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Abstract

In this paper, we propose the Protocol Genome, a self-supervised learning framework from DICOM headers, achieving
AUROC 0.901 (vs 0.847 baseline) and ECE 0.036 (vs 0.058) on fully held-out external validation. Our method
demonstrates significant improved calibration and robustness across multiple different modalities (CT, MRI, CXR) and
vendors. Clinical imaging flows through PACS and DICOM, whose protocols (scanner make/model; sequence;
reconstruction kernel; kVp; TR/TE; slice thickness) dictate contrast, noise, and artifact profiles. These protocol choices
give rise to hidden confounders that prevent cross-site generalization of image-only neural networks and challenge
multi-center deployment. We present The Protocol Genome, a self-supervised learning (SSL) framework where
structured DICOM headers are treated as a genomic code, and protocol-aware yet clinically robust image
representations are learned. The Protocol Genome extracts tokenized embeddings for de-identified DICOM header
fields and matches these with image-related features through: (1) protocol-image contrastive learning, (2) masked
protocol prediction, and (3) protocol-protocol translation across series. We experiment with 1.26M studies (7 health
systems, 31 scanners from 3 vendors; CT, MR, CR/DR modalities) and evaluate across three downstream tasks: (A) chest
CT triage for acute PE, (B) brain MRI low-grade vs. high-grade glioma classification, and (C) chest radiograph
cardiomegaly detection. Compared to strong SSL baselines (SimCLR, MAE) and ImageNet transfer, Protocol Genome
pretraining increases external-site AUROC by +0.046 (95% CI: +0.031-+0.060) for PE, +0.058 (+0.036-+0.079) for
glioma, and +0.041 (+0.028-+0.054) for cardiomegaly; calibration (ECE) improves by 25-37%. Further DeLong tests
support significance (all p<0.001). Ablations indicate gains remain with 10-20% labeled data. Clinically, the method is
applicable to reducing false positives at protocol borders and can be integrated into a PACS (DICOM C-FIND/C-MOVE,
DICOMweb QIDO/WADO). We release a model card and deployment recommendations, with de-identification and bias
auditing steps.

Keywords: Protocol Genome; Self-Supervised Learning (SSL), DICOM Headers, Domain Shift, Medical Imaging
Robustness, Bias Auditing

1. Introduction

Radiologic subspecialty-specific diagnosis, therapy selection, and longitudinal monitoring are firmly based on medical
imaging. Notwithstanding the dominance of deep learning in detection, segmentation, and triage, clinical translation is
limited by availability, acquisition heterogeneity, and drift in field labels of scanner hardware and the design of the
protocol. In reality, images flow through PACS as an instantiation of DICOM objects, where pixel data is available with
rich metadata (headers). Those headers encode the functional phenotype of image acquisition: Manufacturer,
Manufacturer Model Name, Protocol Name, Series Description, KVP, Tube Current, Repetition Time (TR), Echo Time
(TE), Flip Angle, Slice Thickness, Convolution Kernel/Reconstruction Algorithm, and so forth. These factors control
CNR/SNR, contrast, spatial resolution, and (in their product) artifact structure—and the image-only approach presents
overly simplistic shortcuts when applied elsewhere.
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However, there are three main challenges for image-only supervised learning:

e Label scarcity. The generation of high-fidelity pixel or study labels requires expert time for inter-reader
reconciliation. SSL mitigates this dependence to some extent, but classical medical SSL does not consider
omnipresent metadata signals that meaningfully restrict the imaging manifold. High-level recapitulations of
deep learning in medical imaging emphasize the scope of tasks and ethical considerations while squandering
protocol metadata.

e Domain shift and scanner heterogeneity. Image statistics differ due to site, vendor, model, software versions,
coil, and protocol selection. All domain adaptation approaches in the standard setting consider this a nuisance.
We instead model it.

e Hidden confounders. Downstream labels are frequently spuriously correlated with protocol (e.g., contrast-
enhanced series ordered for sicker patients). In the absence of explicit accounting, models can learn more about
protocol than pathology.

Our principal idea, Protocol Genome, considers the structured DICOM header as a genomic-like sequence of tokens and
continuous loci that can be embedded, masked, translated, and aligned to image features. This effectively turns a
commodity SSL signal obtained from ubiquitous, de-identified metadata into a resource for (i) stronger pretraining, (ii)
explicit bias auditing, and (iii) safer deployment with protocol-aware calibration and monitoring. Meanwhile, we
maintain clinical semantics by de-identifying PHI fields (e.g., PatientName, AccessionNumber) and preserving protocol
fields required for physics-based variation (see §5, §9).

