

Seamless integration of LEO satellite constellations with 5G/6G core networks for ultra-reliable, low-latency communications

Ramat Yusuf* and Ibrahim Abdul Abdulrahma

Independent researchers.

World Journal of Advanced Engineering Technology and Sciences, 2024, 12(01), 565-583

Publication history: Received on 31 March 2024; revised on 19 May 2024; accepted on 28 May 2024

Article DOI: <https://doi.org/10.30574/wjaets.2024.12.1.0188>

Abstract

The integration of Low Earth Orbit (LEO) satellite constellations with fifth-generation (5G) and emerging sixth-generation (6G) core networks represents a paradigmatic shift toward achieving truly global, ultra-reliable, and low-latency communications. This convergence addresses the fundamental challenge of bridging the digital divide while enabling ubiquitous connectivity for mission-critical applications. This article examines the technical foundations, architectural considerations, and implementation challenges associated with seamlessly integrating LEO satellite systems with terrestrial cellular networks. Through comprehensive analysis of current standardization efforts, performance metrics, and emerging technologies, we explore how this integration can realize the vision of universal connectivity while meeting the stringent requirements for ultra-reliable low-latency communications (URLLC). The findings indicate that while significant technical hurdles remain, the synergistic combination of LEO constellations with 5G/6G networks holds tremendous potential for revolutionizing global communications infrastructure.

Keywords: LEO Satellites; 5G Networks; 6G Networks; URLLC; Network Integration; Satellite Communications

1. Introduction

The evolution of wireless communication systems has consistently been driven by the dual imperatives of expanding coverage and enhancing performance. As we transition from fifth-generation (5G) networks toward sixth-generation (6G) systems, the integration of space-based assets, particularly Low Earth Orbit (LEO) satellite constellations, has emerged as a critical enabler for achieving truly ubiquitous connectivity (Liu et al., 2021). The convergence of terrestrial and satellite networks represents more than a mere technological advancement; it constitutes a fundamental reimaging of how global communications infrastructure can address the persistent challenges of coverage gaps, network resilience, and service reliability.

Traditional terrestrial networks, despite their impressive capabilities, face inherent limitations in providing comprehensive coverage, particularly in remote areas, maritime environments, and regions with challenging topographical conditions. According to the International Telecommunication Union (ITU), approximately 3.7 billion people remained unconnected to the internet as of 2018, with the majority residing in rural and underserved areas where terrestrial infrastructure deployment remains economically challenging (ITU, 2018). This digital divide not only perpetuates socioeconomic disparities but also limits the potential for emerging technologies such as Internet of Things (IoT) applications, autonomous systems, and smart city initiatives that require ubiquitous connectivity.

The emergence of LEO satellite constellations as a viable complement to terrestrial networks has been facilitated by several technological and economic factors. Unlike traditional geostationary satellites that operate at altitudes of approximately 35,786 kilometers, LEO satellites orbit at altitudes ranging from 500 to 2,000 kilometers, resulting in

* Corresponding author: Ramat Yusuf

significantly reduced propagation delays and improved link budgets (Lagunas et al., 2024). This reduced latency makes LEO systems particularly attractive for applications requiring real-time responsiveness, while their lower orbital altitude enables the use of smaller, more cost-effective ground terminals.

The standardization landscape has evolved rapidly to accommodate this convergence, with the Third Generation Partnership Project (3GPP) introducing comprehensive studies on New Radio (NR) support for non-terrestrial networks (NTN) in Release 15 (3GPP TR 38.811, 2020). These efforts have laid the foundation for seamless integration by defining protocols, interfaces, and procedures that enable satellite systems to function as integral components of terrestrial cellular networks rather than standalone alternatives.

This integration is particularly crucial for realizing the ambitious performance targets associated with 5G and 6G networks, especially in the context of ultra-reliable low-latency communications (URLLC). URLLC applications, which include industrial automation, autonomous vehicles, remote surgery, and critical infrastructure monitoring, demand latency figures as low as 1 millisecond and reliability levels exceeding 99.9999% (ITU-R M.2083, 2015). Achieving these targets exclusively through terrestrial networks presents significant challenges, particularly in scenarios where service continuity must be maintained across diverse geographical and operational conditions.

