Rather than immediately ripping out legacy 
algorithms for post-quantum algorithms that, despite years of research, might still not have been proven yet, 
organizations could phase the new encryption in with their existing encryption. A mixed approach allows them to take 
advantage of the best of both worlds, minimize their risk exposure to potentially dangerous and bug-ridden new 
technologies, and also recognize that, given how immature some of this technology is, there’s a good chance it’s going 
to take a while to catch up. Finally, adopting crypto-agility [235] provides another crucial means for preparing for future 
change in cryptographic algorithms and standards. Being forward-looking can combat the risk of building brittle 
infrastructure and can ensure that there will be little delay in adopting security measures as new cryptographic 
algorithms and standards become necessary. 

9.2.4. Mitigation to qubit sensing attack 

Quantum computing is especially vulnerable to privacy issues via a class of assault vectors called error sensing attacks 
[236]. In such attacks, an adversary tries to infer information about a computation that was run on a user’s behalf by 
analysing the error patterns in the output of the quantum computer. A general and powerful countermeasure to such a 
privacy problem is called randomised output flipping [237], [238]. The technique of randomising output error-flipping 
is used to obscure the error patterns that result from quantum computations while they are underway. The basic 
concept is, if you can flip an output bit with some probability, your adversary’s ability to make inferences based on the 
error signature is likely to be misleading to them. It’s a noisy output, which would lead them astray. The technique of 
randomised output flipping is rather simple to implement. At the end of a quantum computation, right after each output 
bit has been measured, the calculated result is flipped with a fixed probability. This probability needs to be determined 
carefully in order to strike the right balance in the trade-off between security and the quality of the computation, but 
randomizing the output hides the error patterns well enough to minimize penetration without significantly degrading 
the outcome of the computation. Randomized output flipping gives us a general and universal defence mechanism that 
can secure any quantum computation [239], protecting valuable information and guaranteeing the privacy of quantum 
networks. 

9.2.5. Mitigation on quantum safe cryptography  

A first line of defense against these threats is to ensure that the relevant cryptographic algorithms would still be secure 
in case a malicious quantum computer would be built. Any such algorithm should be quantum-safe [240], that is, be 
resilient against attacks from such a machine. Research on quantum-safe ‘post-quantum’ cryptography (PQC) is still 
underway. Such quantum-safe algorithms are based on certain hard mathematical problems that are not susceptible to 
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quantum attack. The three frontrunners are lattice-based cryptography, hash-based cryptography, and code-based 
cryptography [241]-[243]. A lesser-known but still plausible candidate is multivariate polynomial cryptography [244] . 
All these approaches rely on a different class of hard mathematical problems that are not believed to be easy to solve 
for near-term quantum algorithms, contrary to Shor’s algorithm. The move to quantum-safe cryptographic standards 
will be complex and difficult. It means a vast migration of cryptographic infrastructure (software, hardware, protocols) 
[245] that has been built over decades, taking years to plan, implement and roll out. There will be decisions about which 
systems and data are a priority for transition, given the sensitivity of the data and the lifespan for which it will be kept. 
Additionally, there are considerations for the need to maintain interoperable functionality between classical and 
quantum-safe systems during the transition period. However, the move to quantum-safe cryptography hinges on co-
ordination between governments, industry and academia. Standards and regulatory bodies within government need to 
set the rules; industry stakeholders have to shoulder the costs associated with innovation and engineering quantum-
safe solutions for their products and services; and academic researchers need to further develop the theory behind 
quantum-safe algorithms [246], and prototypes of the practical implementations of these emerging algorithms. 

10. The Challenges of current solutions 

Implementing solutions to the security and privacy issues posed by quantum computing faces several significant 
challenges. Developing and standardizing post-quantum cryptographic algorithms is a complex and time-consuming 
process, requiring rigorous testing to ensure their robustness and efficiency against quantum attacks. QKD protocols, 
while theoretically secure, are expensive to deploy and require specialized hardware, limiting their practical scalability 
and integration into existing infrastructures. Additionally, technologies like homomorphic encryption and zero-
knowledge proofs, although promising, often involve substantial computational overhead, making them less practical 
for real-time applications. Furthermore, transitioning current systems to quantum-resistant protocols involves 
significant logistical and financial efforts, necessitating widespread coordination and cooperation across various sectors 
to ensure a seamless and secure upgrade. 

