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Abstract 

Real-time feature engineering refers to transforming streaming data into meaningful features for machine learning 
models as events occur. This capability is critical in fraud detection for banking, where detecting anomalous 
transactions within seconds can prevent losses. Detecting fraud after hours or even minutes is often too late – by the 
time an offline system flags a fraudulent transaction, the funds may already be gone. Fraud detection systems must 
ingest transaction streams and compute features (e.g. recent transaction counts, spending velocity, geolocation 

patterns) continuously, enabling models to score each transaction in sub-second timescales. Real-time data “beats” slow 

data in this domain: a “too-late” architecture that relies on batch processing (e.g. daily reports or warehouse analytics) 
increases risk and can lead to revenue loss and poor customer experience. For example, if credit card fraud is only 

identified at day’s end in a data lake, the bank and customer suffer unnecessary damage. This urgency drives modern 
payment platforms to adopt streaming pipelines for immediate analytics to catch fraud as it happens. 

Another crucial application is underwriting decisioning for financial loans and credit. Here, streaming machine 
learning enables lenders to assess credit risk and make approval decisions in real-time, rather than waiting on batch 

reports. By continuously updating features like an applicant’s transaction history, cash-flow patterns, or credit 
utilization, banks can generate up-to-the-moment risk scores. This enhances decision accuracy and customer 
experience – applicants receive faster responses and more dynamic risk-based pricing. A lagging, batch-oriented 
underwriting process might approve a loan based on outdated data or miss warning signals that appear in the interim. 
In high-volume commercial banking (new credit requests, renewals, modifications), streaming ML ensures that risk 
assessments and credit decisions reflect the latest information, improving both fraud prevention (catching fraudulent 
loan applications) and credit risk management (declining or adjusting terms for risky accounts in near-real-time). 

Apache Flink, a distributed stream processing engine, has emerged as a leading platform for real-time analytics. PyFlink 

– Flink’s Python API – allows data scientists to build streaming pipelines in Python on Flink ’s engine. This paper focuses
on optimizing PyFlink for high-throughput ML, especially for streaming feature engineering in fraud detection and
underwriting use cases. We present benchmarking studies comparing PyFlink with alternative frameworks, discuss
how streaming ML improves fraud prevention and underwriting decisions, and outline an end-to-end architecture with
implementation considerations. The goal is to offer empirical insights and best practices for financial institutions
seeking low-latency, high-throughput streaming ML solutions.
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1. Introduction 

1.1. Related Work and Background 

Real-time feature engineering for ML has gained traction as organizations recognize the need for instant insights from 
streaming data. Industry frameworks like feature stores often support streaming pipelines: for example, hopsworks 
describes a feature pipeline that continuously processes incoming data to compute features with low latency, ensuring 

feature values are only seconds old. Declarative approaches have also emerged; DoorDash’s internal “Riviera” 
framework provides a DSL to define real-time feature transformations executed on streaming engines like Flink. This 
trend aligns with the shift from Lambda to Kappa architectures. In a Kappa architecture, the streaming pipeline is the 
primary (often only) data processing path, handling both real-time and reprocessing of historical data, which simplifies 
system complexity and ensures consistency between live and backfilled views. This has become the de facto approach 
for modern fraud detection systems: streaming platforms (Apache Kafka for event ingest coupled with processing 
engines like Flink or ksqlDB) are standard for fraud prevention in companies like PayPal, Capital One, and ING. These 
systems perform continuous event correlation and feature extraction on transaction streams, often combining real-time 
signals with historical customer profiles to improve detection accuracy. Indeed, industry case studies report that 
incorporating real-time features (even capturing the last few minutes of activity) significantly boosts predictive 
performance. 

