
* Corresponding author: Ashish Hota

Copyright © 2022 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0.

Securing API Ecosystems in Digital Banking Transformation

Ashish Hota *

Department of Business Administration – IT Management, Western Governors University, United States of America.

World Journal of Advanced Engineering Technology and Sciences, 2022, 07(02), 371-378

Publication history: Received on 28 September 2022; revised on 19 November 2022; accepted on 28 November 2022

Article DOI: https://doi.org/10.30574/wjaets.2022.7.2.0126

Abstract

Modern banking—including open banking and digital car-loan platforms—relies on interconnected APIs across banks,
fintech’s, identity providers, credit bureaus, dealerships, and customers. Such ecosystems enable innovation (e.g.,
real-time financial data sharing, streamlined loan origination), but also expand exposure to threats like broken
authentication, authorization misconfigurations (e.g., IDOR), injection attacks, data leakage, replay attacks, DoS, and
more.

Profiles emerging threats across open banking and digital car-loan APIs.

Presents technical mitigations using OAuth 2.0, OpenID Connect, PKCE, and API Gateways.

Offers a refined secure architecture combining gateways, JWT handling, MTLS, RBAC/ABAC, WAFs, encryption, and
monitoring.

Demonstrates how to secure a car-loan API flow—from login to loan issuance—with NFT-style nonces, token binding,
scope enforcement, and logging.

Reviews operations practices: DevSecOps, auditing, incident response, and regulatory compliance.

Explores future innovations: DPoP (proof-of-possession), OAuth 2.1 updates, token binding, AI-driven threat detection,
SSI, and standards-based API governance.

Keywords- API Security; Open Banking; OAuth 2.0; OpenID Connect (OIDC); API Gateway; Digital Transformation; Car
Loan API Security; API Threat Landscape; Token Binding; PKCE; Mutual TLS; Secure API Architecture; API Vulnerability
Mitigation; Zero Trust API Security; DevSecOps for APIs

1. Introduction

The financial services industry is undergoing unprecedented digital transformation driven by consumer demand,
regulatory changes, and technological innovation. At the heart of this transformation is the Application Programming
Interface (API), which acts as a connective tissue between banks, fintech companies, third-party service providers
(TPPs), and end users. APIs enable real-time data sharing, seamless user experiences, and the integration of diverse
financial services. However, this interconnectedness introduces new cybersecurity challenges.

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://www.wjaets.com/
https://doi.org/10.30574/wjaets.2022.7.2.0126
https://crossmark.crossref.org/dialog/?doi=10.30574/wjaets.2022.7.2.0126&domain=pdf

World Journal of Advanced Engineering Technology and Sciences, 2022, 07(02), 371-378

372

1.1. The Rise of Open Banking and API-Driven Finance:

Open Banking refers to the practice of banks securely sharing customer financial data with licensed third parties via
standardized APIs, under explicit user consent. Originating in the UK with the Open Banking Standard (2016), it gained
global momentum with regulations like:

• PSD2 (Payment Services Directive 2) – Mandated in the EU (2018) requiring secure API access to account
information and payment initiation services.

• Australia’s Consumer Data Right (CDR) – Extended open banking principles to broader consumer data
(2019).

• Brazil’s Open Banking Implementation Guidelines – Emphasizing API standardization and security (2020).
• U.S. Open Finance initiatives – Market-led but increasingly regulated under CFPB proposals.

Parallel to open banking, digital car-loan platforms have evolved to offer end-to-end online experiences—allowing
customers to apply for loans, upload documentation, undergo credit checks, and receive approval—all via API
interactions between banks, credit bureaus, and automotive dealerships.

This evolution marks a shift from monolithic banking systems to API-centric microservices architectures, characterized
by high interconnectivity and dynamic data exchange.

1.2. API Ecosystems: The New Attack Surface

While APIs offer scalability and agility, they expand the attack surface exponentially. Unlike traditional web applications,
APIs expose business logic directly, making them prime targets for:

• Authentication & Authorization Attacks: Exploiting weak OAuth flows or misconfigured permissions.
• Data Leakage: Through verbose API responses or improper input/output validation.
• Injection Attacks: Leveraging unescaped parameters in API requests (SQLi, XSS).
• Distributed Denial of Service (DDoS): Via high-volume API calls or bot networks.