10.1. Quantum error correction gaps 

QEC is necessary because quantum computations may be disrupted by quantum decoherence. Unlike classical error 
correction, which is widely understood and quite simple in most cases, QEC is far from trivial. There are two main and 
fundamental obstacles with QEC. First, quantum errors are far more tenacious than classical errors [247], and second, 
quantum mechanics places severe constraints on the procedure. Errors on conventional computers are exceedingly 
rare, things such as bit-flips occur less than once for every 108 operations. If quantum computers did suffer from errors 
only at this rate, classical error correction could be easily imported into the quantum realm. Unfortunately, quantum 
computers generate errors even more frequently [248], and at much higher complexity, they suffer from bit-flips, phase 
flips, or, even worse, combinations of bit and phase flips. One of the big problems in QEC is that you can’t copy qubits 
the way you can copy classical bits. This is a fundamental restriction known as the no-cloning theorem [249], [250]. The 
reason we need techniques like quantum error correction is that any quantum information requires protecting against 
decoherence, noise and imperfections in its quantum nature. QEC techniques encode a single logical qubit into multiple 
physical qubits, the number depends on the particular hardware, algorithm and application, with more physical qubits 
required for faster error rates. There are many QEC codes but the basic idea is to encode quantum information in some 
way and hence need more physical qubits than to encode just one.  

10.2. Scalability gaps 

Scalability means increasing the number of qubits in a quantum system, so that you can solve more complex problems 
[251]. You have to start by getting errors in a qubit, which are very easy, because these systems are massively sensitive 
to little interferences. If you build large systems from those few qubits linked together as a circuit, the probability of 
errors rapidly grows. One potential solution is error correction, which forces redundancy [252] in the system so that it 
is able to recognize the probability that there is some glitch, and then correct it. However, both the redundancy and the 
techniques to correct it impose additional layers of complexity. The current record for the number of qubits in one 
quantum computer stands at 1180. Factoring a 2048-bit integer in eight hours requires around 20 million physical 
qubits. That would be enough to withstand the natural errors in superconducting circuits, using surface code error 
correction. IBM estimates the first 1 million-qubit quantum computer may be realised by 2030, while Google expects it 
to arrive in by 2029 [253]. The quantum-computing start-up PsiQuantum hopes to create a 1 million-qubit quantum 
computer with error correction that they plan to ship in 2025 using photonic qubits. 
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10.3. Trained personel 

Building up a skilled workforce is a huge challenge for the quantum computing field as well. The pool of people who are 
properly educated and trained in quantum technologies is pretty small and geographically dispersed. The scarcity of 
skilled workers is a major bottleneck. Building a workforce of programmers, computer scientists, engineers and support 
staff capable of developing usable quantum [254] computers is a huge task, but this is exactly what has to happen if 
innovation in the field is going to accelerate. On the other hand, attracting more people to the field waiting for quantum 
computers to get practical. 

10.4. High expense involved  

One of the biggest challenges of quantum networking is its cost. This cost is partly due to the requirements of advanced 
technology and large investments into the infrastructural facilities and on-going research and development [255]. For 
instance, QKD systems need long-distance communication to establish the secure key, which involves the investment of 
fibre optical cables or satellite systems [256], both of which have high launch and operation costs. Additionally, building 
a world network for quantum communications demands that we have the best quality cables or satellite navigation 
systems. Such cables require costly installation and persevering maintenance. The operational and maintenance costs 
of quantum networking are also high, as quantum devices require extremely low temperatures and a great deal of 
isolation to operate [257]. These conditions are expensive to maintain, and the fast evolution of technology means 
frequent and costly upgrades of the equipment are necessary. Finally, high salaries for scientists and engineers in this 
new research field are expensive since other industries are now vying for their limited skills and knowledge. The high 
costs of quantum networking will have a significant impact on restricting access to the market for both consumers and 
enterprise customers who, in the face of higher prices, reduced availability and potential high costs for substitutes, may 
either wait or search for alternatives until the technology demonstrates that it represents real value. Reduced 
availability due to lack of competition among suppliers and the high costs of adoption mean that industries may lean 
towards alternative, cheaper and less complex but less secure options . Government funding for research and 
development, along with public-private partnerships, can also ease financial dependency in the initial stages and spread 
costs. 

