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Abstract 

This paper presents a study on the shallow water equations (SWEs) with specified Dirichlet and transmission boundary 
conditions (TBC). A Lagrange-Galerkin (LG) scheme is employed for numerical discretization. The stability of the 
solution is analyzed using energy estimates. The results shows that the total energy generally decreases over time and 
that the energy derivatives are non-positive, which confirms the numerical stability of the solution. 
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1. Introduction

The SWEs can be regarded as a coupled system consisting of a pure convection equation for the function 𝜙, representing 
the total wave height, and a simplified Navier-Stokes equation for the velocity 𝑢 = (𝑢1, 𝑢2)

𝑇 ,  derived by averaging
values in the 𝑥3-direction. These equations are frequently used to simulate events such as tsunamis or storm surges in 
bays. During such simulations, special boundary conditions are necessary at the open sea boundaries to prevent 
artificial reflections when waves propagate towards these boundaries (see Figure 1). To address this, a TBC, as 
described in [5], is applied on Γ𝑇, the boundaries in the open sea. This TBC effectively removes artificial reflections and 
is defined by: 

𝑢(𝑥, 𝑡) = 𝑐(𝑥)
𝜂(𝑥,𝑡)

𝜙(𝑥,𝑡)
𝑛(𝑥),  (1) 

where 𝑐(𝑥) is a positive function, 𝜂(𝑥, 𝑡) = 𝜙(𝑥, 𝑡) − 𝜁(𝑥) represents the elevation from the reference height for a given 
depth function 𝜁, and 𝑛(𝑥) is the unit normal vector at the boundary. 

Numerous studies, including [1–3, 7–14], have examined surge predictions due to tropical storms in the Bay of Bengal, 
which encompasses the coast of Bangladesh and the east coast of India. These studies typically employ radiation-type 
boundary conditions for the open sea boundaries, which are similar to the TBC described in [4]. According to [6], TBCs 
provide more accurate results for SWEs simulations than radiation boundary conditions. However, it is important to 
note that many of these studies focus on numerical results without confirming the mathematical stability of the model 
with such boundary conditions. 
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Figure 1 The Bay of Bengal and the coastal region of Bangladesh 

In [5], both theoretical and numerical stability analyses of the SWEs using TBCs were performed using finite difference 
methods (FDM). While FDM is suitable for rectangular or square domains, real-world domains are often irregular. For 
these complex shapes, the finite element method (FEM), especially with triangular meshes, is more appropriate. 

In computations, the "upwind point" 𝑥 − 𝑢𝑘(𝑥)Δ𝑡 is used. If this point lies outside the domain, the nearest boundary 
value of 𝜙𝑘 is used. The Lagrange Galerkin Method (LGM), which is an FEM based on time discretization of the material 

derivative, 
𝜙𝑘+1(𝑥)−𝜙𝑘(𝑥−𝑢𝑘(𝑥)𝛥𝑡)

𝛥𝑡
, is effective for these computations. Unlike FDM, which fails without boundary data for 

𝜙𝑘+1 if 𝑢𝑘+1 ⋅ 𝑛 < 0, LGM can work without boundary data under such conditions. 

This study investigates the stability of the SWEs with TBCs in terms of suitable energy estimates. The numerical 
confirmation of stability is achieved using the LGM with triangular meshes. These results will help to develop an efficient 
storm surge prediction model implementing FEM. 

1.1. Statement of the problem 

Following [5], the mathematical problem is formulated for this paper. Let Ω ⊂ ℝ2 be a bounded domain and 𝑇 a positive 

constant. We consider the problem of finding (ϕ, 𝑢): Ω × [0, 𝑇] → ℝ × ℝ2 such that 

{
 
 

 
 
𝜕𝜙

𝜕𝑡
+ ∇ ⋅ (𝜙𝑢) = 0                                                            𝑖𝑛 Ω × (0, 𝑇),

𝜌𝜙 [
𝜕𝑢

𝜕𝑡
+ (𝑢 ⋅ ∇)𝑢] − 2𝜇∇ ⋅ (𝜙𝐷(𝑢)) + 𝜌𝑔𝜙∇𝜂 = 0 𝑖𝑛 Ω × (0, 𝑇),

𝜙 = 𝜂 + 𝜁                                                                             𝑖𝑛 Ω × (0, 𝑇),

                                   (2) 

with boundary conditions 

𝑢  =  0                 on    Γ𝐷 × (0, 𝑇),                                                                                                        (3) 