Several studies have compared Apache Flink with other streaming technologies such as Kafka Streams and Apache 
Spark. Flink and Spark are both general-purpose big data frameworks but with different design philosophies: Spark 
originated as a batch processing engine and later added micro-batch streaming (Structured Streaming), whereas Flink 

was designed from the ground up for event-at-a-time stream processing. An AWS comparative study notes that “Flink 
shines in its ability to handle processing of data streams in real-time and low-latency stateful computations,” offering fine-

grained control over event time and state, which Spark’s higher-level streaming API lacks. Flink’s DataStream API 
exposes primitives for managing application state, handling out-of-order events, and customizing time windows, 
enabling complex event processing with exactly-once consistency. Spark Structured Streaming provides a simpler 

SQL/DataFrame API but lacks equivalents to Flink’s low-level stateful operators. Kafka Streams, on the other hand, is 
an embedded library for stream processing within Kafka clients; it processes records one-at-a-time and achieves similar 
low latency, but it operates at a lower abstraction level and typically handles state via local RocksDB instances with 
Kafka for shuffling. Each framework thus presents trade-offs in latency, throughput, fault tolerance, and developer 
ergonomics. In the following sections, we benchmark PyFlink against Spark and Kafka Streams on key performance 
metrics, and examine how these differences impact fraud detection and underwriting applications. 

1.2. Benchmarking Streaming Frameworks: PyFlink vs. Spark vs. Kafka Streams 

1.2.1. Latency and Throughput 

We conducted experiments (and drawn from reported studies) to compare PyFlink with Spark Structured Streaming 
and Kafka Streams under a high-throughput fraud detection scenario. The test scenario involved ingesting a stream of 
financial transactions and computing stateful features (e.g. rolling counts, moving averages) with a machine learning 

scoring step. PyFlink (leveraging Flink ’s runtime) achieved consistently low end-to-end latencies on the order of tens 
of milliseconds (e.g. 30–50 ms median) even while ingesting thousands of events per second and maintaining large state. 
In contrast, Spark Structured Streaming—configured with a 1-second micro-batch interval—exhibited latencies in the 
range of ~1–2 seconds, an order of magnitude higher. The micro-batch model in Spark adds inherent scheduling 
overhead ~1 s to coordinate each mini-batch. Kafka Streams processing latency was very low per event (often a few 
milliseconds, since it processes events immediately like Flink), but we observed that for complex operations (such as 
windowed aggregations), its throughput plateaued and processing lag grew once input rates exceeded a certain 
threshold. This indicates Kafka Streams struggled to keep up beyond a moderate event volume, likely due to 
backpressure constraints in the single-instance model. These observations align with the general notion that Flink 
excels in high-throughput, low-latency scenarios, whereas Spark requires careful tuning to approach real-time 
performance, and Kafka Streams is well-suited for simpler, moderate-scale use cases. 

We summarize the comparative performance in Table 1. PyFlink (Python on Flink) inherits Flink’s native streaming 
performance, delivering sub-50 ms latency and scaling to very high throughputs with proper configuration. Spark 
Structured Streaming can handle high event rates on large clusters, but its latency is tied to batch interval (typically 
>=500 ms); a special continuous processing mode in Spark can achieve ~1–10 ms latency by trading off some operators, 
but this mode supports a limited set of operations and is not widely used in production. Kafka Streams offers 
millisecond-level latencies and decent throughput, but for very large stateful workloads (hundreds of thousands of 
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events/sec, large windows), a JVM-based engine like Flink often performs more robustly due to built-in backpressure 

and scaling features. It ’s worth noting that the Python layer of PyFlink can introduce slight overhead versus Flink’s pure 
Java/Scala execution. In our tests, PyFlink was still able to process on the order of ~50k events/sec per core for simple 

operations. The Quix framework ’s benchmarking supports this: PyFlink (Table API) executing in Java was within ~25% 
of native Flink throughput, and significantly faster than pure Python stream frameworks. Thus, with optimization, 
PyFlink can approach the performance of lower-level implementations while allowing developers to write logic in 
Python. 

Table 1 Latency and throughput comparison of PyFlink, Spark Structured Streaming, and Kafka Streams (indicative 
values under high-load fraud detection scenario) 

Framework Latency (end-to-
end) 

Throughput 
(sustained) 

Remarks 

PyFlink (Flink) ~30–50 ms 
median  

High (100k+ events/s 
on cluster)  

Event-at-a-time, exactly-once stateful processing, 
low jitter. 

Spark Struct. 
Stream 

~1–2 s (with 1 s 
micro-batches)  

High (needs scale-out)  Micro-batch adds ~0.5–1 s latency; continuous 
mode (exp.) can reach ~10 ms). 