11. Negative Impacts on Privacy and Security 

11.1. Breaking Traditional Cryptography 

 Quantum versions of Shor’s Algorithm would allow a quantum computer to factorise large integers exponentially faster 
than the best-known algorithms for classical computers [258], making RSA and also the cryptosystems ECC [259] that 
are used to protect information between mobile devices, completely insecure to hack. The Grover’s algorithm is a 
quadratically faster search algorithm for unsorted databases that threatens symmetric key cryptography (ie, AES, etc), 
reducing such a key’s length in half, from say 256-bit to 128-bit length. 

11.2. Data Harvesting 

 Adversaries could take the ‘store now, decrypt later’ option, in case they’re able to decipher the ciphertext in the future 
[260], perhaps with a quantum computer that becomes available sometime in the distant present. 

12. Research gaps 

Despite significant progress in quantum computing and its potential applications for network security, several research 
gaps need to be addressed to ensure robust and practical implementations. Table 1 presents an illustration of the 
research gaps in quantum computing for network security. 

Table 1 Research gaps 

Gaps Information 

Scalability 
and Stability 
of Quantum 
Computers 

Scalability 

Large-Scale Qubit Integration: Current quantum computers operate with a limited number of qubits [261]. 
Scaling up to hundreds or thousands of qubits while maintaining coherence and error rates is a significant 
challenge. 
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Error Rates: As the number of qubits increases, so does the complexity of error correction. Developing 
scalable quantum error correction methods that can handle large-scale qubit systems is critical. 

Stability 

Qubit Coherence Time: Qubits are susceptible to decoherence, where they lose their quantum state due to 
interaction with the environment. Extending the coherence time of qubits is essential for reliable quantum 
computation. 

Noise Reduction: Reducing the noise in quantum systems, which affects the fidelity of quantum operations, 
is a major research focus. Noise-resilient qubit designs and error mitigation techniques are needed [262]. 

Post-
Quantum 
Cryptograp
hy (PQC) 

Algorithm Development 

Efficient Algorithms: While various post-quantum cryptographic algorithms have been proposed (e.g., 
lattice-based, code-based, hash-based), further research is needed to develop algorithms that are not only 
secure but also efficient and practical for widespread use. 

Standardization: The process of standardizing post-quantum cryptographic algorithms is ongoing. 
Contributions to international standardization efforts, such as those by NIST, are crucial for ensuring 
widespread adoption. 

Performance and Usability 

Performance Optimization: Many post-quantum algorithms have high computational overheads compared 
to classical cryptographic algorithms [263]. Optimizing these algorithms for performance without 
compromising security is a key challenge. 

Integration with Existing Systems: Research is needed on how to seamlessly integrate post-quantum 
cryptographic algorithms into existing systems and protocols, ensuring backward compatibility and ease 
of transition. 

Quantum 
Key 
Distribution 
(QKD) 

Practical Implementation 

Long-Distance QKD: Implementing QKD over long distances remains a challenge due to photon loss and 
decoherence in optical fibers [264]. Research into quantum repeaters and satellite-based QKD is essential 
to extend the range of secure quantum communication. 

Deployment in Real-World Networks: Practical deployment of QKD in existing network infrastructures 
requires overcoming challenges related to cost, complexity, and compatibility with current 
communication technologies. 

Security and Reliability 

Security Proofs: While QKD is theoretically secure [265], rigorous security proofs for practical 
implementations, considering real-world imperfections and attack vectors, are necessary. 

Reliability and Robustness: Ensuring the reliability and robustness of QKD systems in various 
environmental conditions and operational scenarios is a critical area of research. 

Quantum-
Resistant 
Network 
Protocols 

Protocol Design 

Hybrid Protocols: Developing hybrid network protocols that combine classical and quantum-resistant 
cryptographic techniques can provide security during the transition period to fully quantum-resistant 
systems. 

New Protocols: Designing entirely new network protocols that leverage quantum-resistant cryptographic 
techniques from the ground up is also a significant research area. 

Implementation and Testing 

Practical Testing: Real-world testing and validation of quantum-resistant protocols in diverse network 
environments are necessary to ensure their effectiveness and reliability. 

Performance Metrics: Establishing performance metrics and benchmarks for quantum-resistant network 
protocols to compare their efficiency and security with classical counterparts. 

Quantum 
Algorithms 
for Security 
Applications 

 

Quantum Cryptanalysis 

Understanding Quantum Threats: Research into quantum algorithms that can break classical 
cryptographic schemes (e.g., Shor’s algorithm, Grover’s algorithm) is essential to understand the potential 
threats and develop countermeasures. 