𝑢  =  𝑐
𝜂

𝜙
𝑛         on    Γ𝑇 × (0, 𝑇),                                                                                                         (4) 

and initial conditions 

𝑢 = 𝑢0,  η = η0  in Ω,  at  𝑡 = 0,                                                                                               (5) 
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where 𝜙  is the total wave height, 𝑢 = (𝑢1, 𝑢2)
𝑇  is the velocity, 𝜂: Ω × [0, 𝑇] → ℝ  is the water level relative to the 

reference height, 𝜁(𝑥) > 0 (𝑥 ∈ Ω) is the depth of water from the reference height (see Figure 2). The strain-rate tensor 

𝐷(𝑢) ≔ (∇𝑢 + (∇𝑢)𝑇)/2, and 𝑛 is the unit outward normal vector to the boundary of Ω. The boundary Γ ≔ 𝜕Ω consists 

of two non-overlapping parts, Γ𝐷 and Γ𝑇 , i.e., Γ = Γ𝐷 ∪ Γ𝑇 ,  Γ𝐷 ∩ Γ𝑇 =  ∅. The subscripts 𝐷 and T denote Dirichlet and 
transmission boundaries, respectively. The constants ρ >  0 and μ > 0 represent the density and viscosity of water, 

respectively, while 𝑔 >  0 is the acceleration due to gravity, and 𝑐(𝑥) ≔ 𝑐0√𝑔ζ(𝑥) with a positive constant 𝑐0. In the 

rest of paper ζ ∈ 𝐶1(Ω) is assumed.  

 

Figure 2 Model domain (see [5]) 

1.2. Energy estimate 

According to [5], for a solution of (2) the total energy E(t) at time t ∈ [0, T] is defined by 

𝐸(𝑡) ≔ 𝐸1(𝑡) + 𝐸2(𝑡),                                                                                                                          (6)  

where 𝐸1(𝑡) ≔ ∫
𝜌

2
𝜙|𝑢|2

Ω
𝑑𝑥 is the kinetic energy and 𝐸2(𝑡) ≔ ∫

𝜌𝑔|𝜂|2

2
𝑑𝑥

Ω
 is the potential energy. Also, the derivative of 

the total energy (see [5]) is defined by 

𝑑

𝑑𝑡
𝐸(𝑡) = ∑𝐼𝑖(𝑡; Γ)

3

𝑖=1

+ 𝐼4(𝑡; Ω),                                                                                                        (7) 

where 

𝐼1(𝑡; Γ) ≔ −
ρ

2
∫ ϕ|𝑢|2
Γ

𝑢 ⋅ 𝑛 𝑑𝑠, 

 𝐼2(𝑡; Γ) ≔ −ρ𝑔 ∫ ϕη
Γ

𝑢 ⋅ 𝑛 𝑑𝑠, 

𝐼3(𝑡; Γ) ≔ 2μ∫ ϕ[𝐷(𝑢)𝑛]
Γ

⋅ 𝑢 𝑑𝑠,  

and 𝐼4(𝑡; Ω) ≔ −2μ∫ ϕ|𝐷(𝑢)|2
Ω

𝑑𝑥. 

1.3. LG scheme 

Following [5] an LG scheme is considered as follows: 

Let 𝒯𝒽 = {𝐾} be a triangulation of Ω, and 𝑀ℎthe so-called P1 (piecewise linear) finite element space. We set Ψℎ  ≔ 𝑀ℎ 
for the water level η, and 
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𝑉ℎ(ψℎ) ≔ {𝑣ℎ ∈ 𝑀ℎ
2; 
𝑣ℎ(𝑄)=0,                                              ∀𝑄: node on Γ𝐷

𝑣ℎ(𝑃)=𝑐(𝑃)
𝜓ℎ(𝑃)−𝜁(𝑃)

𝜓ℎ(𝑃)
𝑛(𝑃),    ∀𝑃: 𝑛𝑜𝑑𝑒 𝑜𝑛 Γ𝑇

} 

for the velocity 𝑢. The LG scheme is to find {(ϕℎ
𝑘 , 𝑢ℎ

𝑘)}
𝑘=1

𝑁𝑇
⊂ Ψℎ × 𝑉ℎ such that, for 𝑘 = 1,… ,𝑁𝑇 , 

{
 
 
 
 

 
 
