

From waste to resource: An interdisciplinary analysis of crumb rubber modified asphalt for sustainable pavement solutions

Lakshmikant Kashinath Kokate ^{1,*} and Rajaram Masaji Damgir ²

¹ Research Scholar, Dr. Babasaheb Ambedkar Marathwada University, Chh. Sambhajinagar (Aurangabad) (MS), India.

² Retired Associate Professor, Department of Civil Engineering, Government College of Engineering Aurangabad, Chh. Sambhajinagar (Aurangabad) (MS), India.

World Journal of Advanced Engineering Technology and Sciences, 2024, 13(02), 1029-1036

Publication history: Received on 24 September 2024; revised on 19 November 2024; accepted on 28 November 2024

Article DOI: <https://doi.org/10.30574/wjaets.2024.13.2.0537>

Abstract

Crumb rubber-modified asphalt (CRMA) has emerged as an effective solution to the environmental and performance issues associated with traditional pavement materials. This review presents an in-depth examination of interdisciplinary research on CRMA, emphasizing the convergence of materials science, civil engineering, environmental engineering, and policy frameworks in advancing this innovative technology. The paper addresses technical challenges, including variability in crumb rubber properties and the implications for mixing and compaction temperatures. Strategies to mitigate these challenges, such as advanced processing techniques and the use of warm-mix asphalt technologies, are discussed. Additionally, the review considers the environmental and economic aspects of CRMA, highlighting opportunities and barriers to its broader adoption. The importance of supportive policy and regulatory frameworks in facilitating CRMA implementation is also underscored. This comprehensive review illustrates the critical role of an interdisciplinary approach in developing more sustainable and resilient transportation infrastructure.

Keywords: Crumb rubber modified asphalt; Interdisciplinary study; Sustainable pavement; Warm-mix asphalt; Environmental impact; Policy frameworks

1. Introduction

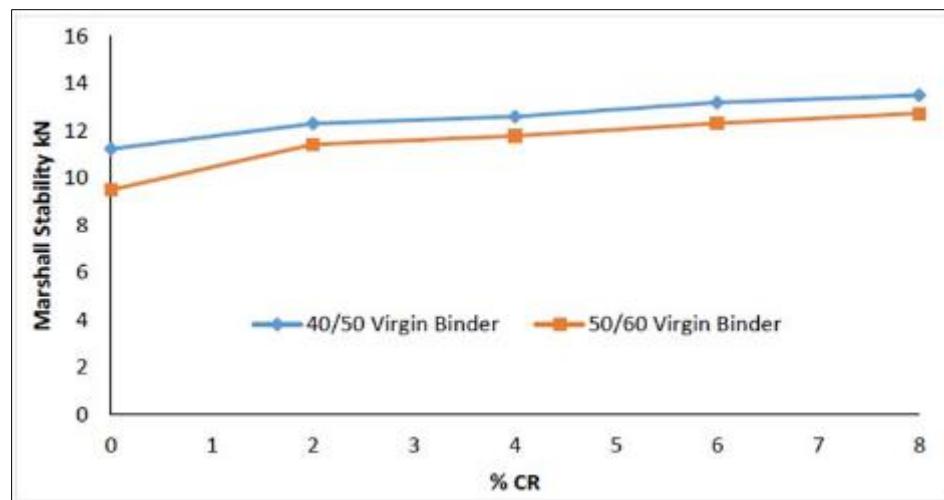
The disposal of waste tires presents a significant environmental challenge for many countries. An effective solution is the incorporation of crumb rubber, derived from these waste tires, into asphalt mixtures for road construction. This method not only offers a sustainable means of tire disposal but also has the potential to improve the performance and durability of asphalt pavements. Crumb rubber-modified asphalt has attracted considerable interest from researchers across multiple disciplines, including civil engineering, materials science, and environmental science. [1] [2] [3] [4]. Studies generally suggest that incorporating crumb rubber into asphalt enhances pavement resistance to rutting, fatigue, and other forms of distress. Additionally, the use of crumb rubber can potentially lower construction and maintenance costs while supporting sustainability efforts. Extensive research has focused on the chemical composition of crumb rubber and its interaction with asphalt binders. This research is driven by the need to address environmental concerns, economic efficiency, and infrastructure longevity. The pavement industry is actively exploring new materials and technologies to reduce carbon emissions, integrate recycled content, and improve roadway durability and performance. The use of recycled waste materials, such as crumb rubber, along with alternative mixing technologies like warm-mix asphalt, holds significant potential for reducing CO₂ emissions. [5].

