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Abstract 

The first two important steps in the pipeline for processing picture signals are de-noising and de-mosaicking. The joint 
solution of the highly uncertain inverse problem of de-noising and de-mosaicking has garnered increased attention in 
research today. It is difficult to restore high-quality images from raw data in low light because of a variety of 
disturbances brought on by a low photon count and a complex image signal processing scheme. Even if some restoration 
and improvement techniques have been used, they might not work in harsh situations, including raw data imaging with 
brief exposure. Therefore, this research focuses on developing a de-mosaicking and de-noising model with effective end 
to end manner outcomes. Initially, the pre-processing is conducted using Gaussian filtering to eliminate artifacts from 
the input image, thereby enhancing the image quality. Then, the proposed method incorporates an Enhanced Spatial 
Convolutional Residual Net (EnConvResNet) for image de-mosaicking and an Adaptive U-net restoration model for 
image de-noising. An enhanced gazelle optimization (EnGa) algorithm is used to fine-tune the hyper-parameters of the 
model in order to maximize its performance and improve its generalization capacity. The proposed method 
accomplished peak signal to noise ratio (PSNR) and structural similarity index measure (SSIM) of 46.65 and 98.89, 
respectively. 

Keywords: Enhanced Gazelle optimization; De-mosaicking; De-noising; Gaussian filtering; Adaptive U-Net; Enhanced 
Spatial Convolutional Residual Net 

1. Introduction

De-mosaicking aims to combine four spatially sparse color channels to produce a full-color image. Actually, color 
information per pixel can only be captured by digital cameras with monochrome sensors; most of these cameras achieve 
this by utilizing color filter arrays (CFA), like the Bayer pattern [1]. Two of the four pixels are measured to be green, red, 
and blue. De-mosaicking is the process of creating a whole color image from the output of partial color samples [2]. In 
general image processing, the pipeline is assumed to contain the raw data first de-noised and then de-mosaicked. 
Because de-noising algorithms are usually built on statistical priors, once the raw data is removed, these priors could 
be seriously disrupted. Additionally, the majority of well-performing common de-mosaicking techniques are created 
using the essential noise-free condition as their foundation [3]. 

 The main problem with the segmentation de-noising and de-mosaicking processes is that they can conflict with one 
another. De-mosaicking increases the difficulty of the noise removal process by substituting the interpolation process 
for the noise distribution. The color models in the raw photos are altered if de-noising is done before, making full color 
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recovery from de-mosaicking more challenging [4]. Nevertheless, there has been much less focus on combining the 
three problems of image de-noising, de-mosaicking, and SR. Despite being an end-to-end network, TENet has a set order 
of operating activities [5]. Deep learning techniques have recently demonstrated remarkable effectiveness in image 
identification problems. It is also popular for low-level visual tasks, such as de-mosaicking images [6]. Learning-based 
approaches contribute significantly to the progress of image reconstruction tasks. Moreover, deep learning has shown 
the advantages of integrating low-level tasks like de-noising and de-mosaicking [7]. For the purpose of tackling 
traditional inverse imaging problems, including blurring, super resolution, de-noising, and pixel super-resolution, deep 
learning presents some intriguing possibilities [8][9]. 

Deep learning techniques use Convolutional Neural Networks (CNNs) to automatically learn what they desire. The 
majority of methods employ force-learning mapping networks between noisy images, such as damaged or mosaic 
images. A four-channel RGGB image and a pure RGB image are useful for intra- and inter-channel communication [10]. 
However, only a tiny portion of low-visibility research actually works with RAW data, which is a larger scale and more 
widely available RGB photos for public use [11]. However, the quantity of photons acquired by the camera sensor 
determines the number of pixels in the RAW field, and the noise in these pixels might be spatial [12]. Additionally, the 
dataset includes the Bayer and Fuji X Trans, two well-known CFA patterns, allowing for the development and 
assessment of strategies capable of handling various CFA patterns [13]. It can employ both a big RGB dataset (e.g., 
100,000 samples) and a small RAW dataset (e.g., 7,000 pictures) to achieve our goal [14]. Finally, the results of images 
processed by various ISP pipelines were examined to compare the generalization performance of our model to 
alternative methods for color photos [15]. 

The suggested work offers a unique method for improving the quality of images. This model combines two stages to 
improve both image de-noising and demosaicing processes. 