 
 ∫

𝜙ℎ
𝑘 − 𝜙ℎ

𝑘−1̃ ∘ 𝑋1ℎ
𝑘−1𝛾ℎ

𝑘−1

Δ𝑡Ω

𝜓ℎ𝑑𝑥 = 0,                                              ∀𝜓ℎ ∈ Ψℎ ,                                 

𝜌 ∫ 𝜙ℎ
𝑘
𝑢ℎ
𝑘 − 𝑢ℎ

𝑘−1̃ ∘ 𝑋1ℎ
𝑘−1

Δ𝑡Ω

⋅ 𝑣ℎ𝑑𝑥 + 2𝜇∫𝜙ℎ
𝑘𝐷(𝑢ℎ

𝑘)
Ω

: 𝐷(𝑣ℎ)𝑑𝑥                                                  (8)  

+𝜌𝑔∫𝜙ℎ
𝑘

Ω

∇𝜂ℎ
𝑘 ⋅ 𝑣ℎ𝑑𝑥 = 0,                                                                 ∀𝑣ℎ ∈ 𝑉ℎ ,                                   

𝜙ℎ
𝑘 = 𝜂ℎ

𝑘 + Πℎ
FEM𝜁,                                                                                                                                          

 

where 𝑋1ℎ
𝑘 (𝑥) ≔ 𝑥 − 𝑢ℎ

𝑘(𝑥)Δ𝑡, γℎ
𝑘: Ω → ℝ is defined by 

 γℎ
𝑘(𝑥) ≔ det (

∂𝑋1ℎ
𝑘 (𝑥)

∂𝑥
),  

the symbol "∘"  represents the composition of functions, i.e., [𝑣ℎ ∘ 𝑋1ℎ
𝑘 ](𝑥) ≔ 𝑣ℎ (𝑋1ℎ

𝑘 (𝑥)) , Πℎ
FEM: 𝐶(Ω) → 𝑀ℎ  is the 

Lagrange interpolation operator, and 

  ψℎ̃(𝑥) = {
ψℎ(𝑥), 𝑥 ∈ Ω,

ψℎ(𝑃𝑥),          𝑥 ∈ ℝ2 ∖ Ω,
 

where 𝑃𝑥 ∈  Γ is the “nearest” nodal point from 𝑥. 

In each step, firstly, ϕℎ
𝑘 ∈ Ψℎ  is obtained from the first equation of scheme (8). Secondly, 𝑢ℎ

𝑘 ∈ 𝑉ℎ  is obtained by using 

ϕℎ
𝑘  from the second equation. 

In the first equation of (8), the idea of mass conservative LG scheme [15] is employed. 

2. Numerical results 

In this section numerical results are presented. 

2.1. Problem setting 

For the numerical computation we set Ω = (0, 𝐿)2 for a positive constant 𝐿, 𝑇 = 100, ζ = 𝑎 >  0,  μ = 1, 𝑔 = 9.8 × 10−3, 
ρ = 1012, η0 = 𝑐1 exp(−100|𝑥 − 𝑝|

2)  (𝑐1 > 0, 𝑝 ∈ Ω). As the real domain is very large, we consider the length in km 
scale. So, the above values are in km (length), kg (mass) and s (time). 

We consider five cases of Γ𝑇:  

(i) Γ𝑇 = ∅,  

(ii) Γ𝑇 = Γtop,  

(iii) Γ𝑇 = Γtop ∪ Γright ∪ {(𝐿, 𝐿)},  

(iv) Γ𝑇 = Γtop ∪ Γright ∪ Γleft ∪ {(𝐿, 𝐿)} ∪ {(0, 𝐿)},  

(v) Γ𝑇 = Γ, 

for Γtop ≔ {(𝑥1, 𝐿); 0 < 𝑥1 < 𝐿}, Γright ≔ {(𝐿, 𝑥2); 0 < 𝑥2 < 𝐿}, Γleft ≔ {(0, 𝑥2); 0 < 𝑥2 < 𝐿}, and set  Γ𝐷 = Γ ∖ Γ𝑇 . For the 

above cases (ii)—(v), 𝑐0 = 0.9 is taken following [5].  

2.2. Numerical study of energy estimate 
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In this subsection, we study the stability of solutions to the problem (2)—(5) numerically by scheme (8) in terms of the 
energy 𝐸(𝑡) defined in (6). 