* Corresponding author: L. K. Kokate

This review paper offers a thorough analysis of the current state of Interdisciplinary research on crumb rubber-modified asphalt (CRMA). It examines the chemical and rheological properties, mixture design, and field performance of CRMA, which has gained considerable attention as a sustainable method for integrating waste tire rubber into asphalt pavements.

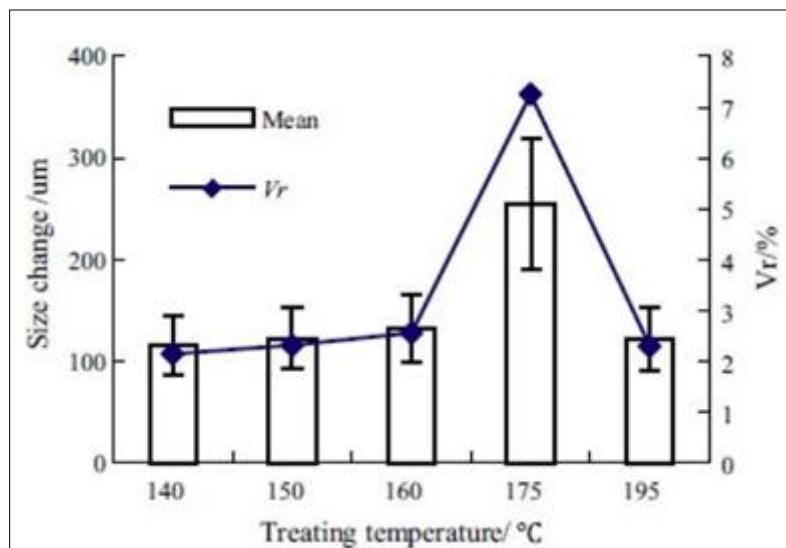
The impact of this Interdisciplinary approach could be significant for researchers, policymakers, and the asphalt industry. Researchers may use the review to direct future studies and identify areas requiring further exploration. Policymakers can utilize the insights to make informed decisions regarding the integration of CRMA into transportation infrastructure projects, taking into account its environmental and public health implications. For the asphalt industry, the review provides valuable information on the performance and durability of CRMA relative to traditional asphalt, potentially leading to more sustainable and cost-effective practices. Overall, this review is instrumental in advancing the development of more sustainable and resilient transportation infrastructure systems.

2. Interdisciplinary Perspectives on CRMA


Interdisciplinary research, which integrates expertise from fields such as civil engineering, materials science, and environmental science, is crucial for addressing complex issues like crumb rubber-modified asphalt (CRMA). This approach leverages diverse perspectives to uncover innovative and sustainable solutions. Examples of such research include the development of bio-inspired construction materials, the integration of green infrastructure into urban planning, and advancements in technologies for climate change monitoring and mitigation. The strength of transdisciplinary in studying CRMA lies in its ability to offer a holistic perspective, leading to more effective and sustainable outcomes.

CRMA represents an innovative approach that incorporates recycled rubber from waste tires into asphalt mixtures. This method not only addresses environmental concerns by repurposing waste materials but also aims to enhance the mechanical properties and durability of asphalt pavements. However, the engineering performance of CRMA—encompassing workability, rheological characteristics, and resistance to various stresses—is affected by factors such as the mixing process, types of additives used, and environmental conditions.

The chemical and physical properties of crumb rubber, as well as its interaction with the asphalt binder, are critical in determining the overall performance of CRMA. For instance, factors such as particle size, surface area, and the degree of devulcanization of the crumb rubber can significantly impact binder-rubber interactions and the resultant mechanical properties of the asphalt mixture [6][7]. Crumb rubber-modified asphalt (CRMA) often demonstrates reduced workability due to its increased viscosity, which can lead to higher construction temperatures and greater energy consumption. To address these challenges, the use of warm mix asphalt (WMA) additives can be beneficial. These additives improve workability while minimally affecting the material's mechanical properties. The incorporation of crumb rubber into the asphalt binder increases its stiffness and viscosity, enhancing rutting resistance. However, this improvement in rutting resistance may sometimes be accompanied by a reduction in fatigue performance. The extent of these effects can also be influenced by the type and quantity of additives employed, such as WMA chemicals or other composite materials.[8][9].