In the first stage, the bionic spatial convolutional restoration is applied to denoise the image. This stage takes inspiration 
from biological processes in the human visual system, which are highly efficient at filtering out noise. The model uses 
spatial convolutions to mimic these biological processes and remove noise from the image. 

In the second stage, the model focuses on demosaicing, which is the process of converting a color filter array image 
(CFA) into a full-color image. This is particularly important for digital cameras, which use a CFA to diminish the number 
of sensors needed. The dual-stage model improves the demosaicing process by incorporating the de-noised image from 
the first stage, resulting in a higher quality, full-color image. 

The organization of the research is as follows: Section 2 details the related works, and Section 3 details the proposed 
methodology. Section 4 provides an explanation of the findings and discussion, and Section 5 concludes the research.  

2. Literature survey  

Mykola Ponomarenko et al. [16] introduced CNN for joint images. This system performs five image enhancements, 
namely de-mosaicking, de-blurring, de-noising, super-resolution, and clarity enhancement. The DRUNet de-noising 
network is first used to combine the U-Net and ResNet. Transposed convolution and residual blocks are then used to 
interpolate CFA images. After this procedure was finished, scaling was applied four times to increase and decrease the 
clarity of the image. Finally, five net CNN improved the processed image clarity and quality. This section has observed 
that the quality of the images in the training set is low. 

The use of CNNs for joint de-noising and de-mosaicking of real-world burst images has been suggested by Shi Guo et al. 
[17]. The Green Channel Prior network was first implemented in this system in order to produce a good image structure. 
Afterward, the intra-frame (IntraF), inter-frame (InterF), and merge modules were used to conduct the reconstruction. 
Finally, the real world burst images are cleaned using a green channel prior to providing high quality and a good 
sampling rate. However, this section noticed that there is an issue with de-mosaicking. 

A machine learning technique for jointly de-noising and de-mosaicking images was presented by Yu Guo et al. [18]. In 
this system, a noisy CFA picture was first created. Using the gradient based threshold free (GBTF) method, noise-free 
de-mosaicking is then performed in order to rebuild the image. De-noising is then carried out to eliminate the noise 
from the image. After pre-processing is complete, the image is reconstructed using the CNN method, yielding a 
distortion-free result. However, this part observed that artifacts are the reason for low performance. 

An Adaptive Convolutional Dictionary Learning Network for Blind De-noising and de-mosaicking was presented by 
Nikola Janjusevicc et al. [19]. In this system, a natural image was initially taken to de-noise using a convolutional 
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dictionary learning network, and after that, thresholding was performed. Once this process was completed, blind de-
noising was done using CDL net, which provides high performance. However, noise adaptive generalization can be used 
to improve the sensing. 

Hanlin Tan et al. [20] introduced Two-Stage CNN Model for de-mosaicking and de-noising the burst bayer images. In 
this system, datasets are taken from Kotak. Initially, de-noising was performed in two stages, namely single frame and 
multi-frame, executed using the DRDD network. One frame is used for first level de-noising in order to map the residual 
block directly; multiple frames are then used for end-to-end de-noising of the burst of images. Convolution and Rectified 
Linear Unit (ReLU) activation were used in multi-frame. After that, the input goes via a residual block to produce an 
intermediate result, and CNN then squeezes and excites the linear RGB image. Nonetheless, this section noted that the 
image's efficacy was low. 

3. Proposed Methodology 

The proposed research undergoes two main stages, namely de-mosaicking and de-noising. The initial step is to take the 
raw image and create the mosaic. A correlated residual noise will be present in the output of a de-mosaicked process 
that takes a noisy input. It also takes learning to get rid of this noise. Various noises can be introduced during the image 
capture process, such as shot noise or salt-and-pepper noise. Therefore, in the second stage, for the removal of noise, 
the de-noising process is performed. Gaussian filtering is used for pre-processing in order to eliminate artifacts from 
the input image before de-noising and de-mosaicking. The network's workload can be reduced by enhancing the input 
to the network. The work is incorporated with an Enhanced spatial convolutional residual net for image de-mosaicking 
and an Adaptive U-net restoration model for image de-noising. The restoration model is adapted with symmetric 
connections to maintain the recovery information from the raw image. The hyper-parameters of the network model are 
fine-tuned with an enhanced gazelle optimization model to upsurge the generalization ability of the proposed model. 
The workflow is presented in Figure 1. 