Objectives & contributions

e Methodology. We present a multimodal variant of SSL consisting of (a) protocol-image contrastive
learning, (b) masked protocol modeling (predict masked header tokens from images and partial headers),
and (c) protocol-protocol translation (learn mappings across related series in a study). We leverage a novel
hybrid attention fusion (cross-attention + FiLM) between image and protocol embeddings and an
adversarial head to separate protocol identity from the clinical embedding.

e (linical integration. We describe PACS/DICOM ingestion, header translation, de-identification, and
integration to IHE profiles for triage/secondary-read workflows (C-FIND/C-MOVE/C-STORE; DICOMweb
QIDO-RS/WADO-RS/STOW-RS).

e Empirical validation. On three multi-site tasks, Protocol Genome pretraining offers improvements in
AUROC and calibration under external shift and few-label conditions. Subgroup analyses (vendor, model,
age, sex) show smaller performance differences.

e Responsible Al artifacts. We also write a bias & generalizability plan, a full model card, and a security and
privacy checklist (including metadata-specific defenses).

By promoting DICOM headers from “baggage” to a first-class self-supervision signal, the Protocol Genome recasts
domain shift from adversary to teacher—promoting representations that are protocol-aware for robustness audits but
protocol-agnostic for clinical prediction.

2. Literature Review

2.1. Architectures and Transfer Learning in Medical Imaging

Deep learning in medical imaging and healthcare has been comprehensively surveyed in recent years [1-4].
Convolutional architectures (ResNet [5], DenseNet [6], EfficientNet [7]) and Vision Transformers (ViT [8], Swin [23])
nowadays dominate state-of-the-art pipelines for classification, detection, and segmentation, usually initialized from
ImageNet and then fine-tuned for medical tasks with remarkable results. Hybrids (CNN backbones + transformer
decoders) and U-Net-based architectures continue to be the bread and butter of segmentation as well. Survey reviews
and application-targeted chapters thoroughly explore advances in methods and models across available modalities and
relevant tasks, including performance and workflow integration.

While ImageNet pretraining enhances sample efficiency, both its spectral/texture bias and object-centric priors may

misalign with medical physics and grayscale statistics. Domain-specific pretraining (e.g., on massive unlabeled
radiographs or CT slices) mitigates this gap but usually leverages only pixels.
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2.2. Self-Supervised Learning (SSL) in Medicine

Self-supervised learning (SSL) in medical imaging relies on designing a proxy task that allows the machine to learn good
representations automatically (Zhou et al.,, 2019).

Contrastive (SimCLR [9], MoCo [24]), distillation (BYOL [25], SimSiam [10]), and clustering (SwAV [12]) learn
invariances by aligning augmented views of the same image. Masked image modeling (MAE [11], Masked Autoencoders
for medical imaging) learns to inpaint patches but mainly represents low-frequency structures.

Medical variants. Medical-related variants include rotation/context prediction, jigsaw tasks, inpainting, and modality
translation (e.g., Models Genesis [13]; TransVW [14]). However, most methods ignore the effects of metadata, even
though acquisition parameters account for a large fraction of pixel variation.

In the context of DICOM data, only a few works have used side information in the form of study/station IDs for stratified
sampling or batch composition, but there is no framework that (1) encodes the structured DICOM header, (2) treats it
as a latent code to be predicted from or inferred in images, and (3) explicitly disentangles protocol from disease signal
during fine-tuning. Recent surveys and chapters advocate for strong, bias-aware models and discuss ethics (privacy,
fairness), but they do not go so far as to leverage headers as pretext tasks.

2.3. Domain Shift, Scanner Heterogeneity, and Confounding from Metadata

In practice, radiology datasets consist of scans pooled across vendors and sites with different TR/TE, coil setups,
reconstruction kernels, dose modulation, and the presence of motion/metal artifacts. This generates significant
covariate shift and label-protocol dependencies. Traditional remedies include:

e Domain-adversarial training for site signature elimination [15].

e Importance weighting across domains/protocols.

e  Style transfer/harmonization for appearance difference reduction.
e (Calibration and thresholding per site.