Algorithm Optimization: Optimizing quantum cryptanalysis algorithms for practical use, including 
reducing resource requirements and improving execution speed, is an ongoing area of research. 
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Quantum Machine Learning (QML) for Security 

Anomaly Detection: involves developing QML algorithms [266] for detecting network anomalies and 
intrusions with higher accuracy and efficiency than classical methods. 

Privacy-Preserving Computation: Researching QML techniques that ensure privacy-preserving [267] 
computations, protecting sensitive data while leveraging quantum machine learning capabilities. 

Legal and 
Ethical 
Considerati
ons 

Regulatory Frameworks 

Legal Standards: Developing legal and regulatory frameworks for the deployment and use of quantum 
cryptographic technologies in various sectors, ensuring compliance with privacy and security laws. 

Ethical Implications: Addressing the ethical implications of quantum computing in network security, 
including issues related to surveillance, privacy, and the balance between security and civil liberties. 

Policy Development 

Government Policies: Formulating government policies that support research and development in 
quantum computing and network security, including funding, international collaboration, and public-
private partnerships. 

Standards and Guidelines: Establishing standards and guidelines for the secure implementation and use 
of quantum computing technologies in network security. 

Quantum-
Safe 
Blockchain 
and 
Distributed 
Ledger 
Technologie
s 

Quantum-Resistant Consensus Mechanisms 

New Consensus Protocols: Researching and developing new consensus mechanisms for blockchain and 
distributed ledger technologies that are resistant to quantum attacks [268]. 

Implementation Challenges: Addressing the practical challenges of implementing quantum-resistant 
consensus mechanisms, including scalability, efficiency, and interoperability with existing blockchain 
systems. 

Security and Privacy Enhancements 

Quantum-Enhanced Privacy: Exploring how quantum computing can enhance privacy in blockchain 
systems, such as through quantum-secure smart contracts and private transactions [269]. 

Resistance to Quantum Attacks: Ensuring that blockchain systems and digital assets remain secure against 
potential quantum attacks, including research into new cryptographic schemes for securing blockchain 
data. 

 

Mitigating these research gaps is essential for leveraging the full potential of quantum computing in network security 
while mitigating its associated risks. By focusing on scalability, practical implementation, performance optimization, 
protocol design, legal and ethical considerations, and education, the research community can develop robust quantum-
resistant solutions that ensure the security and privacy of future network systems. 

13. Future research scope 

In this section, several promising avenues for further research are explored. One key area is the advancement and 
optimization of post-quantum cryptographic algorithms, focusing on making them more efficient and easier to 
implement in real-world applications. Additionally, enhancing QKD protocols to be more cost-effective and scalable is 
crucial for broader adoption. Research is also likely to delve into integrating quantum-resistant cryptographic methods 
seamlessly with existing systems, ensuring minimal disruption during the transition. Another exciting frontier is 
developing practical applications of homomorphic encryption and zero-knowledge proofs, aimed at reducing 
computational overhead while maintaining security and privacy. Furthermore, exploring hybrid models that combine 
classical and quantum techniques to bolster security measures could offer a balanced approach to protecting data in the 
quantum era. These research efforts will be vital in addressing the evolving challenges posed by quantum computing 
and ensuring robust network security in the future. Other future research domains are discussed below. 

13.1. Security and vulnerability analysis 

Security work focuses on quantum-safe cryptographic algorithms and quantum attack resistance – vetted older 
algorithms designed to operate under the noisy realities of current devices, new algorithms, as well as side-channel 
attacks [270]. Asymmetric key protocols (such as RSA) will either need to be replaced or need to be made resistant to 
quantum attack. Developing resilient protocols for quantum networks to protect against attack, while dealing with the 
inevitable errors of quantum devices, is a new challenge as well. 
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13.2. Technological Development 

Through longer qubit coherence times, reduced error rates and increased stability of devices, progress in quantum 
hardware is being made. Interoperability standards [271] are being considered for cross-manufacturer communication, 
and new manufacturing methods and system design approaches for reducing the cost of quantum networking hardware 
architecture and components are being researched to propel the necessary infrastructure forward. 