2.1. Engineering Perspective

Regarding engineering performance, CRMA demonstrates enhanced resistance to rutting, fatigue cracking, and thermal cracking compared to traditional asphalt. The performance of asphalt mixtures is significantly affected by the distribution and interaction of crumb rubber within the mixture[10] [11]. An experimental investigation was conducted by varying rubber content of 40/50 and 50/60 penetration grade, and it can be observed from figure 1 that as the rubber content increases, stability is enhanced [12] [13].

Figure 1 Marshal Stability at varying rubber content

Incorporating waste PET additives with crumb rubber into the asphalt binder not only supports the recycling of waste materials but also improves the binder's storage stability and its resistance to rutting and fatigue [9]. For optimal CRMA performance, ideal conditions include using approximately 20% crumb rubber, maintaining a preparation temperature below 195°C, and limiting the processing time to under 1.5 hours to avoid excessive degradation[14]. Approximately 175°C, the rubber reaches its maximum swelling capacity. However, prolonged thermal exposure beyond this temperature can cause degradation, reducing the volume of the rubber particles and leading to a decrease in the rate of volume expansion Figure 2 Treating temperature vs Size changeFigure 2 [14].

Figure 2 Treating temperature vs Size change

Crumb rubber-modified asphalt (CRMA) offers substantial environmental and engineering benefits, making it a viable option for sustainable pavement construction. The use of warm mix asphalt additives and other composite materials can further improve the workability and performance characteristics of CRMA. Effective conditioning and optimization of the preparation process are essential to fully realize the advantages of CRMA. When properly implemented, CRMA has the potential to deliver durability and environmental sustainability comparable to traditional modified asphalt mixtures across a range of applications.

2.2. Environmental Science

From an environmental science perspective, the investigation of crumb rubber modified asphalt (CRMA) necessitates an evaluation of its implications for resource conservation, emissions reduction, energy utilization, and overall sustainability. The incorporation of waste tires through crumb rubber serves as a strategy to divert these materials from

landfills, thereby mitigating their environmental impact [10] [15]. This approach not only contributes to resource conservation but also enhances waste management by repurposing waste tires. Moreover, CRMA has been shown to produce lower emissions of carbon monoxide and methane (CH_4) compared to traditional hot mix asphalt [1]. The integration of warm mix asphalt technologies in CRMA formulations can further reduce energy consumption and emissions during production and application, resulting in significant fuel savings (approximately 20-25%) and improved mechanical properties, such as enhanced rutting resistance, fatigue performance, and low-temperature durability[16] [17]. Sustainability assessments of these environmentally favorable asphalt mixtures, including CRMA, are essential to accurately quantify their environmental benefits and potential trade-offs. Research indicates that leachate from CRMA does not pose a significant environmental threat, rendering it a safe option for pavement applications [18]. Additionally, the use of crumb rubber can contribute to noise reduction from pavement surfaces, while the incorporation of bio-asphalt with crumb rubber may further improve environmental sustainability by decreasing reliance on petroleum-based products [19].In conclusion, crumb rubber modified asphalt represents a sustainable and environmentally responsible approach to waste tire management. It aids in the conservation of natural resources, reduces landfill waste, and lowers greenhouse gas emissions. The addition of warm mix asphalt additives amplifies its environmental benefits by decreasing energy consumption and reducing harmful emissions. The enhanced mechanical performance of CRMA further supports its viability as an environmentally friendly alternative to conventional asphalt mixtures.

2.3. Chemistry/Materials Science

From a materials science perspective, the incorporation of crumb rubber into asphalt binders leads to significant alterations in the chemical and physical characteristics of the modified binder [20] [21]. Crumb rubber interacts with asphalt through both physical swelling and chemical reactions, releasing smaller molecules that dissolve into the asphalt, thereby enhancing its properties [14]. Furthermore, the degradation of crumb rubber at elevated temperatures improves the binder's storage stability and workability, with critical degradation temperatures identified around 260°C [22].