Nevertheless, these techniques consider protocol as an obstacle. Our methodology is consistent with image formation
physics: we learn the protocol manifold jointly with images and audit/remove protocol leakage when necessary.

2.4. DICOM/PACS and Clinical Workflow Impacts

DICOM defines elements that are shared among modules (Patient, Study, Series, Equipment, Image, etc.) [20]. Storage
and query/retrieve are based on C-STORE, C-FIND, C-MOVE/C-GET, or DICOMweb for PACS solutions. De-identification
profiles were designed to exclude PHI for research or deployment and include only necessary acquisition parameters
for modeling. In the applied chapters, authors point out the importance of ethical use and security.

Gap: We observe that there is no approach to (i) tokenize and normalize DICOM header fields to a structured form, (ii)

employ this structured form as a target for self-supervised learning at scale, and (iii) integrate bias-aware objectives to
regulate protocol leakage in clinical predictions [21].
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3. Methodology
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Figure 1 Protocol Genome architecture — embedding dimensions and attention flow. Blocks for image encoder,
protocol tokenizer/encoder, SSL objectives, hybrid attention, adversarial head, downstream head.

3.1. Protocol Genome design

3.1.1. Header selection

We include fields that shape image statistics and are usually non-PHI:

(0018,1030) ProtocolName, (0008,103E) SeriesDescription, (0008,0070) Manufacturer, (0008,1090)
ManufacturerModelName, (0018,0060) kVp, (0018,1151) X-RayTubeCurrent, (0018,0080) RepetitionTime,
(0018,0081) EchoTime, (0018,1310) AcquisitionMatrix, (0018,0050) SliceThickness, (0018,1210) ConvolutionKernel
/ (0018,9315) ReconstructionAlgorithm, (0018,9345) CTDIvol, coil/receiver info for MR, contrast usage (0018,0010)
(if present, de-identified). We exclude PHI (e.g., PatientName, AccessionNumber, dates unless offset-shifted), following
standard profiles.

3.2. Normalization & tokenization
Categorical fields (vendor, model, kernel) -> controlled vocabulary via hashing + subword tokenization for free-text

(e.g., “CHEST_PE_PROTOCOL (HIGH RES)” -> ["CHEST","PE","PROTOCOL","HIGH","RES"]).

Continuous fields (kVp, mA, TE/TR, slice thickness) -> piecewise-linear bins with learned embeddings - we store the
original value and a binned index.

Missingness -> explicit [MASK] and [MISSING] tokens per field - numerical missingness encoded via sentinel bins plus
a binary mask vector.

De-identification. We apply a DICOM de-identification profile: remove direct identifiers, date shifting with consistent
random offsets per patient, UID remapping with reversible keying inside a secure enclave, burn-in removal for CR/DR.
We preserve protocol semantics while ensuring privacy (§9).

3.3. Self-supervised objectives

Let x be an image (slice or projection; 2.5D stacks for CT/MR), h the protocol genomic sequence (token indices + binned
reals). Let fo(x) € R? be the image encoder, g4(h) € R? the protocol encoder. Projection heads p and g map to
contrastive spaces.

3.3.1. Protocol-image contrastive loss.

For a batch {(x;, h)}.,, wealign z; = p(big(fo(x;))big), u; = q(big(gq,(hi))big) with temperature t
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3.3.2. Masked protocol modeling (MPM).

Randomly mask tokens/fields in h (Bernoulli per field; higher mask rate for free-text), condition on f8(x) and the
unmasked header to predict masked tokens and regress masked continuous fields. With transformer decoder T,.

Lypm = Etem

Z CE(YE, ¥%) + Apum || Wertrt — rt||rVert,

token

3.3.3. Protocol-protocol translation

Within a study, multiple series share patient, coil, and table but vary in sequence (e.g., axial vs. coronal; contrast vs.
non-contrast). We sample pairs (hg, h;) from the same study and train a sequence-to-sequence transformer T, to

translate ht = T, (hy). Loss:

LPZP = CESEQ(FL}' ht) + )\contz ”;E - rk”l
k

Total pretraining loss.
Lyre = & Lpic + B Lypm + Y Lpop

3.4. Architectures

Image encoder. We adopt an encoder per modality: ResNet-50/EfficientNet-B3 for CR/DR, and ViT-Base for CT/MR
slices/stacks. For 2.5D CT, we utilize 7 slices centered at the target. Protocol encoder. A transformer over tokenized
headers with learned embeddings for categorical tokens and numeric bins; continuous-valued features are passed
through a sinusoidal projection. Fusion & hybrid attention (novelty). We feed the protocol sequence into key and value
as queries and image tokens as keys/values (either from an intermediate feature map or ViT patch tokens) through a 2-
layer cross-attention block, where image channels are modulated via FiLM. This results in protocol-aware features that
still preserve spatial semantics for CAM/Grad-CAM visualization.

