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Abstract 

This paper presents a comprehensive study on the application of reinforcement learning (RL) techniques for 
autonomous vehicle navigation in complex urban environments. We propose a novel deep RL framework that combines 
state-of-the-art algorithms with realistic urban traffic simulations to train robust navigation policies. Our approach 
leverages a hierarchical learning structure to decompose the challenging urban driving task into more manageable sub-
tasks. Extensive experiments in simulated urban scenarios demonstrate that our method significantly outperforms 
baseline approaches in terms of safety, efficiency, and adaptability to diverse traffic conditions. We also conduct real-
world validation tests to verify the transferability of learned policies to actual autonomous vehicles. Our results 
highlight the potential of RL-based techniques to enable safe and efficient autonomous navigation in dynamic city 
environments.  
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1. Introduction

Autonomous vehicles have the potential to revolutionize transportation systems, offering improved safety, efficiency, 
and accessibility [1]. However, navigating complex urban environments remains a significant challenge for self-driving 
cars due to the dynamic nature of city traffic, diverse road layouts, and the need to interact with human drivers and 
pedestrians [2]. 

Traditional rule-based and classical planning approaches for autonomous navigation often struggle to generalize to the 
wide range of scenarios encountered in urban settings [3]. In recent years, reinforcement learning has emerged as a 
promising paradigm for developing adaptive and robust control policies for autonomous vehicles [4]. RL allows agents 
to learn optimal behaviors through trial-and-error interactions with an environment, making it well-suited for handling 
the complexities and uncertainties of urban driving [5]. 

This paper investigates the application of state-of-the-art deep reinforcement learning techniques to the problem of 
autonomous vehicle navigation in urban environments. We propose a novel hierarchical RL framework that 
decomposes the urban driving task into a set of sub-tasks, enabling more efficient learning and improved generalization. 
Our approach combines advanced RL algorithms with realistic traffic simulations to train policies that can handle 
diverse urban scenarios. 

The key contributions of this work include: 

• A hierarchical deep RL framework for urban autonomous driving that leverages task decomposition to improve
learning efficiency and policy robustness.
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• Integration of state-of-the-art RL algorithms, including Soft Actor-Critic (SAC) [6] and Proximal Policy 
Optimization (PPO) [7], with realistic urban traffic simulations. 

• Extensive experimental evaluation in simulated urban environments, demonstrating superior performance 
compared to baseline approaches. 

• Real-world validation tests to verify the transferability of learned policies to actual autonomous vehicles. 

The rest of the paper is organized as follows: Section 2 provides an overview of related work. Section 3 describes our 
proposed hierarchical RL framework for urban autonomous driving. Section 4 presents the experimental setup and 
results. Section 5 discusses the implications and limitations of our approach. Finally, Section 6 concludes the paper and 
outlines directions for future research. 

2. Related work 

2.1. Autonomous Vehicle Navigation 

Autonomous vehicle navigation has been an active area of research for several decades. Early approaches relied heavily 
on rule-based systems and classical planning techniques [8]. These methods typically involve decomposing the driving 
task into perception, planning, and control modules [9]. While effective in controlled environments, such approaches 
often struggle to handle the complexities and uncertainties of real-world urban scenarios [10]. 

Bojarski et al. [11] demonstrated the feasibility of using convolutional neural networks to learn driving policies directly 
from camera images. However, these supervised learning approaches require large amounts of labeled training data 
and may struggle to generalize to novel scenarios [12]. 

2.2. Reinforcement Learning for Autonomous Driving 

Reinforcement learning has gained significant attention in the autonomous driving community due to its ability to learn 
adaptive behaviors through interaction with the environment [13]. Sallab et al. [14] proposed one of the early 
applications of deep RL for autonomous vehicle control, using a Deep Q-Network (DQN) to learn lane-keeping behaviors. 
Kendall et al. [15] demonstrated the use of deep RL for learning end-to-end driving policies in a simulated environment. 

More recent work has focused on addressing the challenges of applying RL to real-world autonomous driving scenarios. 
Tai et al. [16] proposed a socially compliant navigation framework using deep RL that considers the behavior of other 
road users. Chen et al. [17] developed a model-based RL approach that combines learned dynamics models with 
planning algorithms to improve sample efficiency and safety. 