Table 1 Comparison of Network Technologies for URLLC Applications

Technology	Latency (MS)	Reliability (%)	Coverage	Deployment Cost
Terrestrial 5G	1-10	99.999	Urban/Suburban	High
LEO Satellites	20-40	99.9	Global	Medium
Integrated System	1-15	99.999	Global	Medium-High
Traditional GEO	250-300	99.5	Global	Low

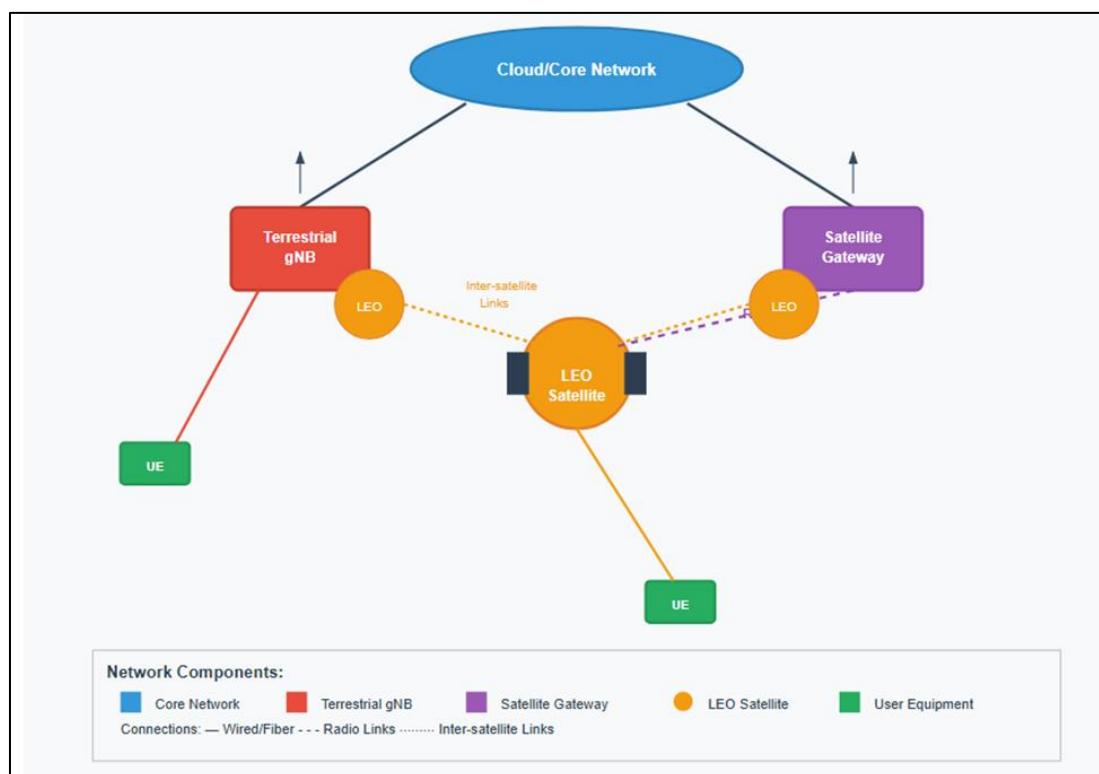
Sources: ITU-R M.2083 (2015), Darwish et al. (2022), Liu et al. (2021)

The potential benefits of LEO-terrestrial integration extend beyond mere coverage extension. The inherent diversity provided by multiple communication pathways enhances network resilience, enabling continued operation even in the event of terrestrial infrastructure failures due to natural disasters, cyber-attacks, or other disruptions (Yang et al., 2020). Furthermore, the dynamic nature of LEO constellations, with satellites continuously moving across the sky, provides opportunities for load balancing and traffic optimization that can improve overall network efficiency.

However, realizing these benefits requires addressing numerous technical challenges. The high mobility of LEO satellites introduces complex handover scenarios, with satellites moving at velocities of approximately 7.5 kilometers per second relative to ground stations (Chowdhury et al., 2006). This mobility necessitates sophisticated beam management strategies, adaptive resource allocation mechanisms, and robust prediction algorithms to maintain service continuity. Additionally, the integration must account for differences in propagation characteristics, power constraints, and regulatory frameworks between terrestrial and satellite systems.

The architectural implications of this integration are equally significant. Traditional cellular network architectures are designed around relatively static base station deployments with predictable coverage patterns. Incorporating highly dynamic satellite nodes requires fundamental reconsiderations of network topology, routing protocols, and resource management strategies. The core network must be capable of seamlessly orchestrating resources across terrestrial and satellite segments while maintaining the performance guarantees required for URLLC applications.