. | Cross-Attention | :]
Protocal Tokens » 1 LM Image Tokens

Figure 2 Hybrid attention fusion

3.5. Bias-aware components

Adversarial confounder head. To eliminate protocol identity (e.g., vendor/model) from the clinical prediction head,
we append a gradient-reversal head cn to predict s (site/vendor/model) from the clinical embedding v. Loss:

Lagy = Aaay CE(big(cy(v), $)big), v = stopgrad (hain(fo(x)))
Training minimizes task loss L,y while maximizing L4, via gradient reversal.

er'rglsflk Ltask - }\adv CE(Cn(U): S)

Importance reweighting. We reweight samples by inverse protocol prevalence to avoid dominance by common
protocols:

1
Wi & p(protocol = h;)
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Acquisition-aware augmentation. Simulate fluctuations: CT kernel blur/sharpen, dose noise addition, MR k-space
sampling and motion, radiograph beam hardening.

Calibration. Temperature scaling per site and global isotonic regression; we report ECE and Brier [16] (§6) as good-
practice overviews for the domain.

3.6. Imaging data processing

We ingest DICOM through pydicom (Python) and dcm4che (Java) connectors, apply modality-specific windowing,
intensity normalization (HU for CT, z-scoring per series for MR, per-image percentile normalization for CR/DR), and
resample to standardized spacing (CT: 1x1x1.5 mm; MR: 1x1x3 mm). This is problematic for anisotropic voxels, but we
use plane-aware interpolation and store the original resolution in the header embedding. Relevant artifacts (metal,
motion) are detected using simple heuristics and are marked.

3.7. Algorithm 1

3.7.1. Protocol Genome pretraining

Inputs: DICOM archive, batch_size B, epochs E
Outputs: pretrained image_encoder f8 and protocol_encoder g
Build vocabulary Vcat from categorical header fields and binning scheme Vnum
for each DICOM series do
header = parse_header(series)
header_tokens = tokenize_protocol(header, Vcat, Vnum, with_missing=True)

img = load_pixels(series) # normalize per modality
store (img, header_tokens, study_id, series_uid)
end for

Initialize encoders 6, g¢; projection heads p, q; decoder Ty; translator Tw
for epoch = 1..E do
Sample batch {(xi, hi)}i=1..B with study-aware sampling
zi = p(f0(augment(xi))) # image features process
ui = q(gdp(mask(hi, rate=p))) # protocol feature
Lpic = protocol_image_contrastive(zi, ui, t)
Lmpm = masked_protocol_modeling(Ty, f8(xi), hi)
Lp2p = protocol_to_protocol(Tw, hi, hj from same study)
Lpre = a*Lpic + f*Lmpm + y*Lp2p
6, , U, w <- optimizer.step(V Lpre)
end for
return {6, gb

3.8. Algorithm 2 — Bias-aware finetuning

Input: labeled dataset {(x, y, h, s)} with site/vendor s
Freeze go; initialize clinical head hclin and adversary cn with GRL
for epoch =1.E' do
v = hclin(f0(x), gd(h)) # include hybrid attention fusion
yhat = softmax(v)
Ltask = CE(yhat, y, weights = w(h)) # reweighting
Ladv = CE(cn(GRL(v)), s) # gradient reversal done here
L = Ltask - Aadv * Ladv + Acal * Lcalib
update 8, hclin, cn
end for

3.9. Algorithm 3 — Evaluation pipeline (site-held-out)

For each external site S_ext:
Train on S_train (all other sites), validate on S_val
Calibrate on S_cal (small subset of S_ext)
Test on S_ext: compute AUROC, AUPRC, F1, ECE, Brier
Run subgroup and fairness analyses (age, sex, vendor/model)
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4. Implementation Details

Software/hardware. PyTorch 2.3, CUDA 12; mixed precision (AMP) on 8xA100-80GB. Multi-GPU data parallel for SSL
batches (global batch 512x2 views). DICOM parsing: pydicom==2.4.3, dicomweb-client for QIDO/WADO; microservice
in Java accessing dcm4che for PACS integration.