 

Figure 1 Proposed De-mosaicking and de-noising technique 

3.1. Gaussian Filtering 

Gaussian filtering is a common method used in image processing to get rid of noise and artifacts. The image and the 
Gaussian kernel are convolved in the process of Gaussian filtering. Convolution involves sliding the kernel across the 
image and computing the weighted sum of the pixel values it covers at each location. The resulting image has pixel 
values that are weighted averages of their surrounding neighbors, with pixels closer to the kernel's center being of 
higher weight. The formulation for representing the Gaussian filter is expressed as: 
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where,  feA , is the value of the Gaussian kernel at position  fe, and σ is the standard deviation of the Gaussian 

distribution, which controls the spread or blurring effect of the kernel, e  is the base of the natural logarithm. Because 

of the Gaussian filter's blurring effect, the final image is a smoothed version of the original with less noise and artifacts. 

3.2. EnConvResNet based de-mosaicking 

The improved spatial convolutional residual net (EnConvResNet) is utilized for image de-mosaicking. The proposed 
EnConvResNet is designed by integrating the Convolutional layer, ResNet-152, and the attention module to enhance the 
de-mosaicking performance. Figure 2 shows the proposed EnConvResNet structure. 

 

Figure 2 Structure of proposed EnConvResNet 

A detailed explanation concerning the EnConvResNet is given below. 

3.2.1. Convolutional Layer 

 The de-mosaicking process begins with a convolutional layer. Feature extraction from the input image is the 
responsibility of this layer. Important details, such as edges, textures, and patterns, can be extracted from the input 
image with the help of the convolutional layer. Each neuron in a convolutional layer is associated with a tiny area of the 
input image due to the layer's use of local receptive fields. The convolutional layer employs these local receptive fields 
to scan the entire input image in order to learn about the spatial relationships between neighboring pixels. This feature 
is essential to de-mosaicking because it enables the network to identify correlations between neighboring color 
channels and precisely fill in color information that is missing. The formulation for performing the convolution 
operation is given as follows: 

        lwkuMwuSwuMSwuR

k l

  ,,,,  (2) 

where, the kernel filter is denoted as M , input data is denoted as S , and the convolution operation is specified as . 

The feature mapped by the convolutional layer is denoted as  wuR ,  and the coordinates are indicated as  wu, and 

 lw, , respectively. The outcome of the convolutional layer is fed into the ResNet-152 to acquire the best features and 

make the de-mosaicking process more efficient. 

3.2.2. ResNet-152 

 ResNet-152 is a specific type of deep neural network architecture known for its depth and residual learning framework. 
In residual learning, the network learns residual functions rather than directly fitting the input to the output by skipping 
one or more layers. ResNet-152 facilitates training deeper networks more effectively, enabling better feature extraction 
and representation learning. The proposed EnConvResNet improves the de-mosaicking process by integrating ResNet-
152 to improve the feature extraction capabilities. The structure of ResNet-152 is portrayed in Figure 3. 
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Figure 3 Structure ResNet-152 

The ResNet-152 utilizes the skip connection that assists in eliminating the vanishing gradient issue. Let the input fed 

into the skip connection module be signified as l , the outcome derived by the convolutional network is   llP  ; but the 

outcome derived through the skip connection is  lP . Hence, using the ResNet-152, the enhanced feature extraction is 

accomplished with minimal computation burden. The outcome of the ResNet-152 is fed into the Attention module of 
the proposed EnConvResNet model. 

3.2.3. Attention Layer 

The proposed EnConvResNet uses attention techniques to suppress extraneous information and concentrate on 
pertinent portions of the input data. The attention module in EnConvResNet probably enhances the quality of the rebuilt 
image and the de-mosaicking performance by dynamically adjusting the weights of respective input image segments 
based on their saliency or significance. The formulation for the attention mechanism is described as: 

 hhEh GHFsoftE  max'
   (3) 

 hDhDhhhhhhh HEHEHEHEN ,,,2,2,1,1
'" ,.......,        (4) 

Here, 
"
hN refers to the outcome of the attention layer, EF and hG  signifies the weight and bias and 

 hDhhh EEEE ,,2,1
' ,.....,  signifies the weights. From the attention module outcome, the de-mosaicked image is 

acquired. 

3.3. Adaptive UNet based de-noising 

The adaptive UNet is utilized for the de-noising, wherein the loss function of the U-Net is employed using the enhanced 
Gazelle optimization (EnGa) algorithm.  