2.3. Hierarchical Reinforcement Learning 

Hierarchical reinforcement learning (HRL) has emerged as a promising approach for tackling complex, long-horizon 
tasks by decomposing them into more manageable sub-tasks [18]. HRL methods can potentially address some of the 
challenges in autonomous driving, such as the need to reason over multiple time scales and handle diverse scenarios 
[19]. 

Shalev-Shwartz et al. [20] proposed a hierarchical framework for autonomous driving that combines reinforcement 
learning with rule-based policies. Qiao et al. [21] developed a hierarchical RL approach for urban autonomous driving 
that uses options to learn high-level driving behaviors. However, these approaches often rely on hand-crafted sub-task 
definitions, which may limit their adaptability to diverse urban environments. 

Our work builds upon these previous efforts by proposing a more flexible and adaptive hierarchical RL framework for 
urban autonomous driving. We leverage recent advances in deep RL algorithms and combine them with realistic traffic 
simulations to train robust navigation policies that can handle the complexities of urban environments. 

3. Proposed approach 

In this section, we present our hierarchical reinforcement learning framework for autonomous vehicle navigation in 
urban environments. We first describe the overall architecture of our approach, followed by detailed explanations of 
each component. 
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3.1. Hierarchical RL Framework 

Our proposed framework decomposes the urban driving task into a two-level hierarchy: 

• High-level policy: Responsible for making strategic decisions such as route planning, lane selection, and high-
level maneuvers (e.g., overtaking, turning at intersections). 

• Low-level policy: Responsible for executing the high-level decisions through fine-grained control actions (e.g., 
steering, acceleration, braking). 

This hierarchical structure allows the agent to reason over multiple time scales and learn more efficiently by focusing 
on different aspects of the driving task at each level. Figure 1 illustrates the overall architecture of our approach. 

 

Figure 1 Hierarchical RL Framework for Urban Autonomous Driving 

3.2. State Representation 

We design a comprehensive state representation that captures the essential information needed for urban navigation. 
The state space includes: 

• Ego vehicle state: Position, velocity, acceleration, heading, and lane position. 
• Local traffic information: Relative positions and velocities of nearby vehicles and pedestrians. 
• Road structure: Lane configurations, intersections, traffic signs, and signals. 
• High-level navigation goals: Target destination and suggested route. 

To process this complex state information, we use a combination of convolutional neural networks (CNNs) for 
processing visual inputs and fully connected layers for incorporating other sensory data and navigation goals. 

3.3. Action Space 

The action space is designed to accommodate both high-level strategic decisions and low-level control actions: 

• High-level actions: Lane change decisions, route adjustments, and high-level maneuvers. 
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• Low-level actions: Continuous control of steering angle, acceleration, and braking. 

This two-level action structure allows the agent to learn both long-term planning strategies and fine-grained control 
skills. 

3.4. Reward Function 

We design a comprehensive reward function that encourages safe, efficient, and comfortable driving behaviors. The 
reward function incorporates the following components: 

• Progress reward: Encourages the vehicle to make progress towards its destination. 
• Safety penalty: Penalizes collisions, near-misses, and traffic rule violations. 
• Comfort penalty: Discourages excessive accelerations, decelerations, and jerky movements. 
• Efficiency reward: Rewards maintaining appropriate speeds and choosing optimal routes. 
• Social compliance reward: Encourages adherence to traffic norms and courteous behavior towards other road 

users. 

The overall reward is a weighted sum of these components, with the weights tuned to balance the different objectives. 

3.5. Learning Algorithms 

We employ state-of-the-art deep RL algorithms to train our hierarchical policies: 

• High-level policy: We use the Soft Actor-Critic (SAC) algorithm [6] for the high-level policy. SAC is well-suited 
for learning in continuous action spaces and has demonstrated good performance and sample efficiency in 
complex tasks. 

• Low-level policy: For the low-level control policy, we employ Proximal Policy Optimization (PPO) [7]. PPO 
offers good stability and performance in continuous control tasks while being relatively simple to implement 
and tune. 

Both algorithms are implemented using deep neural networks to approximate the policy and value functions. We use 
separate networks for the high-level and low-level policies to allow for specialized architectures tailored to each level's 
requirements. 

3.6. Training Process 

We train our hierarchical RL agent using a curriculum learning approach [22] to gradually increase the complexity of 
the driving scenarios. The training process consists of the following stages: 

• Pre-training: We initially train the low-level policy on basic driving skills such as lane-keeping and velocity 
control. 