4.1. Hyperparameters

Pretraining:a = 1, [ =1, y = 0.5 Contrastive temperature t=0.07. Mask rate p: 30% categorical, 20% numeric.
Optimizer AdamW (Ir=2e-4, weight decay=0.05) with cosine decay over 200 epochs; warmup 10 epochs.

Finetuning: Ir=1e-4 (heads), 3e-5 (backbone); batch 64; focal loss for class imbalance where needed (y=2) as sensitivity
analysis. Adversary weight 1.4, = 0.3. Calibration 4., = 0.01.

Dataset splits & validation strategy. Patient-level splits; sites separated based on health systems. We use one health
system as an external validation set for each task. Stratified prevalence guarantees the same label ratios for train/val.
For low-prevalence PE, we over-sample positives in training but report metrics on the natural distribution; prevalence
is reported with 95% Cls.

Preprocessing scripts. Windowing: CT (PE) imaging uses (WL=100, WW=700) for lung angio window + tis-aux; MR
intensity z-norm per series; radiographs percentile clipping at [1,99]. Header fields employed in the Protocol Genome
are maintained, and PHI removed. Random seeds were fixed (5 seeds), and deterministic ops flagged where possible;
we present mean + 95% bootstrap CI.

Governance artifacts. A complete Model Card reports intended use, data, training, evaluation, safety mitigations, and
cryptographic hashes (Appendix A). We also provide a checklist for reproducibility (Appendix D).

5. Experimental Results & Analysis

5.1. Datasets

e CT-PE (angiography triage): 386k CTPA series, 4 systems (A-D), 14 scanners (GE, Siemens, Philips), slice
thickness 0.6-1.25 mm, diverse kernels (B31f/B50f...); labels from report NLP validated on 3k manual reads.

e Brain MRI (LGG vs HGG): 52k studies (T1w, T2w, FLAIR), 2D axial stacks; labels: pathology/EHR; scanners:
1.5T/3T mix.

e Chest X-ray (cardiomegaly): 822k CR/DR exams from 5 sites; reports and CR thresholds used for training
labels.

A bias audit table links protocol attributes to patient population characteristics (e.g., Site D has a higher share of 3T and
younger patients; the CXR vendor mix varies between sites). (See Table 1.)

Table 1 Bias audit mapping

Protocol Feature | Demographic Label Prevalence | Notes on Risk
Association
Scanner Vendor Higher use in rural sites A FP rate Bias toward Siemens scanners in training set
Patient Age Older = more [UNK] tokens | » FN in 270 yrs Missed calibration in geriatrics
Institution Code Correlated with race mix A Qutcome skew Proxy leakage risk

5.2. Baselines

e ImageNet transfer. ResNet-50/EfficientNet-B3/ViT pretrain on ImageNet.
e Medical SSL. SimCLR, MoCo-v2, BYOL, MAE adapted to medical windows.
e Metadata-agnostic fusion. Concat of one-hot vendor/site into classifier head (control).
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5.3. Primary metrics & statistics

For classification, we report Accuracy, Sensitivity (Recall), Specificity, F1, AUROC, AUPRC, ECE, and Brier. For MRI mask
segmentation ablations, we also report Dice and Jaccard, following common practice in medical imaging studies [22].

Confidence intervals. 10k bootstrap replicates (site-stratified).

Comparisons. DeLong’s test [17] for AUROC differences; McNemar’s test [18] for paired accuracy; Benjamini-Hochberg
[19] (FDR 5%) over multiple endpoints.

Formulas.

ECE=YM_, an—ml | acc(B,,) — conf(B,,) |, where B,, is the m-th confidence bin.

Brier =1 65 -0
rler—n' ’ Di Vi
i=

2|4 N B

Dice = ———
|A| + [B]

5.4. Headline results

5.4.1. External-site performance (mean over 4 folds of site-held-out)

CT-PE: AUROC 0.912 (95% CI 0.902-0.922) with Protocol Genome vs 0.866 (0.853-0.879) for best baseline
(MAE+ImageNet); absolute +0.046 (p<0.001). ECE 0.032 vs 0.051 (-37%).

Brain MRI (LGG vs HGG): AUROC 0.931 (0.915-0.946) vs 0.873 (0.848-0.895); +0.058 (p<0.001).
CXR cardiomegaly: AUROC 0.892 (0.883-0.901) vs 0.851 (0.838-0.863); +0.041 (p<0.001).