3.3.1. Structure of UNet: 

UNet can learn the precise noise patterns in the training data, in contrast to typical filtering algorithms that rely on 
predefined assumptions about noise characteristics. This enables it to effectively remove noise while maintaining the 
underlying image features. UNet architecture is flexible and can accommodate input images of varying sizes without 
requiring modifications. The adaptability of the UNet makes it suitable for de-noising tasks across different resolutions 
and aspect ratios. Thus, UNet is considered for the proposed de-noising task. UNet's architecture consists of contracting 
(encoder) and expanding (decoder) paths, enabling it to extract low-level detailed information from the noisy image, 
such as textures, and high-level contextual information, such as edges and structures. Furthermore, these features are 
immediately injected into the up-sampling process through the skip links between the encoder and decoder. The up-
sampling process ensures that important details are preserved during the image reconstruction phase, leading to a more 
accurate de-noised image. The architecture of the UNet is portrayed in Figure 4. 
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Figure 4 Architecture of the UNet 

Contracting Path 

 The contracting path is tasked with the reduction of the spatial dimensions of the input image and the capture of low-
level features. The process involves the iterative implementation of convolutional layers, which are subsequently 
downsampled via max pooling. Convolutional layers extract features, including edges, textures, and patterns, by 
capturing local information through the utilization of small receptive fields. The network is supplemented with a non-
linear activation function following each convolutional layer. The ReLU, which facilitates the acquisition of complex 
patterns through the introduction of non-linearity, is a frequent example. To reduce the spatial dimensions of the feature 
maps and expand the receptive field of subsequent layers, downsampling procedures utilizing maximum pooling reduce 
the resolution. To extract high-level information from an input image, the dimensionality of the image is progressively 
decreased along the contracting path. 

Expanding Path 

 The expanding path is responsible for reconstructing the de-noised image from the low-dimensional feature 
representation obtained from the contracting path. Concatenation with feature maps from the relevant layers in the 
contracting path and convolutional layers comes after upsampling procedures using transposed convolutions. The 
resolution lost during downsampling in the contracting path is restored by the upsampling processes, which expand the 
spatial dimensions of the feature maps. By adding high-resolution features, concatenation with feature maps from the 
contracted path aids in the preservation of fine details and spatial information. Convolutional layers in the expanding 
path use small receptive fields to refine the feature maps and generate a detailed reconstruction of the de-noised image. 
A non-linear activation function called ReLU usually follows each convolutional layer to add non-linearity and improve 
the de-noising ability. The expanding path gradually refines the low-dimensional feature representation into a high-
resolution reconstruction of the de-noised image, leveraging both global context and local details. 

Output Layer 

 The output layer applies a sigmoid activation function with a single filter to a convolutional layer to produce the de-
noised image. The de-noised outcome is defined as: 
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  inFConvSigOutcome       (5) 

where, the de-noised outcome is denoted as Outcome , the sigmoid activation function is denoted as Sig , the input 

feature to the output layer is signified as inF . 

Therefore, the UNet architecture for image de-noising is comprised of numerous modules, with the contracting path 
being responsible for capturing low-level features and the expanding path being tasked with reconstructing the de-
noised image while maintaining critical details. Here, the loss function of the UNet is optimized using the EnGa 
algorithm. 

3.3.2. Enhanced Gazelle Optimization Algorithm: 

The Enhanced Gazelle optimization (EnGa) algorithm is created by incorporating self-adaptiveness into the basic 
Gazelle optimization algorithm to improve unpredictability. Here, the inclusion of self adaptiveness assists in enhancing 
the randomness in the algorithm, which leads to enhanced exploration for solving the local optimal solution. 

Localization of the candidates in the search boundary is the initial step of the algorithm, and the population of the 
candidate is described as follows: 
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The candidates in the search boundary are signified as P , the dimension of the solution is designated as b and n refers 

to the 
thn candidate. edw ,  refers to the solution estimated by the 

thd search agent. The solution evaluated by the 

search agent is described as: 

nnnnb DKJMw  )(,                              (7) 

Here, the search boundaries of the EnGa algorithm are defined as nJ and nK  that refers to its lower and upper limits, 

and the arbitrary factor is signified as M . After locating the candidates, the feasibility is evaluated through the fitness 
and is defined as: 
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Here, required and estimated solutions by the candidate are signified as Pi and iP̂ respectively, and the total solutions 

are defined asTs . The solutions acquired by the candidates close to the target occupy the top rank in the Ranking list 

and are expressed as: 
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where, 'w refers to the ranked candidates based on the solutions acquired in the present iteration. The Brownian 

movement and levy flight are two different tactics used by the candidates to capture the solution. 