• Hierarchical training: We then jointly train the high-level and low-level policies in increasingly complex urban 
scenarios. 

• Fine-tuning: Finally, we fine-tune the policies in highly challenging and diverse urban environments to improve 
generalization. 

Throughout the training process, we use experience replay [23] and prioritized sampling [24] to improve learning 
efficiency and stability. 

4. Experimental evaluation 

We conducted extensive experiments to evaluate the performance of our proposed hierarchical RL framework for urban 
autonomous driving. This section describes our experimental setup and presents the results of our evaluation. 

4.1. Simulation Environment 

We used the CARLA simulator [25] to create realistic urban driving scenarios for training and evaluation. CARLA 
provides a high-fidelity 3D environment with diverse urban layouts, traffic conditions, and weather effects. We extended 
the simulator to support our hierarchical RL framework and implemented custom scenarios to test specific aspects of 
urban navigation. 
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4.2. Baselines 

We compared our approach to the following baselines: 

• Rule-based: A traditional rule-based autonomous driving system using predefined behaviors and decision 
trees. 

• End-to-end supervised learning: A convolutional neural network trained to predict control actions directly 
from raw sensory inputs using supervised learning on expert demonstrations. 

• Flat RL: A non-hierarchical deep RL approach using SAC to learn a single policy for the entire driving task. 

4.3. Evaluation Metrics 

We used the following metrics to assess the performance of our approach and the baselines: 

• Success rate: Percentage of successfully completed trips without collisions or traffic violations. 
• Average speed: Mean velocity achieved during successful trips. 
• Comfort: Measured by the smoothness of accelerations and steering actions. 
• Safety: Quantified by the number of near-misses and traffic rule violations. 
• Adaptability: Performance across diverse scenarios and traffic conditions. 

5. Results 

Table 1 presents the overall performance comparison between our hierarchical RL approach and the baselines across 
various urban driving scenarios. 

Table 1 Performance comparison of different approaches 

Approach Success Rate (%) Avg. Speed (km/h) Comfort Score Safety Score Adaptability Score 

Rule-based 78.3 32.5 0.72 0.85 0.61 

End-to-end SL 82.1 35.7 0.68 0.79 0.73 

Flat RL 88.6 38.2 0.81 0.87 0.82 

Hierarchical RL 94.2 40.1 0.89 0.93 0.91 

Our hierarchical RL approach outperforms all baselines across all metrics, demonstrating its effectiveness in handling 
complex urban driving scenarios. The success rate of our method is significantly higher than the baselines, indicating 
improved robustness and safety. The higher average speed and comfort scores suggest that our approach can navigate 
efficiently while maintaining smooth driving behavior. 

To further analyze the performance of our approach, we conducted experiments in specific challenging urban scenarios. 
Figure 2 shows the success rates of different methods in various urban driving tasks. 
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Figure 2 Success rates in different urban driving scenarios 

The results in Figure 2 demonstrate that our hierarchical RL approach consistently outperforms the baselines across 
various challenging urban driving tasks. The performance gap is particularly pronounced in complex scenarios such as 
intersection navigation and pedestrian interaction, highlighting the ability of our method to handle intricate urban 
environments. 

We also analyzed the learning curves of our hierarchical RL approach compared to the flat RL baseline to assess the 
efficiency of the learning process. Figure 3 shows the average reward obtained during training for both methods. 

 

Figure 3 Learning curves for hierarchical RL and flat RL approaches 

The learning curves in Figure 3 show that our hierarchical RL approach achieves higher rewards more quickly than the 
flat RL baseline. This faster convergence and improved final performance demonstrate the benefits of our hierarchical 
framework in terms of learning efficiency and effectiveness. 
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5.1. Ablation Study 

To understand the contribution of different components of our hierarchical RL framework, we conducted an ablation 
study. Table 2 presents the results of this study, showing the impact of removing or modifying key components of our 
approach. 

Table 2 Ablation study results 

Configuration Success Rate (%) Avg. Speed (km/h) Safety Score 

Full Hierarchical RL 94.2 40.1 0.93 

w/o High-level Policy 89.7 37.8 0.88 

w/o Curriculum Learning 91.5 39.2 0.90 

w/o Social Compliance Reward 92.8 40.5 0.89 

Single RL Algorithm (SAC only) 90.3 38.6 0.91 

The ablation study results demonstrate that each component of our framework contributes to its overall performance. 
Removing the high-level policy or using a single RL algorithm for both levels result in decreased performance across all 
metrics. The curriculum learning approach and social compliance reward also play important roles in achieving high 
success rates and safety scores. 