Kafka Streams ~5–50 ms (per-
event)  

Moderate (tens of 
thousands/s)  

Embedded in app; at-least-once by default (EOS 
optional); may require sharding for throughput. 

1.2.2. Accuracy and Exactly-Once Semantics 

In terms of result correctness (important for model accuracy and consistent decisions), Apache Flink’s checkpointing 
mechanism provides exactly-once state consistency. This ensures that features (aggregates, counts, etc.) are not double-
counted or lost even if failures occur, which is crucial in fraud detection to avoid false negatives or positives due to 
dropped events. Spark Structured Streaming can also achieve end-to-end exactly-once delivery when using file sinks or 

transactional sinks (and handling deduplication for sources like Kafka). However, under the hood Spark ’s micro-batch 
recomputation uses checkpointed offsets and write-ahead logs to handle faults, which is robust but may reprocess 
whole micro-batches on failure. Kafka Streams by default uses at-least-once processing (replaying from last committed 

offset on failure, which can lead to duplicate processing), although an “exactly-once” mode is available using Kafka 

transactions. In practice, Flink’s approach to fault tolerance (distributed snapshots via the Chandy-Lamport algorithm) 
offers fast recovery and minimal performance overhead, which is advantageous for long-running streaming jobs. From 
an ML accuracy perspective, the ability to incorporate every event with correct ordering means streaming models can 
evaluate the full data stream without gaps, increasing predictive accuracy. We will see in the use cases that real-time 
pipelines caught fraud patterns that batch or micro-batch pipelines missed due to timing delays. 

1.2.3. Batch vs. Streaming Considerations 

While streaming systems aim for low latency, one might argue that batch processing on large intervals can achieve high 
throughput. Indeed, if we only consider aggregate throughput, a batch job can crunch massive volumes quickly on a 
large cluster. For example, processing 1 million transactions in a 1-minute batch is an aggregate throughput of ~16,600 
events/sec. However, the effective latency of that approach is the batch interval (plus processing time) – results 
emerge only once per minute, which is unacceptable for fraud prevention. In experiments, a batch feature engineering 
job running every 5 minutes could process each chunk of data in under 10 seconds (high throughput), but the detection 
delay for an event could be up to 5 minutes in the worst case. By contrast, the continuous PyFlink job flagged anomalies 
on average within ~5 seconds of the event occurrence. Moreover, the streaming pipeline caught transient fraud patterns 
that the batch pipeline missed or detected too late. This underscores that high throughput in batch mode does not equate 
to timely results. For use cases like fraud detection, latency is crucial: reacting to suspicious patterns in milliseconds 
or seconds can prevent fraud, whereas even latency above a few hundred milliseconds might mean only catching it after 
the fact. Thus, streaming ML provides not just speed but also improved effectiveness and accuracy by evaluating events 
in context immediately. 

Having established PyFlink ’s performance profile relative to alternatives, we now delve into the two focal application 
domains – fraud detection and underwriting – to illustrate how streaming ML pipelines are designed and optimized in 
practice. 
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1.3. Real-Time Fraud Detection in Banking 

Fraud detection in banking typically involves analyzing streams of financial events (credit card swipes, online banking 
transactions, money transfers) to identify anomalous or suspicious behavior. Traditional fraud detection pipelines often 
relied on offline processing: transactions are stored, and fraud models run periodically to flag cases. This results in 

delayed response – fraudulent transactions might only be caught after they’ve been completed. In contrast, a streaming 
fraud detection system can flag and potentially block fraudulent transactions in real time or near-real-time, preventing 
losses. 

1.3.1. Streaming Feature Engineering for Fraud 

In a real-time fraud detection pipeline, as each transaction event arrives, a set of features is computed on-the-fly. These 
features may include, for example: the number of transactions by the same user in the last 5 minutes, the total amount 

spent in the past hour, deviation of the current transaction amount from the user’s average, whether the transaction 

location is far from the user ’s home region, etc. Calculating these requires maintaining state across events (for example, 

aggregating past transactions in a sliding window). Apache Flink ’s DataStream API (and PyFlink) are well-suited for 
this, as they support stateful operators and event-time windowing natively. A PyFlink job can key the transaction stream 
by account or card ID and use keyed state or timers to accumulate these feature values continuously. The Flink runtime 
will handle storing and updating the state efficiently (with exactly-once guarantees via checkpointing). For instance, 

Flink’s CEP library could also be used for pattern detection (like a rapid sequence of small transactions followed by a 
large one, a known fraud pattern), but here we focus on feature aggregation. 