Sensitivity at 95% specificity improves by +4.1-6.8 points.
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Figure 3 ROC curves with 95% Cls (shaded) for Protocol Genome vs baselines on external sites
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Figure 4 Reliability diagrams and ECE/Brier bars, with isotonic vs temperature scaling.

Few-label regime. Protocol Genome finetuning achieves 92-95% (89-91%) of full-data AUROC with 10% labeled data
on masked language corpora; the corresponding ratio for baseline finetuning is 84-89%. Gains persist at 5% labels.

t-SNE/UMAP. We visualize clinical embeddings colored by protocol and outcome: Protocol Genome compresses
protocol variance into a separate auxiliary embedding (adversarially removed from the clinical head), suppressing
vendor/site bias.
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Figure 5 UMAP of embeddings: (a) colored by vendor; (b) by outcome. Protocol Genome shows weak vendor
clustering, strong outcome separation.

5.5. Subgroup & fairness analysis

Performance by vendor, model, gender, and age categories:

Vendor gap (best-worst AUROC) decreases from 0.062 (baseline) to 0.024 (ours) on CT-PE.

At matched specificity, the sensitivity of the subgroup of subjects aged =80 years increases by 5.2 points.

No sex-dimorphic performance differences following BH correction.

Ethical sections highlight privacy, fairness, and interpretability; our subgroup reporting conforms to these
recommendations.

Table 2 Subgroup metrics (site/vendor/model)

Subgroup AUROC (95% CI) | AUPRC (95% CI) | ECE | Brier | n
Site A (GE) 0.902 (0.88-0.92) | 0.745 (0.70-0.79) | 0.042 | 0.118 | 4,320
Site B (Siemens) | 0.913 (0.89-0.93) | 0.769 (0.73-0.80) | 0.037 | 0.109 | 5,210
Site C (Philips) | 0.894 (0.87-0.91) | 0.732 (0.69-0.77) | 0.051 | 0.125 | 3,940
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5.6. Error analysis

Grad-CAM Overlay Protocol Sensitivity Analysis
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Figure 6 Grad-CAM examples and “protocol-sensitivity maps”: perturb header tokens (via counterfactual FiLM) and
visualize change in logits.

The failure modes are associated with extreme protocols (very thin slices with edge-enhancing kernels or exotic MR
TE/TR), motion, and metal. We measure the proportion of misclassification attributable to protocol variation using
mutual information I(§; h) and find a 38% reduction compared to the baseline. Grad-CAMs show less distracting
attention on metal streaks.

5.7. Ablations
Remove Protocol Genome -> -0.040 AUROC (avg).

Drop each SSL term: Lp;c most critical; MPM adds calibration gains; P2P improves cross-series consistency.
Remove adversary -> increased vendor leakage and larger subgroup gaps.
Label fraction sweep (1%, 5%, 10%, 20%): Protocol Genome consistently better.

Table 3 Ablation study: AUROC/ECE per variant with 95% Cls and p-values.

Configuration AUROC | AUPRC | ECE Comment
Full model (SSL+Adv) 0.912 0.771 0.036 | Bestoverall

- Masked token recovery | 0.891 0.740 0.045 | Loss of robustness

- Protocol translation 0.886 0.728 0.049 | Worse unseen protocol handling

- Contrastive alignment | 0.878 0.722 0.055 | Pixels unanchored

- Adversarial debiasing 0.901 0.756 0.061 | Bias T in subgroup metrics

5.8. External validation

A fully held-out system E (new region, vendor mix): AUROC 0.901 vs 0.847 baseline; ECE 0.036 vs 0.058. Site E)
introduces new type of site E problems unseen in training; MPM handles unseen/missing tokens gracefully through
[MISSING]/[UNK] embeddings.
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6. Discussion

6.1. Clinical implications

Protocol-aware pretraining enhances robustness where it counts: on protocol boundaries which are frequently sources
of false positives/negatives across between sites or vendors. Connected to PACS via DICOM C-FIND/C-MOVE or
DICOMweb, the framework handles triage (worklist prioritization) and second-read (flag uncertain cases) using
calibrated probabilities. The ethical and workflow concerns raised in the applied chapters—specifically privacy,
fairness, and transparency—resonate with our bias-aware finetuning and explicit subgroup reporting.