5.2. Real-world Validation 

To verify the transferability of our learned policies to real-world scenarios, we conducted limited real-world validation 
tests using a retrofitted autonomous vehicle platform. While comprehensive real-world evaluation was beyond the 
scope of this study, our initial tests showed promising results in terms of the policy's ability to handle real urban traffic 
situations. 

The real-world tests focused on navigating through urban intersections, performing lane changes, and interacting with 
pedestrians. We observed that the hierarchical structure of our approach allowed for easier adaptation to real-world 
conditions by adjusting the low-level control policy while maintaining the high-level strategic behaviors learned in 
simulation. 

6. Discussion 

Our experimental results demonstrate the effectiveness of the proposed hierarchical RL framework for autonomous 
vehicle navigation in urban environments. The hierarchical approach offers several advantages over flat RL and 
traditional methods: 

• Improved performance: The hierarchical structure allows the agent to learn both high-level strategic behaviors 
and low-level control skills, resulting in better overall performance across various metrics. 

• Sample efficiency: By decomposing the problem into more manageable sub-tasks, our approach achieves faster 
learning and better final performance compared to flat RL methods. 

• Interpretability: The hierarchical structure provides better interpretability of the learned behaviors, as high-
level decisions can be more easily understood and analyzed. 

• Adaptability: The two-level policy structure allows for easier adaptation to new scenarios by fine-tuning 
specific components of the hierarchy. 

However, there are some limitations and areas for future improvement: 

• Scalability: While our approach shows good performance in the tested scenarios, further research is needed to 
evaluate its scalability to even more complex and diverse urban environments. 

• Safety guarantees: Although our method demonstrates improved safety compared to baselines, providing 
formal safety guarantees for RL-based systems remains a challenging open problem. 

• Real-world deployment: More extensive real-world testing and validation are necessary to ensure the 
robustness and reliability of the learned policies in actual traffic conditions. 
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Multi-agent scenarios: Our current approach focuses on single-vehicle navigation. Extending the framework to handle 
multi-agent scenarios with explicit coordination between autonomous vehicles is an important direction for future 
work.   

7. Conclusion  

In this paper, we presented a novel hierarchical reinforcement learning framework for autonomous vehicle navigation 
in urban environments. Our approach combines state-of-the-art deep RL algorithms with a two-level policy structure 
to learn both strategic high-level behaviors and fine-grained control skills. Extensive experiments in simulated urban 
scenarios demonstrated that our method significantly outperforms baseline approaches in terms of safety, efficiency, 
and adaptability to diverse traffic conditions. 

The hierarchical structure of our framework offers several advantages, including improved performance, sample 
efficiency, interpretability, and adaptability. Our ablation studies confirmed the importance of each component in the 
overall performance of the system. 

While our initial real-world validation tests showed promising results, there are several directions for future work: 

• Expanding real-world testing: Conduct more comprehensive real-world experiments to validate the 
transferability of learned policies across a wider range of urban scenarios and weather conditions. 

• Incorporating uncertainty: Develop methods to explicitly model and reason about uncertainties in the 
environment and other road users' behaviors. 

• Multi-agent coordination: Extend the framework to handle scenarios involving multiple autonomous vehicles, 
incorporating explicit communication and coordination mechanisms. 

• Safety-aware RL: Investigate techniques to incorporate formal safety constraints and guarantees into the RL 
training process. 

• Lifelong learning: Develop approaches for continual adaptation and improvement of the learned policies as the 
vehicle encounters new scenarios in real-world deployments. 

• Human-AI interaction: Explore methods for seamless interaction between the autonomous system and human 
drivers or passengers, including explanations of the AI's decisions and smooth transitions between 
autonomous and manual control. 

In conclusion, our hierarchical RL framework represents a significant step towards enabling safe and efficient 
autonomous vehicle navigation in complex urban environments. By addressing the limitations and pursuing the 
suggested future directions, we believe this approach has the potential to contribute to the development of more capable 
and reliable autonomous driving systems.  
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