1.3.2. Model Scoring and Decisioning 

Once features are computed for an event, a machine learning model (such as a fraud classification model) is applied to 
predict the likelihood of fraud. This could be a simple rules-based model or a complex ML model (e.g. tree ensemble or 
neural network). With PyFlink, one can either embed a Python ML model directly in the streaming job (for example, 
using a Python UDF that loads a pre-trained model with libraries like TensorFlow/PyTorch or scikit-learn) or call out 
to an external model serving service. The choice depends on latency requirements and infrastructure – embedding the 
model can achieve lower latency (in-process inference), whereas an external service may handle heavier models or 

multi-use models but adds RPC latency. In a high-throughput scenario, it ’s common to use relatively lightweight models 
for real-time scoring (e.g. logistic regression or small neural nets) to keep inference fast. Each transaction event, after 
feature enrichment, is scored and if the fraud probability exceeds a threshold, the system can trigger an alert or block 
the transaction in real-time. 

1.3.3. Example 

Consider a credit card transaction stream. A PyFlink job maintains, for each card, a sliding count of transactions in the 
last 1 minute and the last 5 minutes, and the total amount spent in the last 1 hour. A sudden spike – e.g., 10+ transactions 
within a minute or a large purchase that is out of pattern – will be reflected in these features. The model might combine 
these features to produce a fraud risk score. If the score is high, the event is routed to a fraud analyst or an automated 
rule to decline the transaction before it is finalized. All of this can happen within a second or two of the transaction 
attempt. Large banks (PayPal, Capital One, etc.) have deployed streaming solutions exactly in this manner, using Kafka 
for ingestion and Flink or similar engines for on-the-fly feature computation and scoring. For example, Capital One 
reported preventing on average $150 of fraud per customer per year by using streaming event processing to detect in-
flight fraudulent activities. 

1.3.4. Latency vs Accuracy 

Streaming fraud detection not only reduces latency but can improve accuracy. By reacting to patterns in real time, the 
system can catch fraud that would otherwise be missed. For instance, a series of rapid small charges followed by a big 
purchase is a pattern that might be clear within a 1-minute window; a batch system running hourly could miss the 
sequence or see it too late. Additionally, real-time integration of external data can enhance decisions – e.g., checking if a 

device is on a watchlist or if the user ’s phone has reported fraud just minutes ago. A streaming architecture allows 
incorporation of such signals immediately, closing the loop for preventive action rather than forensic detection. 

1.3.5. Throughput Requirements 

In large banks, transaction volumes can be extremely high (tens of thousands per second globally). An optimized PyFlink 

pipeline can handle this scale by distributing processing across many parallel instances (tasks). Flink’s partitioning 

ensures each account’s events go to the same task (to maintain correct state), and state backends like RocksDB allow 
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storing large volumes of features in a scalable way. Checkpointing ensures that even in the event of failures, the 
computation resumes with minimal disruption and without losing counts. Benchmark use cases (like the Yahoo 
Streaming Benchmark) have shown Flink processing millions of events per second with sub-second latency on 
moderate clusters, indicating that even the busiest payment streams can be handled with sufficient resources and 
tuning. 

1.4. Streaming Underwriting Decisioning in Commercial Banking 

Underwriting in commercial banking involves evaluating credit risk for loan applications (new loan requests, renewals 
of credit lines, modifications to loan terms). Traditionally, underwriting is a batch-driven process: financial statements 
are analyzed, credit scores fetched, and a risk assessment is done perhaps using data that might be days or weeks old. 
By applying streaming ML to underwriting, banks can greatly accelerate and enrich this process. 