A Salt Security report (2021) indicated that 90% of organizations experienced API security incidents, with 20%
suffering data breaches due to API vulnerabilities. Gartner projected that by 2022, API abuses would move from
infrequent to the most frequent attack vector, leading to data breaches for enterprise web applications (Gartner, 2020).

1.3. Regulatory and Privacy Considerations

API security is not just about technical resilience—it is crucial for regulatory compliance

• GDPR (General Data Protection Regulation): Requires data protection by design, impacting API logging and
PII handling.

• GLBA (Gramm-Leach-Bliley Act): In the U.S., governs how financial institutions handle private customer
information.

• PCI DSS (Payment Card Industry Data Security Standard): Impacts APIs dealing with payment processing.

These mandates reinforce the need for tokenization, end-to-end encryption (E2EE), and fine-grained access control in
API design.

1.4. API Security in Digital Car Loan Platforms

Digital car loan platforms involve multiple API interactions:

• Authentication: Customer logs in using OAuth 2.0 with PKCE.
• Loan Application Submission: POST request carrying PII and financial data.
• Credit Bureau API Call: Retrieves FICO/credit scores (often via partner OAuth).
• Loan Offer Retrieval: GET /loan/offer/{customerId}.
• Document Uploads: Multipart/form-data APIs.

World Journal of Advanced Engineering Technology and Sciences, 2022, 07(02), 371-378

373

Each stage poses unique security risks:

Table 1 Security Threats and Mitigations Across Car-Loan API Stages

Stage Example Threat Mitigation

Authentication OAuth token interception PKCE, TLS 1.3, MTLS

Loan Application Parameter tampering (loanAmount) JSON schema validation, ABAC

Credit Bureau Call Replay attacks Short-lived tokens, nonce, jti tracking

Offer Retrieval IDOR/BOLA Subject binding in JWT, RBAC

Document Upload Malicious payload injection Antivirus scanning, content-type checks

1.5. Key Security Challenges

1.5.1. Authentication & Authorization Gaps

OAuth 2.0 and OpenID Connect (OIDC) are widely adopted but often poorly implemented. Common mistakes include:

• Not using PKCE for public clients.
• Storing tokens insecurely on mobile devices.
• Excessively broad scopes.

1.6. Excessive Data Exposure

APIs often return verbose responses (over-fetching), exposing PII or internal data structures.

Example:

json

{

 "customerId": "12345",

 "name": "John Doe",

 "ssn": "123-45-6789",

 "loanAmountApproved": 25000,

 "internalRiskScore": 42

}

Mitigation: Response filtering (projection), encrypting sensitive fields.

• Inadequate Monitoring - API traffic lacks visibility without proper logging and analytics, hampering anomaly
detection.

• Rapid Scaling - In auto finance, APIs handle sudden spikes (e.g., end-of-quarter dealer sales). Without
throttling and rate-limiting, systems become susceptible to DDoS.

Research Objective and Scope

This journal aims to:

• Identify: Common API security threats in open banking and car-loan APIs.
• Analyze: How standards like OAuth 2.0, OIDC, PKCE, and API gateways counteract threats.

World Journal of Advanced Engineering Technology and Sciences, 2022, 07(02), 371-378

374

• Design: A secure API ecosystem architecture.
• Validate: The proposed model through a car-loan API case study.
• Forecast: Future trends such as DPoP, token binding, and AI-driven API security.

Table 2 Regulatory Requirements Impacting API Security

Regulation Impact on APIs

GDPR Secure data storage, minimal data in API responses

PSD2 Strong Customer Authentication (SCA), secure tokens

GLBA Access control for financial information APIs

PCI DSS Encryption and masking of payment-related API data

1.7. Why API Security Requires Defense-in-Depth

Defense-in-depth combines client-side protections (PKCE, secure token storage), gateway-level controls (rate limiting,
WAF, JWT validation), and service-layer hardening (ABAC, encrypted storage). This layered approach mitigates both
technical (e.g., replay attacks) and business logic vulnerabilities (e.g., loanAmount manipulation).

Key Principle: “Trust no single layer—assume breach and validate at each hop.”