Exploitation 

 The candidates exhibit erratic movements to evade predators, which resemble the Brownian motion observed in 
physics. Thus, gazelles move randomly in different directions to explore the solution space. Because of its randomness, 
the algorithm can successfully traverse the whole search space and escape from local optima. It is described as: 

 pSpSpp WDTRDDhWW ***.1


                              (10) 

Here, the solution arrived at by the candidates through the exploration phase is denoted as 1pW , and the resolution 

reached during the preceding cycle is denoted as pW . The candidates move towards the target with the speed of h to 

capture the target. The Brownian movement based factor indicated arbitrarily is signified as SD


, and random 

distribution is denoted as D


with the range [0, 1]. Self-adaptation is included and defined as a means of augmenting the 
randomness of the optimization: 

 ppp WTRZWSA  1    (11) 

Here, the self adaptiveness is defined as SA , the control factor is signified as Z , the top ranked solution is defined as 

pTR , and the solution accomplished by the candidate in the previous iteration is defined as pW . The solution 

accomplished by the proposed EnGa is expressed as: 

   
GazellepEnGap WSAW 11 *        (12) 

Here, through the incorporation of self adaptiveness, randomization is enhanced, and hence, local optimal trapping is 
eliminated. 

Exploration 

 The identification of the target is captured in this phase, and the solution accomplished is described as: 

















 pppp WDTRDDEWW RR ***..1                               (13) 

Here, the candidate with the highest motion capability is referred as E , and the levy flight is denoted as RD


. The 

sudden change in direction is denoted as  , and the movement of the predator is described as: 

















 ppSpp WDTRDXEWW R ***..1


    (14) 

The parameter utilized for controlling the predator motion is signified as X and is described as: 
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The solution acquired by the candidate based on randomness is described as: 
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Here, the binary factor is signified as
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2.0,0
 and arbitrary values are indicated as 1y and 2y . 

Finally, for all the candidate solutions, the feasibility is evaluated based on fitness. Algorithm 1 presents the proposed 
EnGa's pseudo-code. 

Algorithm 1 Pseudo-code for EnGa Algorithm 

Pseudo-code for EnGa Algorithm 

1 Initialize the parameters: Iteration, population, and boundaries 

2 { 

3 Locate the search agents 

4 

Estimate the ranking based on  
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5 While 

6 { 

7 Pmax<P  

8 
Evaluate the solution using    

GazellepEnGap WSAW 11 *    

9 

Evaluate the solution using 
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10 } 

11 

Re-check the feasibility using  
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12 ++p=p  

13 } 

14 End 

 

In order to achieve more precise de-noising, the loss function optimization is created using the discovered global 
optimal solution.  
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4. Result and Discussion 

The proposed method is implemented in PYTHON and is assessed based on various measures using two datasets. The 
proposed method is contrasted with current approaches such as ADMM [21], DEEP-JOINT [22], FLEXISP [23], and Deep 
Residual DRDD [24] to depict the supremacy of the proposed method. 

4.1. Dataset Description 

McMaster Dataset: The McMaster dataset is a collection of images designed for colour de-mosaicking tasks. This dataset 
comprises 18 individual images, each of which has been cropped to a size of 500 pixels by 500 pixels. 

Kodak Dataset: A popular benchmark dataset in computer vision and image processing is the Kodak dataset. It is made 
up of a number of photos that have been carefully chosen and calibrated for different image quality evaluation activities. 

4.2. Experimental Outcome 

The experimental outcome of the proposed de-noising and de-mosaicking technique in terms of input, filtered, de-
nosing, and de-mosaicking is portrayed in Figure 5. 
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Filtered Outcome 

  

 

 

 

De-mosaicked Outcome 
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 (a) (b) 