The high surface area and irregular structure of crumb rubber particles enable improved interfacial interactions with the asphalt binder, resulting in enhanced viscosity, stiffness, and elasticity. Crumb rubber modified asphalt exhibits improved high-temperature performance, increased stiffness, and better rutting resistance, although it may experience reduced fatigue performance [23] [24]. The incorporation of crumb rubber enhances the viscoelastic properties and viscosity of the asphalt, contributing to greater resistance to permanent deformation [25].

The optimal conditions for preparing CRMA involve using approximately 20% crumb rubber, maintaining preparation temperatures below 195°C, and limiting processing times to under 1.5 hours to prevent excessive degradation . Additionally, the type of crumb rubber and the interaction conditions, such as temperature and time, play a significant role in determining the final properties of CRMA, with more intense interaction conditions leading to improved performance. [15] [10]

Crumb rubber modified asphalt offers enhanced mechanical properties, including improved rutting resistance, fatigue performance, and low-temperature performance, making it a promising material for pavement construction. The modification process involves complex physical and chemical interactions between the crumb rubber and the asphalt binder. Incorporating crumb rubber into asphalt enhances pavement performance while providing environmental benefits by recycling waste materials and decreasing the reliance on virgin resources [26].

2.4. Economics

From an economic perspective, the integration of crumb rubber into asphalt mixtures presents both challenges and opportunities. Although the initial costs associated with incorporating crumb rubber are generally higher due to additional processing and material expenses, the long-term benefits of crumb rubber modified asphalt (CRMA)—such as improved durability, reduced maintenance requirements, and extended pavement lifespan—can offset these initial expenditures. Moreover, CRMA can lead to cost savings by reducing the necessity for landfilling waste tires, which often involves disposal fees. The development of CRMA also has the potential to create new economic opportunities, including the establishment of crumb rubber processing facilities and the expansion of the recycling industry. The economic viability of CRMA is influenced by factors such as the local availability of waste tires, the costs related to processing crumb rubber, and the long-term performance and maintenance requirements of CRMA pavements. Ultimately, CRMA offers significant cost savings by reducing reliance on virgin materials and extending the service life of pavements, which in turn lowers maintenance costs[27]. The incorporation of crumb rubber into asphalt not only leads to substantial savings but also supports a more sustainable approach to pavement construction and maintenance. By addressing the

issue of waste tire disposal, CRMA fosters a circular economy by recycling end-of-life tires into valuable materials for road construction [28].

Furthermore, the production and utilization of CRMA can stimulate local and regional economies by creating new economic opportunities, such as the development of crumb rubber processing facilities and the growth of the recycling industry. Life cycle cost analyses indicate that CRMA is a more cost-effective option compared to traditional asphalt mixtures, particularly when long-term savings in maintenance and material costs are considered. Evaluating CRMA from an economic standpoint highlights its potential for substantial cost savings, resource efficiency, and long-term economic benefits. By repurposing waste tires into valuable construction materials, CRMA not only addresses environmental challenges but also offers a cost-effective solution for road construction and maintenance. The enhanced performance and durability of CRMA pavements further bolster its economic attractiveness, positioning it as a viable alternative to conventional asphalt mixtures.

3. Policy and Regulation

From a policy and regulatory perspective, the use of crumb rubber modified asphalt (CRMA) in pavement construction and rehabilitation has attracted considerable attention due to its environmental and performance benefits. Numerous countries and regions have implemented policies and regulations aimed at promoting the adoption of CRMA, recognizing its potential to mitigate the growing issue of waste tire disposal while simultaneously enhancing pavement quality [15] [2].

In the United States, the Federal Highway Administration (FHWA) has been proactive in encouraging the use of CRMA through various initiatives and funding programs. Several states have enacted legislation that mandates the use of CRMA in a specified percentage of paving projects, with some states offering financial incentives to further encourage its adoption.