The values of 𝐸(𝑡𝑘) and 𝐼𝑖(𝑡
𝑘; Γ), 𝑖 = 1,2,3, 𝐼4(𝑡

𝑘; Ω) are approximately computed by using solution {(𝑢ℎ
𝑘, ϕℎ

𝑘)}
𝑘=1

𝑁𝑇
 with 

{ηℎ
𝑘}𝑘=1
𝑁𝑇  of scheme (8) as 

𝐸(𝑡𝑘) ≈ 𝐸ℎ
𝑘 ≔ ∫

ρ

2
(ϕℎ

𝑘)|𝑢ℎ
𝑘|
2

Ω
𝑑𝑥 + ∫

ρ𝑔

2Ω
|ηℎ
𝑘|
2
𝑑𝑥, 

𝐼1(𝑡
𝑘; Γ) ≈ 𝐼ℎ1

𝑘 ≔ −
ρ

2
∫ (ϕℎ

𝑘)|𝑢ℎ
𝑘|
2
(𝑢ℎ

𝑘)
Γ

⋅ 𝑛 𝑑𝑠, 

𝐼2(𝑡
𝑘; Γ) ≈ 𝐼ℎ2

𝑘 ≔ −ρ𝑔 ∫ (ϕℎ
𝑘)(ηℎ

𝑘)(𝑢ℎ
𝑘)

Γ
⋅ 𝑛 𝑑𝑠,  

𝐼3(𝑡
𝑘; Γ) ≈ 𝐼ℎ3

𝑘 ≔ 2μ∫ (ϕℎ
𝑘)(𝐷(𝑢ℎ

𝑘)𝑛)
Γ

⋅ (𝑢ℎ
𝑘) 𝑑𝑠, 

𝐼4(𝑡
𝑘; Ω) ≈ 𝐼ℎ4

𝑘 ≔ −2μ∫ (ϕℎ
𝑘)|𝐷(𝑢ℎ

𝑘)|
2

Ω
 𝑑𝑥. 

Numerical simulations for the problem (2)—(5) with 𝐿 = 1, 𝑎 = 0.1, 𝑢0 = 0, 𝑐1 = 0.001,   𝑝 = (0.5, 0.5)𝑇 are carried out 
by scheme (8) with Δ𝑡 = 2ℎ, ℎ = 0.007, 0.0047, 0.0035 and   0.0028, where ℎ is the maximum edge length of the triangle 
element.  

3. Result and discussion  

The results are presented in Figs. 3, 4 and 5, where (i)—(v) in the figures represent the cases (i)—(v) described in the 
subsection 2.1. The graphs of 𝐸ℎ

𝑘  and ∑ 𝐼ℎ𝑖
𝑘4

𝑖=1  versus 𝑡 = 𝑡𝑘(𝑘 ∈ ℕ)  are presented in the Figure 3 and Figure 4, 
respectively. There are four lines in each figure, but the lines are almost overlapped in the cases of (ii)—(v). In the case 
of (i) the graphs are qualitatively similar. The Figure 5 shows the graphs of 𝐼ℎ𝑖

𝑘 , 𝑖 = 1, … ,4 versus 𝑡 = 𝑡𝑘(𝑘 ∈ ℕ) for 𝑑𝑡 =
0.0056 and 𝑑𝑥 = 0.0028. From the numerical results presented in Figure 3, it can be found that the total energy is 
mainly decreasing with respect to time. In the case of (i), i.e.,   Γ = Γ𝐷, we can see that the graphs are increasing in the 
Figure 3, while the values are small.   We think this is because of numerical truncation error. But it can be seen that as 
the number of points in computation increases, the results seem to converge to a stable state. From the Figure 4 it can 
be clearly seen that the sum ∑ 𝐼ℎ𝑖

𝑘4
𝑖=1  corresponding to the derivative of the total energy is always non-positive, which 

confirms the stability of solutions to the model numerically.  
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Figure 4 Graphs of 𝑬𝒉
𝒌  versus 𝒕 = 𝒕𝒌(≥ 𝟎, 𝒌 ∈ ℤ) for the five cases (i)—(v). 
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Figure 5 Graphs of ∑ 𝑰𝒉𝒊
𝒌𝟒

𝒊=𝟏 ≈
𝒅

𝒅𝒕
𝑬(𝒕) versus 𝒕 = 𝒕𝒌(≥ 𝟎, 𝒌 ∈ ℤ) for the five cases (i)—(v). 
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Figure 6 Graphs of 𝑰𝒉𝒊
𝒌 , 𝒊 = 𝟏,…, 4 versus 𝒕 = 𝒕𝒌(≥ 𝟎, 𝒌 ∈ ℤ) for the five cases (i)—(v). 

4. Conclusion 

This study analyzed the SWEs using a LG scheme with specified Dirichlet and transmission boundary conditions. The 
stability of the numerical solution was confirmed through energy estimates, which demonstrated that the total energy 
generally decreases over time, with non-positive energy derivatives. The results, particularly the consistency observed 
across different cases and the convergence towards a stable state as the number of computational points increased, 
validate the numerical stability of the model. These findings contribute valuable insights for the development of an 
efficient storm surge prediction model using the FEM. 
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