6.2. Methodological insights

As a “genome” of headers, this has rich structure: masked token recovery stabilizes representation learning; protocol -
protocol translation learns the graph of series relations; contrastive alignment connects physics to pixels. The
adversarial head, together with importance weighting, ensures that protocol identity does not leak into clinical
decisions, balancing robustness and interpretability. We observe the greatest gains in multi-center/low-label settings
and when protocol diversity is high.

6.3. Limitations

(i) Data quality of headers is inconsistent, in the free-text fields normalization and ontologies need to be used; (ii)
residual confounding may be possible if clinical decision not just data are driving the protocol; (iii) very rare protocols
may be under-represented; (iv) we are dealing with retrospective evaluation.

6.4. Security & privacy

Potential attacks include adversarial pixel perturbation and metadata abuse (e.g., crafted headers causing mistaken yet
confident predictions). Mitigations include network defense based on strict validation of headers; differential privacy
(DP-SGD) at the protocol encoder; and rate-limited, audited access to protocol embeddings. Computational adversarial
training improves model robustness. Chapters on ethics highlight protecting patient data and minimizing bias; our
deployment checklist translates these into operational considerations.

e Operational deployment. We characterize inference at 5% absolute or ECE > 0.06.
e Interoperability. IHE XDS-I for cross-enterprise exchange of images; HL7 FHIR for results.

7. Conclusion

We introduced the Protocol Genome: a self-supervised methodology that transmutes the widespreadness of DICOM
header metadata into a strong training signal, as well as a bias-auditing tool. By contrast, through aligning images with
the protocol embedding, masking header tokens, and translating between series, it learns protocol-aware
representations that transfer robustly across sites, vendors, and protocols. On three multi-site tasks, we consistently
observed gains in AUROC and calibration under domain shift and scarcity of labels. The hybrid attention and adversarial
head empower clinical embeddings that are sensitive to protocol variation for auditing, while also being resilient to
protocol shortcuts for decision-making.

Clinically, the Protocol Genome enables splitting of triage and second-read use cases with fewer false positives at
protocol boundaries, as well as pragmatic PACS/DICOM integration. Methodologically, it generalizes outside the domain
of radiology whenever the signal statistics are governed by acquisition metadata. Next steps are federated-based
protocol genome aggregation across institutions, multimodal fusion with reports and pathology, and prospective trials
to validate workflow impact.

7.1. Standards and Deployment (pragmatics)

e PACS/DICOM. Ingestion from DICOM (C-STORE), query via C-FIND, or QIDO-RS; retrieval using C-MOVE/C-
GET or WADO-RS; writing derived results as DICOM SR or JSON on FHIR.

o De-identification. Standard DICOM de-identification profile; keep acquisition parameters, date shift, UID
remapping, burn-in removal.

e Monitoring. Track protocol distribution drift (PSI, KL divergence), calibration (ECE), and subgroup
performance on a quarterly basis; issue alert if a vendor/model drifts >5% absolute or if ECE is >0.06.

e Interoperability. [HE XDS-I for cross-enterprise exchange of images; HL7 FHIR for reports.
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7.2. Responsible-Al & Security Add-Ons

7.2.1. Bias & Generalizability Plan

Pre-study checks. Measure the relationship between protocol attributes and labels (mutual information or
logistic regression with site as a fixed effect).

Reporting. Stratify metrics by site, vendor, model, age, sex; report Cls; apply FDR correction.

Thresholding. Select operating points using site-calibrated cost curves; avoid a single threshold if subgroup
calibration differs.

External validation. Site selection should be rationalized based on vendor/model diversity and demographic
dissimilarity; limitations of generalizability should be documented (e.g., no pediatric MR).

7.2.2. Security Note

Threats: (i) evasion (pixel adversaries), (ii) metadata manipulation (identity spoofing e.g., through forged headers), (iii)
membership inference about the protocol embeddings, (iv) data inversion. Defenses: adversarial training, header
schema validation + signed provenance (DICOM digital signatures), differential privacy when exporting protocol
encoder, least-privilege access to embeddings/logs.

7.2.3. Privacy & Compliance

Date Offset de-DICOMization; PHI elimination securely managed via roles; encrypted /0 storage and transport (TLS),
append-only logs. For widespread use, they should also fill in a DPIA, which will outline data flows, risk mitigations, and
redress mechanisms.
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