Similarly, the European Union has recognized the environmental and economic benefits of CRMA and has implemented policies and directives to facilitate its widespread use. Several European countries, including the United Kingdom, Germany, and Italy, have established regulations and guidelines to promote the incorporation of crumb rubber into asphalt mixtures.

Globally, the increasing emphasis on sustainable practices within the construction industry has significantly boosted the demand for crumb rubber modified asphalt (CRMA). Regulatory bodies and policymakers have played a crucial role in fostering an environment conducive to the widespread adoption of CRMA, acknowledging its capacity to address environmental challenges, improve pavement performance, and support a circular economy.

In conclusion, the application of crumb rubber modified asphalt in pavement construction and rehabilitation provides an interdisciplinary approach to addressing environmental, economic, and policy-related challenges.

4. Synergies and Conflicts: Integrating Disciplinary Insights

The development and implementation of crumb rubber modified asphalt involve the integration of expertise from various academic disciplines, including materials science, civil engineering. From a materials science perspective, researchers have thoroughly explored the complex physical and chemical interactions between crumb rubber and asphalt binder, leading to a deeper understanding of the mechanisms that contribute to the enhanced performance characteristics of crumb rubber modified asphalt (CRMA). These investigations have focused on the rheological properties, viscoelastic behavior, and compatibility of the crumb rubber-asphalt blend, yielding critical insights that inform the design and optimization of CRMA mixtures.

In the field of civil engineering, significant efforts have been devoted to assessing the engineering performance of CRMA pavements. Studies have examined properties such as rutting resistance, fatigue life, and durability, demonstrating that CRMA exhibits superior mechanical properties compared to traditional asphalt mixtures. These findings underscore the potential of CRMA to improve the longevity and serviceability of road infrastructure.

The environmental engineering discipline has played an essential role in quantifying the environmental benefits of CRMA, including its capacity to reduce greenhouse gas emissions, lower energy consumption, and mitigate the environmental impact associated with waste tire disposal. These insights have been pivotal in promoting CRMA as a sustainable option for pavement construction and rehabilitation.

Policy and regulatory frameworks have also been instrumental in the broader adoption of CRMA. Policymakers and regulatory bodies have acknowledged the environmental, economic, and performance benefits of CRMA and have introduced policies, incentives, and mandates to encourage its use, thereby creating a supportive environment for the deployment of this innovative technology.

The integration of these diverse disciplinary perspectives has been critical to the development and successful implementation of crumb rubber modified asphalt. By harnessing the synergies between materials science, civil engineering, environmental engineering, and policy frameworks, the Interdisciplinary approach to CRMA has facilitated a comprehensive understanding of its potential and supported its widespread adoption as a sustainable and high-performing pavement solution.

5. Challenges and Opportunities for CRMA

5.1. Technical Challenges

While crumb rubber modified asphalt (CRMA) offers numerous benefits, several technical challenges remain that need to be addressed. One significant challenge is the variability in the properties of crumb rubber, which can be influenced by factors such as the source, particle size, and processing methods [11]. To address this issue, researchers and industry professionals have investigated various techniques to enhance the consistency and performance of CRMA, including advanced processing methods and the use of engineered crumb rubber.

Another challenge is the potential for increased energy consumption and emissions during the production and paving of CRMA due to reduced mixing and compaction temperatures. Warm-mix asphalt technologies have been extensively studied as a solution to this issue, enabling the production and placement of CRMA at lower temperatures while maintaining the desired performance characteristics.

5.1.1. Environmental and Economic Considerations

The environmental and economic benefits of CRMA are well-documented, but challenges remain that must be addressed. The cost of CRMA is often higher than that of traditional asphalt mixtures, which can be a barrier to widespread adoption, especially in regions with limited funding for infrastructure projects. To address this, researchers and industry stakeholders have explored strategies to reduce the cost of CRMA, such as optimizing crumb rubber content, developing more efficient processing techniques, and investigating alternative waste materials as potential modifiers.

From an environmental standpoint, the disposal and management of waste tires continue to pose significant challenges. While CRMA provides a solution for diverting waste tires from landfills and other environmentally harmful disposal methods, it is essential to thoroughly evaluate and optimize the overall environmental impact of the CRMA lifecycle, including the processing and transportation of crumb rubber.