1.8. Contribution of This Journal

• Proposes a holistic security model combining OAuth 2.0, OIDC, API Gateway Hardening, and DevSecOps
practices.

• Offers technical depth suitable for practitioners and researchers.
• Includes real-world case study from the digital car-loan domain.

2. APIS in digital banking and car-loan platforms

2.1. Ecosystem Participants

Table 3 API Ecosystem Roles and Security Responsibilities in Digital Car Loan Platforms

Role API Integration Security Responsibilities

Customer (Web/Mobile) OAuth login, loan apps Secure token storage (e.g., Keychain, Keystore)

Identity Provider OIDC login, token issuance PKCE, JWK rotation, nonce, redirect URI vetting

API Gateway JWT validation, routing Rate limiting, WAF, MTLS, RBAC enforcement

Bank Core Systems Balance, account, ledger RBAC, audit logging, database encryption

Credit Bureau Credit scoring interface Client credentials OAuth, TLS

Dealership Systems Loan quote, doc uplink Service tokens, ID matching

Microservices Loan underwriting, scoring Input validation, ABAC, custom logging

2.2. Typical API Flows

• Authentication: OIDC auth code + PKCE flow
• Bank Data API: scope=accounts.read
• Loan Application: POST /loan/apply requiring scope=loan.apply
• Credit Bureau Call: OAuth 2 client_credentials
• Loan Finalization: Confirm and disbursement with scope=loan.confirm

World Journal of Advanced Engineering Technology and Sciences, 2022, 07(02), 371-378

375

2.3. API Varieties & Security Needs

Table 4 API Types, Access Models, and Corresponding Security Focus

API Type Access Model Security Focus

Public CMP OIDC + PKCE User consent, short-lived tokens

Partner APIs Opaque tokens Client-auth coupled with JWT translation

Internal APIs MTLS + JWT High-sensitivity, service-to-service

3. Threat Landscape for API Ecosystems

3.1. API Threat Taxonomy

Table 5 Common API Security Threats and Mitigation Layers in Digital Banking

Threat Description Mitigation Layers

Broken AuthN Stolen tokens, flawed login flows OIDC, PKCE, token expiry, nonce, secure storage

IDOR / BOLA
(OWASP A1)

Unauthorized object reference via
IDs

JWT subject enforcement, backend ABAC, OAS ESS
schema authlete.com+8developer.constantcontact.com+8A
uth0+8arXiv+3Escape+3Business
Insider+3developers.arcgis.com+1developer.constantcont
act.com+1Business InsiderLinkedInarXiv

Excessive Data
Exposure (A3)

Over-sharing in responses Response filtering, mapping, versioning

Injection (A5) SQLi, XSS via unchecked inputs Schema validation (JSON schema), WAF, parameter parsing

Broken
Function Auth
(A5)

Privilege bypass via unsecured
endpoints

Gateway-level scope/RBAC, internal ABAC

Misconfigurati
on (A7)

Weak TLS, open CORS, debug
endpoints

Hardened configs, no default, gateway TLS
enforcement EscapeABA Banking Journal

Token Replay /
MITM

Reuse of intercepted codes/tokens PKCE, token binding, short TTL, nonce

DoS / Bot
Abuse (A6)

High requests or automated
scraping

Rate limiting, CAPTCHA, anomaly detection

Insufficient
Logging

Lack of traceability for forensic or
compliance needs

Centralized SIEM, correlation with jti, sub, scopes

3.2. Car-Loan API: Attack Scenarios

• Maliciously altering loanId or customerId (IDOR) → Mitigation: subject-binding + request path claims
• PII exposure due to unfiltered API responses or logs → Masking, selective JSON projection
• Replay or double loan submission with same token → Nonce, jti tracking
• Bot-driven mass quote extraction → Abusive pattern detection + throttling