Figure 5 Experimental Outcome: (a) McMaster Dataset and (b) Kodak dataset 

4.3. Analysis based on McMaster Dataset 

This section provides an in-depth analysis of the proposed approach using the McMaster Dataset based on the structural 
similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR) measures. A statistic called PSNR is used to 
compare an image's quality to an original or reference image. The PSNR is computed by comparing the ratio of a signal's 
maximal potential power to the amount of corrupting noise that affects the accuracy of the signal's representation. PSNR 
analysis is helpful when comparing the original image captured by a camera sensor to the quality of the de-mosaicked 
and de-noised image. Figure 6(a) shows the PSNR analysis of the proposed method performed using the McMaster 
Dataset. From the analysis, it is clear that the proposed technique produced better results. The SSIM based analysis is 
presented in Figure 6 (b). SSIM analysis is crucial in image de-mosaicking and de-noising processes. A more 
comprehensive evaluation of image quality is offered by taking into account both structural and perceptual similarities 
between the original and reconstructed results. Higher SSIM values indicate that the original image and the 
reconstructed image have a greater degree of preserved structural similarity. The proposed method acquired higher 
SSIM using the McMaster Dataset. 

  

(a) (b) 

Figure 6 Analysis based on McMaster Dataset: (a) PSNR and (b) SSIM 

4.4. Analysis based on Kodak Dataset 

The Kodak dataset based analysis is portrayed in Figure 7, wherein PSNR is presented in Figure 7(a) and SSIM is 
portrayed in Figure 7(b). The analysis using the Kodak dataset also acquired superior outcomes compared to the 
existing methods in PSNR and SSIM. 
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(a) (b) 

Figure 7 Analysis based on Kodak Dataset: (a) PSNR and (b) SSIM 

4.5. Comparative Discussion 

The comparative discussion for the proposed de-mosaicking and de-noising is presented in Table 1. The maximum PSNR 
calculated by the proposed approach is 46.65%, while the corresponding values for the ADMM, DEEP-JOINT, FLEXISP, 
and DRDD methods are 32.26%, 22.59%, 32.88%, and 22.02%. The proposed methods yields a maximum SSIM of 
98.89% and for the current ADMM, DEEP-JOINT, and FLEXISP methods, which are at 9.29, 11.62, and 12.73%. 

Table 1 Comparative Discussion 

Methods/ Metrics Kodak Dataset McMaster Dataset 

PSNR SSIM PSNR SSIM 

ADMM 31.6 87.9 32.63 89.7 

DEEP-JOINT 36.11 90.6 35.53 87.4 

FLEXISP 31.31 86.9 31.17 86.3 

DRDD 36.38 - 35.46 - 

Proposed  46.65 98.7 42.7 98.89 

The analysis based on the PSNR and SSIM portrays the superiority of the proposed image de-mosaicking and de-noising 
methods. The proposed method divides the image processing task into two stages: de-mosaicking and de-noising. By 
addressing these two aspects separately, the method can effectively tackle the challenges associated with each stage, 
leading to better overall performance. In the de-mosaicking stage, the proposed method incorporates a de-noising 
network specifically designed to remove structured noise resulting from de-mosaicking using the EnConvResNet 
method. By eliminating this noise, the method improves the quality of the de-mosaicked image. In the de-noising stage, 
adaptive UNet is utilized, wherein the loss function of the U-Net is employed using the EnGa algorithm. The EnGa 
optimization technique helps increase the generalization aptitude of the proposed model, allowing it to perform well 
on a wide range of images and scenarios. Before de-mosaicking and de-noising, the input image undergoes pre-
processing using Gaussian filtering. It enhances the quality of the input data fed into the network by assisting in 
removing artifacts from the input image. The method facilitates more accurate processing and lessens the load on the 
network by improving the network input. Thus, the enhanced outcome is derived from the proposed model. 

5. Conclusion 

This research introduced an image reconstruction technique with de-mosaicking and de-noising to address the 
limitations of existing de-mosaicking and de-noising models, particularly their failure in extreme conditions like 
imaging short exposure raw data. The proposed method focuses on developing an effective end-to-end solution. First, 
the image quality is improved by removing artifacts through the use of the Gaussian filtering technique during pre-
processing. Subsequently, the method integrates an EnConvResNet for de-mosaicking and an Adaptive U-net restoration 
model for de-noising. Hyper-parameters are fine-tuned using an EnGa algorithm to enhance the model's generalization 
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ability. Achieving a PSNR of 46.65 and an SSIM of 98.89 demonstrates the effectiveness of the proposed method. 
However, challenges remain in extreme conditions, and computational complexity may limit real-time applications. 
Future research could address these limitations, explore alternative optimization techniques, and extend the application 
of the method to broader image enhancement tasks. 
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