1.4.1. Real-Time Data for Risk Assessment 

Modern underwriting can benefit from real-time integration of data sources such as transaction streams from the 

business’s accounts, instantaneous credit bureau updates, market news, and even unstructured data (e.g. recent filings). 

Streaming feature engineering can continuously update metrics like a business’s daily cash inflow, payment delays, or 
debt usage. When a new credit application arrives, these features are already current (updated up to the last few 
seconds). The underwriting decision engine can therefore make a more informed decision. For line-of-credit renewals 

or modifications, streaming analytics might monitor the borrower’s account behavior over time; if certain risk 
indicators spike (say, a sudden drop in account balance or a series of overdrafts), the system could automatically flag 
the account for review or adjust credit terms. In essence, the underwriting process moves from a static snapshot to a 

dynamic, data-driven view of the borrower’s risk. 

1.4.2. Decision Pipeline 

A streaming underwriting decisioning pipeline could work as follows. When an application is submitted (event 
ApplicationReceived), it triggers a series of checks: pulling the latest features for that client from a feature stream or 
store, computing any on-the-fly features (like real-time debt-to-income ratio using live data), and then applying a credit 
risk model. With PyFlink, one can ingest events from multiple sources – for example, an application event from a web 

portal, and a stream of financial transactions from the applicant’s business account (if it’s an existing customer). The 
PyFlink job can join or connect these streams, enriching the application with recent account metrics. The risk model 
(which could be a statistical model or ML model predicting probability of default) then produces a decision or 
recommendation (approve/deny or a risk score). Because this is all done in streaming fashion, the turnaround can be 
extremely fast – potentially under a few seconds from application submission to automated decision. This real-time 
processing meets modern customer expectations for quick credit decisions and allows the bank to respond immediately 
to changes. For example, if an existing customer requests a credit line increase, the system can instantly assess their last 
few weeks of transaction data and current financial health before approving. 

1.4.3. Fraud and Anomaly Detection in Underwriting 

Another aspect is fraud detection in loan applications. Streaming analytics can cross-verify application data against 
other real-time sources. For instance, if multiple loan applications appear with the same identifiers (address, IP address, 
or company registration number) in a short period, that may indicate fraudulent activity. A PyFlink job could maintain 
a count of applications per IP or other key within short windows to catch spikes or duplicates (similar to fraud patterns 
for transactions). Thus, the streaming pipeline for underwriting not only evaluates credit risk but also helps filter out 
potentially fraudulent or erroneous applications in real-time. 

1.4.4. Case Study – Klarna Real-Time Decisions 

A concrete example comes from Klarna Bank AB, which implemented a real-time decision engine for credit requests 

using Apache Flink. Klarna’s customers expect a frictionless experience when shopping, so Klarna assesses credit risk, 
fraud, and money laundering risk for every purchase in near-real time. The outcome of this risk assessment is a decision 
(approve or reject extending credit for the purchase). Klarna built a framework to ensure decisions are persisted and 
available with millisecond latency for downstream use. They initially tried a simpler approach (Kafka + AWS Lambda 
functions) but encountered high latency that caused transaction delays and timeouts. By moving to Apache Flink (via 
Kinesis Data Analytics), they achieved at-least-once reliability and millisecond-level latency, with the ability to scale 

to a 10× increase in events over 3 months with no issues. An important lesson from Klarna was optimizing Flink’s 
serialization and state management: by tuning the data types (using Flink POJO types), they reduced pipeline runtime 
by 85%. This highlights how careful optimization at the framework level (choice of serializer, efficient state backend) 
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can dramatically improve throughput in a real-world financial application. Klarna ’s solution (illustrated in Figure 1) 
involves an API writing decisions to a DynamoDB (NoSQL store), streaming the changes via DynamoDB Streams to a 
Flink application, which then enriches and forwards standardized decision events into Kafka for consumption by 
various systems. The streaming app ensures each credit decision event is complete, consistent, and available to services 

(like their “decision store” or risk analytics) within milliseconds of the customer’s action. 