13.3. Practical Applications and Deployment 

Applied research is needed to study potential real-world applications, for example, fast and secure financial 
transactions, and the use of large datasets for improving government communications and services. Experimental pilot 
projects, case studies and benchmarking can be useful for illustrating real-world benefits. This includes investigation of 
use and enterprise adoption factors, economic analysis and business cases, as well as regulatory approaches to ensure 
safe implementation of quantum networks. In summary, future of quantum computing in network security presents a 
vast landscape of research opportunities. As quantum technology advances, addressing emerging challenges and 
harnessing new possibilities will be crucial. Table 2 gives detailed future research scopes in quantum computing for 
network security. 

Table 2 Future research scopes 

Scope Information 

Advanced 
Quantum 
Cryptographic 
Protocols 

Novel Quantum Key Distribution (QKD) Protocols 

Device-Independent QKD: Developing protocols that ensure security without relying on the 
trustworthiness of the quantum devices used [272]. This addresses vulnerabilities due to device 
imperfections. 

Measurement-Device-Independent QKD: Enhancing security by making the system immune to all 
possible loopholes in the measurement devices, thereby reducing the risk of side-channel attacks. 

Quantum Digital Signatures 

Secure Quantum Signing: Researching methods for secure quantum digital signatures [273] that can 
replace classical digital signatures and are resistant to quantum attacks. 

Scalable Protocols: Developing scalable quantum digital signature schemes that can be efficiently [274] 
implemented in large-scale networks. 

Quantum-
Resistant 
Cryptographic 
Algorithms 

Lattice-Based Cryptography 

Performance Optimization: Enhancing the efficiency of lattice-based cryptographic algorithms [275] to 
make them practical for widespread use in real-time applications. 

Security Proofs: Providing rigorous security proofs for lattice-based schemes under various attack 
models, including those that leverage quantum computing. 

Code-Based Cryptography 

Efficient Implementation: Improving the implementation of code-based cryptographic algorithms to 
reduce computational overhead and make them viable for everyday use. 

Error-Correcting Codes: Exploring new types of error-correcting codes that provide stronger security 
guarantees against quantum attacks. 

Multivariate Quadratic Equations 

Algorithm Development: Developing new cryptographic schemes based on the hardness of solving 
multivariate quadratic equations, which are believed to be secure against quantum attacks. 

Practical Applications: Identifying practical applications for these schemes in securing 
communications and transactions. 

Quantum-Safe 
Network 
Architectures 

Quantum Internet 

Network Infrastructure: Designing and building a quantum internet infrastructure [276] that supports 
quantum communication across global networks. 

Protocol Standardization: Establishing standardized protocols for quantum internet communications 
to ensure interoperability and security. 

Quantum Routers and Switches 
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Device Development: Developing quantum routers and switches that can handle quantum data and 
route it securely through quantum networks. 

Efficiency and Scalability: Ensuring that these devices are efficient and scalable for large-scale 
deployment. 

Quantum-
Secure 
Blockchain 
and 
Distributed 
Ledger 
Technologies 

Quantum-Resistant Consensus Mechanisms 

New Consensus Algorithms: Researching and developing new consensus algorithms for blockchain 
systems [277] that are resistant to quantum attacks. 

Security and Performance: Balancing security and performance in these new consensus mechanisms 
to ensure they are both secure and practical for use. 

Quantum-Safe Smart Contracts 

Design and Implementation: Designing smart contracts that use quantum-resistant cryptographic 
techniques [278] to ensure their security against quantum attacks. 

Use Cases: Exploring use cases for quantum-safe smart contracts in various industries, such as finance, 
healthcare, and supply chain management. 

Quantum 
Machine 
Learning 
(QML) for 
Network 
Security 

Anomaly Detection 

Advanced Algorithms: Developing QML algorithms that can detect network anomalies and intrusions 
with higher accuracy and efficiency than classical methods [279]. 

Real-Time Monitoring: Implementing these algorithms in real-time network monitoring systems to 
provide early detection and response to security threats. 

Privacy-Preserving Computation 

Federated Learning: Researching QML techniques that enable privacy-preserving [280] federated 
learning, where multiple parties collaboratively train models without sharing their data. 

Secure Data Analysis: Ensuring that sensitive data remains secure during the training and analysis 
processes. 

Integration of 
Quantum and 
Classical 
Systems 

Hybrid Cryptographic Systems 

Transition Strategies: Developing strategies for transitioning from classical to quantum-resistant 
cryptographic systems, including the use of hybrid systems that combine both. 

Interoperability: Ensuring that quantum and classical systems can work together seamlessly, 
maintaining security and performance [281]. 