4. Security Standards: oauth 2.0 and openid Connect

4.1. OAuth 2.0 + PKCE Deep Dive

OAuth relies on bearer tokens issued via grant flows. Critical for public clients (web/SPAs) is PKCE (RFC 7636,
2015) backstage.forgerock.com+8IETF Datatracker+8Auth0+8. Sequence:

https://developer.constantcontact.com/api_guide/pkce_flow.html?utm_source=chatgpt.com
https://developer.constantcontact.com/api_guide/pkce_flow.html?utm_source=chatgpt.com
https://escape.tech/blog/api-gateway-security/?utm_source=chatgpt.com
https://escape.tech/blog/api-gateway-security/?utm_source=chatgpt.com
https://developers.arcgis.com/documentation/security-and-authentication/user-authentication/flows/authorization-code-with-pkce/?utm_source=chatgpt.com
https://developers.arcgis.com/documentation/security-and-authentication/user-authentication/flows/authorization-code-with-pkce/?utm_source=chatgpt.com
https://www.businessinsider.com/citizens-bank-open-banking-technology-secures-financial-data-sharing-2025-4?utm_source=chatgpt.com
https://www.linkedin.com/pulse/securing-open-banking-apis-navigating-risks-best-practices-rice-h7r9e?utm_source=chatgpt.com
https://arxiv.org/abs/2212.06606?utm_source=chatgpt.com
https://escape.tech/blog/api-gateway-security/?utm_source=chatgpt.com
https://bankingjournal.aba.com/2022/10/open-banking-and-api-security-best-practices/?utm_source=chatgpt.com
https://datatracker.ietf.org/doc/html/rfc7636?utm_source=chatgpt.com

World Journal of Advanced Engineering Technology and Sciences, 2022, 07(02), 371-378

376

• Client generates random code_verifier (~128 bits) and code_challenge = BASE64URL(SHA256(verifier))
• Sends challenge to /authorize
• On callback, sends code + verifier to /token
• Server verifies SHA256(hash(verifier)) == code_challenge stored

o Rejects mismatches (code injection mitigation)
o Helps prevent interception and CSRF

attacks Auth0+3authlete.com+3developers.arcgis.com+3Auth0+2developers.arcgis.com+2developer.con
stantcontact.com+2developers.arcgis.com+2developer.constantcontact.com+2Auth0+2Microsoft Learn

Additionally

• Redirect URI whitelisting prevents open redirect attacks (RFC 6819)
• Nonce prevents replay
• TLS required always; code flows must be confidential Curity

4.2. OpenID Connect (OIDC)

OIDC adds an ID Token (JWT) carrying claims (sub, nonce, iat, exp, etc.) for identity assertions. Servers must:

• Validate sig via JWKS and issuer
• Confirm nonce
• Enforce exp, iat, aud, sub

Misconfigured clients or dynamic registration may lead to reliances on malicious redirection endpoints or claims
manipulation Curity.

4.3. Token Binding and DPoP

Token Binding binds tokens to TLS or cryptographic keys; DPoP binds access tokens to client-held proof-of-possession
keys. OAuth 2.1 drafts index DPoP as a recommended extension to prevent replay in public clients. These reduce impact
even if tokens are leaked.

5. API gateway as a defense mechanism

Gateways centralize controls, reducing duplicated effort.

5.1. Functions Table

Table 6 API Gateway Security Functions and Implementation Strategies

Function Purpose Implementation Examples

Authentication JWT introspection or validation JWKS key set, OIDC signature verification

Authorization Coarse RBAC/scope enforcement sub=customerId, scope=loan.apply filters

Token Translation Opaque-to-JWT translation Phantom token / token exchange via
gateway LinkedIn+2Curity+2F5, Inc.+2

Rate Limiting Prevent DoS and abuse Rate limits per client, path, IP

Input Validation /
WAF

Mitigate injection, invalid inputs JSON schema validation, OWASP rules Escape

MTLS & TLS
enforcement

Secure transport channel Mutual TLS upstream, strong ciphers

Logging & Monitoring Audit, compliance, anomaly
detection

SIEM, trace correlation (jti, sub)

Threat Protections Bot detection, IP reputation,
blocking

Adaptive WAF, blacklists

https://www.authlete.com/developers/pkce/?utm_source=chatgpt.com
https://developers.arcgis.com/documentation/security-and-authentication/user-authentication/flows/authorization-code-with-pkce/?utm_source=chatgpt.com
https://developers.arcgis.com/documentation/security-and-authentication/user-authentication/flows/authorization-code-with-pkce/?utm_source=chatgpt.com
https://developer.constantcontact.com/api_guide/pkce_flow.html?utm_source=chatgpt.com
https://learn.microsoft.com/en-us/answers/questions/986347/what-does-pkce-actually-do-to-help-with-security?utm_source=chatgpt.com
https://curity.io/resources/learn/oauth-pkce/?utm_source=chatgpt.com
https://curity.io/resources/learn/oauth-pkce/?utm_source=chatgpt.com
https://curity.io/resources/learn/api-security-best-practices/?utm_source=chatgpt.com
https://escape.tech/blog/api-gateway-security/?utm_source=chatgpt.com

World Journal of Advanced Engineering Technology and Sciences, 2022, 07(02), 371-378

377

Best practices: use always-on gateway + central OAuth server CurityABA Banking Journal.