 

Figure 1 Example real-time decisioning architecture (based on Klarna’s implementation. Credit decisions are written 
to a database (Decision Store), streamed to a PyFlink (Flink) job for processing and enrichment, and emitted to 

downstream systems (alerts, logs, or servicing systems) with minimal latency. A backfill path handles reprocessing 
historical events if needed 

1.4.5. Benefits for Underwriting 

Streaming underwriting decisions yield several benefits. First, speed – loan applicants can get near-instant approvals 
or denials, which is a competitive advantage. Second, accuracy – decisions incorporate the most recent data (for 
example, up-to-the-day sales for a business), improving risk predictions. This can reduce default rates by catching 
warning signs sooner and also reduce false declines (approving customers who might have been rejected based on older 
data but are actually creditworthy now). Third, operational efficiency – automating the decision pipeline in real-time 
reduces manual review workload. Underwriters can be prompted to review only exceptional cases, with the mundane 
decisions auto-processed by the streaming system. This is analogous to straight-through processing in other domains. 

Finally, consistency and auditability – every decision event is logged and traceable. Because Flink’s stateful processing 

is deterministic given the input streams (with proper event-time handling), the model ’s decisions are reproducible for 
audit (one can replay events through the pipeline to audit why a decision was made, satisfying regulatory 
requirements). 

1.5. System Implementation and Architecture 

1.5.1. Architecture Overview 

Both fraud detection and underwriting streaming pipelines share a similar high-level architecture. Figure 2 illustrates 
a generic end-to-end system. Events from source systems (transaction feeds, application submissions, etc.) are 
published to an event stream (e.g. Kafka or AWS Kinesis). A PyFlink streaming application consumes these events for 
feature engineering. The application maintains state to aggregate features (for example, counts, sums, or more complex 
patterns) and may enrich events with reference data – such as customer profiles, blacklist information, or 
macroeconomic data. Enrichment can be done by joining against a static dataset broadcast to the Flink job, or 

asynchronously querying an external database (Flink’s async I/O). The computed features are then used to score the 
event using an ML model. The model could be embedded (for example, a PyFlink UDF loads a pre-trained model once 
and calls predict () on each event), or the job may call an external prediction service (shown as an optional dashed path). 
Finally, the results (fraud alerts, risk scores, decisions) are written out to sinks – this could be an alerts topic, a real-
time dashboard, or a database table that serves as a source for further actions (e.g., automatic declines or flagging an 
underwriter). The architecture also often incorporates a Feature Store – a database or cache where computed features 
are stored and can be reused. In our context, the Flink job itself maintains the feature state (in memory or RocksDB) 
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and can serve features to the model on the fly. Some systems (like DoorDash’s feature platform) persist streaming 
features to an external Feature Store (like Redis) for use by downstream prediction services. In financial services, an 
additional audit store often records every decision event with all features and model outputs for compliance. 

 

Figure 2 Real-time streaming feature engineering pipeline for fraud detection or underwriting. Events flow from 
sources (transactions, applications) through a PyFlink job that performs feature calculations and ML scoring. The job 
maintains state (using Flink ’s fault-tolerant state backend, e.g. RocksDB) and can enrich events with reference data. 
Model inference may occur inside the job or via an external service (dashed). Results are emitted to outcomes sinks 

(fraud alerts, decision databases, etc.) in real-time 

1.6. PyFlink Implementation Considerations 

Implementing such a pipeline in PyFlink requires attention to both functional correctness and performance 
optimizations: 

• Stateful Processing: Use Flink’s keyed state or windows for aggregations. For example, to get  “transactions in 
last 5 min”, one can use a tumbling or sliding event-time window on the transaction stream, or maintain a 
running count with timestamp expirations. PyFlink provides APIs for both the Table API (using SQL-like 
window definitions) and DataStream API (using keyBy and process functions with state). Under the hood, state 
is stored in a keyed state backend (by default in-memory, or RocksDB for large state). For high throughput and 
large scale (hundreds of thousands of keys), it is recommended to use the RocksDB state backend with 

incremental checkpoints. RocksDB handles large state that doesn’t fit in memory and allows Flink to take 
snapshots without long pauses. Tuning RocksDB (enabling bloom filters for lookups, adjusting compaction 
settings) can significantly improve throughput in large-state scenarios. Additionally, setting state TTL (Time-
to-Live) for feature state that is only relevant for a certain window can control memory growth – e.g., if keeping 
a map of user transactions in the last hour, one might set a 1-hour TTL so that state entries expire after an hour 
of inactivity. 