Quantum-Safe Protocols 

Protocol Design: Designing network protocols that are secure against quantum attacks while being 
compatible with existing classical systems [282], [283]. 

Testing and Validation: Conducting extensive testing and validation of these protocols in real-world 
scenarios to ensure their effectiveness. 

Quantum-
Enhanced 
Privacy 
Technologies 

 

Homomorphic Encryption 

Quantum Homomorphic Encryption: Researching quantum homomorphic encryption techniques that 
allow computations on encrypted data without decrypting it, enhancing data privacy [284], [285]. 

Efficiency Improvements: Improving the efficiency of these techniques to make them practical for use 
in various applications. 

Zero-Knowledge Proofs 

Quantum Zero-Knowledge Proofs: Developing quantum zero-knowledge proofs that allow one party to 
prove to another that they know a value without revealing the value itself [286]. 

Applications: Exploring applications of quantum zero-knowledge proofs in areas such as 
authentication [287], identity verification, and secure voting. 

Quantum 
Hardware and 
Physical Layer 
Security 

Quantum Hardware Security 

Tamper-Resistant Qubits: Developing tamper-resistant qubits and quantum hardware that prevent 
unauthorized access and manipulation [288]-[291]. 

Physical Layer Security: Researching physical layer security techniques that leverage quantum 
properties to protect data at the hardware level [292]. 

Quantum-Safe IoT Devices 
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Secure IoT Architectures: Designing IoT architectures that incorporate quantum-resistant 
cryptographic techniques to ensure the security of IoT devices and networks. 

Lightweight Cryptography: Developing lightweight quantum-resistant cryptographic algorithms [293] 
suitable for resource-constrained IoT devices. 

 

Evidently, future of quantum computing in network security is rich with research opportunities that span multiple 
disciplines and address critical challenges. By focusing on the development of advanced cryptographic protocols [294], 
quantum-resistant algorithms, quantum-safe network architectures [295], and ethical and legal frameworks, the 
research community can ensure that quantum computing enhances network security while mitigating its associated 
risks.  

14. Conclusion 

The findings imply that quantum computing is neither the solution to problems in network security nor a reason for 
pessimism. In fact, it is a revolutionary improvement in terms of computational power that may help enhance network 
security, and the vulnerabilities of quantum computers also have the potential to be an impetus for enhanced security 
measures. Beyond these operational concerns, a major vulnerability arises from the shared quantum computing 
environment itself. Such aggregate quantum systems lend themselves naturally to crosstalk attacks, in which 
interference by a malicious third party with physical proximity to honest qubits disrupts their computations. A second 
major vulnerability to shared-quantum computing environments involves attack vectors known as qubit sensing 
attacks. In these attacks, errors in readout affect successive computations on the same qubit, leading to flawed results 
and occasional breaches of sensitive information. Another vital issue is quantum decoherence, which interferes with 
the robustness of quantum states. Decoherence disrupts quantum coherence, thereby causing the wave function to 
‘collapse’ into one or another classical states and introduce errors in the computations. This phenomenon severely 
constrains the time during which the quantum systems remain in their operational lifetime, marked by their 
computational accuracy, thereby diminishing the trustworthiness of the quantum operations. Quantum Error 
Correction [QEC] is indispensable for such tasks, yet current approaches are inadequate for coping with the broad range 
of errors inherent to quantum systems. The development of advanced QEC techniques will be essential for mitigating 
the myriad forms of errors that quantum hardware will encounter, thus paving the way for trusted quantum 
computation. Another major challenge is scalability. Practical quantum computing depends on amplifying the number 
of qubits in a quantum system. But the more qubits you add, the harder it is to maintain the quality of them, and the 
more difficult it is to correct for errors. So, while it is theoretically straightforward to create stable 100- or 1,000-qubit 
systems in principle, these systems would be extremely difficult to build. In other words, a lot of further innovation is 
necessary to overcome the practical technical challenges of scaling up quantum systems to a workable size. Second, for 
a lot of sensitive long-term information, decades from today is still too soon to risk cryptanalytic breach from an attack 
known only as ‘collect now, break later’. For example, quantum computers are likely at some point to break today’s 
encryption methods, including those widely used in the past. This, too, represents the need to start working now on 
quantum-safe encryption methods, to protect long-term data into the distant future, especially in government, defense, 
finance and health and other sensitive areas.  
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