5.1.2. Policy and Regulatory Frameworks

The successful implementation of CRMA is highly dependent on supportive policy and regulatory frameworks. Policymakers and regulatory bodies play a crucial role in creating an enabling environment for the widespread adoption of CRMA by implementing incentives, mandates, and policies that encourage the use of sustainable pavement technologies.

5.1.3. Opportunities for Further Research and Development

The Interdisciplinary nature of CRMA research and development presents numerous opportunities for further advancements. Ongoing research in areas such as novel crumb rubber processing techniques, the development of high-performance CRMA mixtures, and the optimization of the CRMA lifecycle can contribute to the continued improvement and adoption of this technology.

Moreover, the integration of CRMA with emerging pavement technologies, such as smart pavement systems and autonomous vehicles, offers new possibilities for enhancing the performance, sustainability, and resilience of transportation infrastructure.

6. Conclusion

The Interdisciplinary study of crumb rubber modified asphalt (CRMA) has been pivotal in the development and successful implementation of this innovative pavement technology. The collaboration across disciplines—including materials science, civil engineering, environmental engineering, and policy frameworks—has facilitated a comprehensive understanding of the benefits and challenges associated with CRMA, thereby supporting its widespread adoption as a sustainable and high-performing pavement solution.

Although technical, environmental, economic, and policy-related challenges remain, the opportunities for further research and development, along with the integration of CRMA with emerging pavement technologies, offer significant potential for the continued advancement of this field. The Interdisciplinary approach to CRMA research and development has been essential in advancing the transition towards more sustainable and resilient transportation infrastructure and will continue to be a key driver of innovation in the pavement industry.

Compliance with ethical standards

Acknowledgement

The author sincerely acknowledges the valuable guidance and continuous support of Dr. R. M. Damgir throughout the course of this research. Gratitude is also extended to the Department of Civil Engineering, Government College of Engineering Aurangabad, for providing the necessary facilities and encouragement.

Statement of ethical approval

The authors declare that the research work was conducted in accordance with ethical standards and institutional guidelines.

Discloser of conflict of interest

The authors declare that there is no conflict of interest relevant to this study.

References

- [1] M. G. Al-Khuzaie, B. H. Al-Humeidawi and R. F. Al-Sa'idi, Assessment of the mechanical properties of concrete pavement containing crumb rubber of tires 2020.. IOP Publishing, 737(1), 012141-012141. <https://doi.org/10.1088/1757-899x/737/1/012141>
- [2] Alfayez, S A, Suleiman, A R., & Nehdi, M L. (2020, October 31). Recycling Tire Rubber in Asphalt Pavements: State of the Art. Multidisciplinary Digital Publishing Institute, 12(21), 9076-9076. <https://doi.org/10.3390/su12219076>
- [3] Joni, H H., & Abed, A H. (2022, January 1). Evaluation The Moisture Sensitivity of Asphalt Mixtures Modified with Waste Tire Rubber. IOP Publishing, 961(1), 012029-012029. <https://doi.org/10.1088/1755-1315/961/1/012029>
- [4] Oukovómu, N., & Mavridou, S. (2009, January 1). The use of waste tyre rubber in civil engineering works. Elsevier BV, 213-238. <https://doi.org/10.1533/9781845695842.213>
- [5] Hosseinnezhad, S., Kabir, S F., Oldham, D., Mousavi, M., & Fini, E H. (2019, July 1). Surface functionalization of rubber particles to reduce phase separation in rubberized asphalt for sustainable construction. Elsevier BV, 225, 82-89. <https://doi.org/10.1016/j.jclepro.2019.03.219>
- [6] Yu, H., Zhu, Z., Leng, Z., Wu, C., Zhang, Z., Wang, D., & Oeser, M. (2020, February 1). Effect of mixing sequence on asphalt mixtures containing waste tire rubber and warm mix surfactants. Elsevier BV, 246, 119008-119008. <https://doi.org/10.1016/j.jclepro.2019.119008>
- [7] Turbay, E., Martinez-Arguelles, G., Navarro-Donado, T., Sánchez-Cotte, E., Polo-Mendoza, R., & Covilla-Valera, E. (2022, October 3). Rheological Behaviour of WMA-Modified Asphalt Binders with Crumb Rubber
- [8] F. Gong, W. Lin, Z. Chen, T. Shen and C. Hu, High-Temperature Rheological Properties of Crumb Rubber Composite Modified Asphalt 2022.