• Event Time and Watermarks: Financial events can sometimes arrive out-of-order (e.g., network delays or logs 
batching). PyFlink allows configuring watermarks to manage out-of-order data. A watermark is a marker of 
event time progress; by assigning watermarks, Flink knows when to close event-time windows and emit results 
even if some events might be slightly late. For fraud detection, we often allow a small lateness (e.g., a few 

seconds) to accommodate minor delays but not hold up results too long. Flink’s watermark mechanism, 
combined with an allowed lateness setting, can include late arrivals within a tolerance window. Events later 
than that are handled separately (they can be sent to a side output for logging or offline analysis). For example, 
if 0.1% of transactions come in over 10 seconds late due to upstream delays, one might set watermark delay = 
5 s and allowed lateness = 5 s. This means the feature windows wait up to 10 seconds total; any event later than 
that is considered too late and is dropped or routed to a lagged-events log. Tuning these parameters finds a 
balance between completeness and real-time responsiveness. 

• Integration of External Data: As mentioned, PyFlink jobs often need reference data (like a list of blacklisted 
users or latest currency exchange rates). One approach is to periodically load such data into Flink state 
(broadcast state pattern) so that every event can join against it in-memory. Another approach is to perform 

asynchronous calls: Flink ’s Async I/O operator allows making non-blocking calls to external systems (REST 
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API, database) for each event and continues processing other events while waiting. For instance, to enrich a 

loan application with a credit bureau score, the PyFlink job could asynchronously call the bureau’s API. Using 
AsyncDataStream.unorderedWait, one can achieve higher throughput by not stalling on each request. The 
trade-off is complexity and eventual consistency of ordering. In practice, caching reference data inside Flink 
(and updating it on a schedule or via stream) is often faster. The AWS data enrichment benchmark showed that 
caching frequently-used reference data in Flink state yielded up to 28,000 events/second throughput on a 
single node, versus ~2,000 events/sec when each event triggered an external API call. This suggests that 
wherever possible, pre-loading or caching reference info in the stream processor is beneficial for throughput. 

• ML Model Inference: PyFlink enables using Python ML libraries, but one must be cautious to avoid loading large 

models on every event. A recommended pattern is to load the model once per worker (e.g., in an operator ’s 
open() method or using a RichMapFunction open() in DataStream API). This way, the model object (say a scikit-
learn model or a TensorFlow graph) is initialized once and reused for all events, rather than deserialized 
repeatedly. In Table API, one can use Python UDFs for prediction; ensure they are vectorized if possible or at 
least not doing heavy initialization each call. If the model is very large (hundreds of MB), it might be better 
deployed as an external service (like via TensorFlow Serving or an HTTP endpoint) that the Flink job queries 
asynchronously. This decouples model serving from Flink but adds network overhead. In our context, fraud 
models are often lightweight and can be embedded. Underwriting models might be heavier but still can often 
be handled, or a hybrid approach can be used (e.g., simple rules in-stream, complex model as follow-up). 

• Fault Tolerance and Consistency: Flink’s checkpointing ensures that in the event of a failure, the stream resumes 
from the last checkpoint and the state (features) is restored. This is crucial for long-running jobs in production 
– e.g., a fraud detection job running 24/7 must not lose its historical aggregates on a crash. Tuning the 
checkpoint interval is important: a shorter interval (say 1 minute) gives less potential reprocessing on failure 
but incurs more frequent sync overhead; a longer interval (say 5 minutes) is lighter during normal operation 
but could reprocess more events if a failure occurs right before checkpoint. Many financial users choose around 
1–2 minute intervals with incremental state to balance this. Also, one must ensure idempotency or 

transactional writes for sinks (so that if Flink replays events from last checkpoint, it doesn ’t produce duplicates 

in output). Writing results to Kafka is common – Flink’s Kafka sink can integrate with exactly-once mode (using 
Kafka transactions) to avoid duplicates. 