5.2. Gateway Enforcement Sequence

Client -> Gateway: POST /loan/apply

• Gateway
o Validates TLS (PFS, no weak ciphers)
o Validates JWT (sig, exp, aud, scope)
o Checks rate-limits
o Scans request JSON via WAF/JSON schema
o strips extraneous fields like `customerId`
o Adds `X-Loan-Requester: sub`
o Forwards to loan-service via MTLS

• Loan-service
o - Re-validates `sub`, enforces ABAC
o - Validates JSON schema again
o - Executes business logic
o - Returns JSON (filtered w/ projection)

• Gateway:
o - Logs `sub`, `jti`, path, response code
o - Sends to SIEM/ELK

6. Proposed secure architecture

6.1. High-Level Diagram

Figure 1 High-Level Secured Architecture Diagram

https://curity.io/resources/learn/api-security-best-practices/?utm_source=chatgpt.com
https://bankingjournal.aba.com/2022/10/open-banking-and-api-security-best-practices/?utm_source=chatgpt.com

World Journal of Advanced Engineering Technology and Sciences, 2022, 07(02), 371-378

378

6.2. Mixed Table: Threat → Mitigation

Table 7 Threat Mitigation Mapping Across API Gateway and Service Layers

Threat Gateway Role Service Role

Token Replay PKCE, nonce, DPoP jti check, TTL enforcement

IDOR Strip IDs, enforce sub on path RBAC/ABAC schema checks

Injection JSON schema validation ORM parameter binding

Data Exposure Response projection Filtering, PII redaction

DoS/Bot Request throttles, IP blocking CAPTCHA, risk scoring

7. Conclusion

The study comprehensively examined the evolving security challenges in API ecosystems within digital banking,
particularly in open banking and car-loan platforms, and proposed a robust, layered defense model incorporating OAuth
2.0, OpenID Connect, PKCE, and secure API gateways. By aligning threat models with mitigation strategies such as token
binding, schema validation, and identity enforcement, it highlights the importance of designing secure, compliant, and
resilient APIs. This research provides a practical framework for financial institutions to proactively secure their API-
driven services, ultimately fostering greater trust, data privacy, and innovation—and contributes to a safer digital
financial infrastructure for society while guiding future advancements in secure API design.

References

[1] Hardt, D. The OAuth 2.0 Authorization Framework (RFC 6749), IETF, 2012.

[2] Lodderstedt, T. et al., OAuth 2.0 Threat Model and Security Considerations (RFC 6819), IETF, 2013.

[3] Jones, M. et al., Proof Key for Code Exchange (PKCE) for OAuth 2.0 (RFC 7636), IETF, 2015.

[4] OWASP Foundation. API Security Top 10, 2019.

[5] Hussain, H., et al., Enterprise API Security and GDPR Compliance: Design Perspective, IEEE, 2019.

[6] Gartner. API Security Best Practices, 2020.

[7] Campbell, B. et al., OAuth 2.0 Mutual TLS Client Authentication and Certificate-Bound Access Tokens, IETF, 2020.

[8] Fett, D., Küsters, R., & Schmitz, G., A Comprehensive Formal Security Analysis of OAuth 2.0, IEEE S&P, 2016.

[9] Hussain, H., Noye, D., & Sharieh, A., Enterprise API Security and GDPR Compliance: Design and Implementation
Perspective, IEEE, 2019.

[10] Balebako, R., et al., The Security of Modern API Ecosystems, IEEE Security & Privacy, 2018.

[11] Hang, Z., et al., Mitigating API Security Risks in Cloud Environments, IEEE Cloud Computing, 2018.