- [9] Z. Leng, R. K. Padhan and A. Sreeram, Production of a sustainable paving material through chemical recycling of waste PET into crumb rubber modified asphalt2018.
- [10] H. M. Khadim and H. Al-Mosawe, Enhancing Asphalt Mixture Performance with Crumb Rubber: A Sustainable Solution for Improved Durability and Mechanical Properties,2023, EDP Sciences, 427, 03017-03017. <https://doi.org/10.1051/e3sconf/202342703017>
- [11] U. Ghani et al., Unveiling the Benefits of Engineered Crumb Rubber for Asphalt Mixtures via Performance-Related Characterization: Rutting Behavior.2023
- [12] I. Rodríguez-Fernández, F. T. Baheri, M. C. Cavalli, L. D. Poulikakos and M. Bueno, Microstructure analysis and mechanical performance of crumb rubber modified asphalt concrete using the dry process.2020
- [13] L. Xiang, J. Cheng and G. Que, Microstructure and performance of crumb rubber modified asphalt.
- [14] P. Li, Z. Ding, P. Zou and A. Sun, Analysis of physico-chemical properties for crumb rubber in process of asphalt modification.
- [15] M. R. Pouranian and M. Shishehbor, Sustainability Assessment of Green Asphalt Mixtures: A Review.
- [16] Yang, X., You, Z., Hasan, M R M., Diab, A., Shao, H., Chen, S., & Ge, D. (2017). Environmental and mechanical performance of crumb rubber modified warm mix asphalt using Evotherm. Elsevier BV, 159, 346-358. <https://doi.org/10.1016/j.jclepro.2017.04.168>
- [17] M. R. Pouranian, M. A. Notani, M. Tabesh, B. Nazeri and M. Shishehbor, Rheological and environmental characteristics of crumb rubber asphalt binders containing non-foaming warm mix asphalt additives.
- [18] T. Wang, F. Xiao, X. Zhu, B. Huang, J. Wang and S. N. Amirkhanian. Energy consumption and environmental impact of rubberized asphalt pavement. vol. 180. pp. 139–158. Apr. 2018.
- [19] Z. Dong, T. Zhou, H. Luan, R. C. Williams, P. Wang and Z. Leng, Composite modification mechanism of blended bio-asphalt combining styrene-butadiene-styrene with crumb rubber: A sustainable and environmental-friendly solution for wastes.
- [20] F. Xiao, P. Zhao and S. N. Amirkhanian, Fatigue behavior of rubberized asphalt concrete mixtures containing warm asphalt additives.
- [21] C. K. Akisetty, F. Xiao, T. Gandhi and S. N. Amirkhanian, Estimating correlations between rheological and engineering properties of rubberized asphalt concrete mixtures containing warm mix asphalt additive.
- [22] N. Tang, W. Huang and F. Xiao, Chemical and rheological investigation of high-cured crumb rubber-modified asphalt.
- [23] F. Zhang and C. Hu, The research for crumb rubber/waste plastic compound modified asphalt.
- [24] E. Turbay, G. Martínez-Arguelles, T. Navarro-Donado, E. Sánchez-Cotte, R. Polo-Mendoza and E. Covilla-Valera, Rheological Behaviour of WMA-Modified Asphalt Binders with Crumb Rubber.
- [25] M. Liang, X. Xin, W. Fan, H. Luo, X. Wang and B. Xing, Investigation of the rheological properties and storage stability of CR/SBS modified asphalt.
- [26] A. Riekstiņš, J. Baumanis and J. Barbars, Laboratory investigation of crumb rubber in dense graded asphalt by wet and dry processes.
- [27] Q. Wang, N. Wang, M. Tseng, Y. Huang and N. Li, Waste tire recycling assessment: Road application potential and carbon emissions reduction analysis of crumb rubber modified asphalt in China.
- [28] L. Picado-Santos, S. Capitão and J. Neves, Crumb rubber asphalt mixtures: A literature review.