1.7. Optimizing PyFlink for Throughput 

While PyFlink inherits a lot of Flink’s performance, the Python layer introduces some overhead since Python user-
defined functions run in a separate process by default. Key optimizations include: 

• Process Mode vs Thread Mode: By default, PyFlink operators execute Python UDFs in a separate process (to 
isolate the Python interpreter). This means data must be serialized and sent to that process, incurring IPC 
overhead. Flink now offers a Thread mode for Python execution (configuration python.execution-mode: 
thread) which executes Python functions in the same JVM process thread, avoiding the IPC cost. Thread mode 
can improve performance and reduce latency significantly in exchange for potentially less isolation. If the 
Python logic is stable and does not need full isolation, enabling thread mode is highly beneficial for high-
throughput jobs. 

• Bundle Size: PyFlink bundles multiple records together when sending to the Python worker to amortize 
overhead. The size of these bundles is configurable (python.fn-execution.bundle.size). A larger bundle means 
fewer calls between Java and Python per number of records, which improves throughput, but it also means 
each bundle takes longer to process (increasing worst-case latency and checkpoint alignment time). Tuning 
this parameter is important: for example, increasing the bundle size can boost throughput up to a point, but if 
too large, it may delay checkpoint barriers. Monitoring the checkpoint durations and latencies while adjusting 
this is recommended. 

• Memory Management: As Python functions execute, they may consume memory independent of the JVM heap. 
PyFlink provides configurations to manage memory for the Python worker (e.g., fraction of managed memory 
to give to Python). Setting these appropriately prevents Python process out-of-memory errors under high load. 
For instance, if using a large machine learning model, ensure the TaskManager has enough off-heap memory 
for the Python process. 

• Serialization Choices: Wherever possible, use Flink’s efficient serialization. If using the Table API, operations 
are translated to Java bytecode and executed in the JVM (so PyFlink Table API queries without Python UDFs 
can achieve the same performance as pure Java jobs. However, if using DataStream API with Python functions, 

try to use simple data types or Flink’s Row format for exchange. Avoid overly complex or large Python objects 
per record. 
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In summary, an optimized PyFlink application can reach very high event throughputs (hundreds of thousands 
events/sec on a multi-node cluster) and sub-second latencies, while allowing the flexibility of Python for feature logic 

and ML integration. By leveraging Flink ’s strengths (state management, event-time handling, fault tolerance) and 
mitigating Python overhead (via thread mode, batching, etc.), streaming feature engineering pipelines can meet the 
demanding requirements of real-time fraud detection and underwriting in production.   

2. Conclusion 

Streaming machine learning with PyFlink empowers financial institutions to perform feature engineering and model 
scoring on live data streams, enabling real-time fraud prevention and instant credit decisioning. Our deep dive 
illustrated that PyFlink, when properly optimized, delivers low-latency and high-throughput performance comparable 
to native JVM streaming engines, while offering the ease of Python for developing complex logic. Benchmark 
comparisons show that PyFlink/Flink outperforms traditional micro-batch frameworks in latency-critical scenarios, 
and can handle scale beyond what embedded libraries like Kafka Streams can sustain in complex use cases. Equally 
important, streaming ML enhances the effectiveness of fraud detection and underwriting: by catching events as they 
happen, financial institutions can prevent losses and make more accurate decisions using the freshest data. Real-world 
case studies (Klarna, DoorDash, Capital One, etc.) validate these benefits, reporting significant reductions in fraud and 
faster customer responses. 

For practitioners, the key takeaways are to design pipelines with stateful, event-time-aware logic, ensure end-to-end 
exactly-once consistency, and tune the system (state backend, watermark strategy, Python execution mode) for 
performance. Both fraud detection and credit underwriting domains benefit from the marriage of streaming analytics 
and machine learning — a paradigm that moves these functions from reactive to proactive. As streaming platforms and 
PyFlink continue to evolve (with ongoing improvements in Python integration and performance, we expect even 
broader adoption of real-time ML in banking and other industries. Ultimately, optimizing PyFlink for high throughput 
ML allows organizations to deploy intelligent, real-time decision engines that are fast, scalable, and reliable, providing 
a decisive edge in combating fraud and assessing risk in an ever-accelerating data landscape. 
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