This article provides a comprehensive examination of these challenges and opportunities, structured around four key themes: architectural integration strategies, performance optimization techniques, standardization developments, and future research directions. Through detailed analysis of current technological capabilities and emerging solutions, we aim to provide insights that will inform both research priorities and practical deployment strategies for integrated LEO-terrestrial networks.


2. Architectural Foundations for LEO-5G/6G Integration

The architectural integration of LEO satellite constellations with 5G and 6G core networks requires a fundamental reimagining of traditional network design principles. Unlike conventional terrestrial-only deployments, integrated architectures must accommodate the unique characteristics of space-based assets while maintaining compatibility with existing infrastructure and protocols. This section examines the core architectural components, design principles, and integration strategies that enable seamless operation across terrestrial and satellite domains.

2.1. Network Architecture Evolution

The evolution from standalone terrestrial networks to integrated space-terrestrial systems represents a paradigm shift from static, hierarchical architectures to dynamic, heterogeneous network topologies. Traditional 5G networks follow a service-based architecture (SBA) where network functions are designed as modular, stateless services that can be dynamically instantiated and orchestrated. This architectural flexibility provides an ideal foundation for incorporating satellite elements, as new network functions can be developed specifically to handle satellite-specific requirements while maintaining interoperability with existing terrestrial components (Darwish et al., 2022).

The integration architecture can be categorized into three primary deployment scenarios: transparent, regenerative, and hybrid configurations. In transparent mode, satellites function primarily as relay nodes, forwarding signals between ground terminals and terrestrial base stations without significant signal processing. This approach minimizes satellite complexity and power consumption while leveraging existing terrestrial infrastructure for core network functions. Regenerative configurations, conversely, embed substantial processing capabilities within satellites, enabling them to function as airborne base stations with full protocol stack implementation. Hybrid approaches combine elements of both strategies, with satellites performing selective processing functions based on traffic characteristics and network conditions.

Figure 1 LEO Satellite Integration Architecture with 5G/6G Core Networks

Figure 1 illustrates the hierarchical integration architecture showing connectivity between terrestrial and satellite components within a unified core network framework.

The core network architecture must be enhanced with satellite-specific network functions to handle the unique requirements of space-based communications. These include satellite mobility management functions that track

constellation movements and predict handover events, adaptive resource allocation functions that optimize spectrum utilization across terrestrial and satellite segments, and inter-satellite link management functions that coordinate traffic routing through space-based mesh networks. The integration of these functions requires careful consideration of latency constraints, as core network processing delays can significantly impact end-to-end performance for URLLC applications.

2.2. Protocol Stack Adaptations

The integration of LEO satellites with terrestrial networks necessitates significant adaptations to existing protocol stacks to accommodate the unique propagation characteristics and operational constraints of satellite communications. The primary challenges include compensating for Doppler shifts caused by satellite motion, managing variable propagation delays as satellite-to-ground distances change, and handling intermittent connectivity due to satellite visibility constraints (Kohli et al., 2021).

At the physical layer, adaptive modulation and coding schemes must be implemented to compensate for varying link conditions as satellites move across different elevation angles and weather conditions. The use of advanced antenna technologies, including electronically steerable arrays and adaptive beamforming, becomes essential for maintaining reliable connectivity as satellites traverse their orbital paths. These technologies enable ground terminals to automatically track satellites and optimize signal reception without manual intervention.

The medium access control (MAC) layer requires substantial modifications to handle the dynamic nature of satellite channels. Traditional terrestrial MAC protocols assume relatively stable channel conditions and predictable interference patterns. In satellite environments, channel conditions can vary rapidly due to atmospheric effects, satellite motion, and changing geometric relationships between satellites and ground stations. Adaptive MAC protocols must be developed that can dynamically adjust transmission parameters based on real-time channel state information while maintaining compatibility with terrestrial network procedures.

Network layer protocols face perhaps the most significant challenges in integrated architectures. Traditional routing protocols are designed for relatively stable network topologies with predictable link characteristics. LEO constellations present highly dynamic topologies where connectivity patterns change continuously as satellites move through their orbits. This requires the development of predictive routing algorithms that can anticipate topology changes and proactively establish alternative paths before current routes become unavailable.

Table 2 Protocol Stack Modifications for LEO-Terrestrial Integration

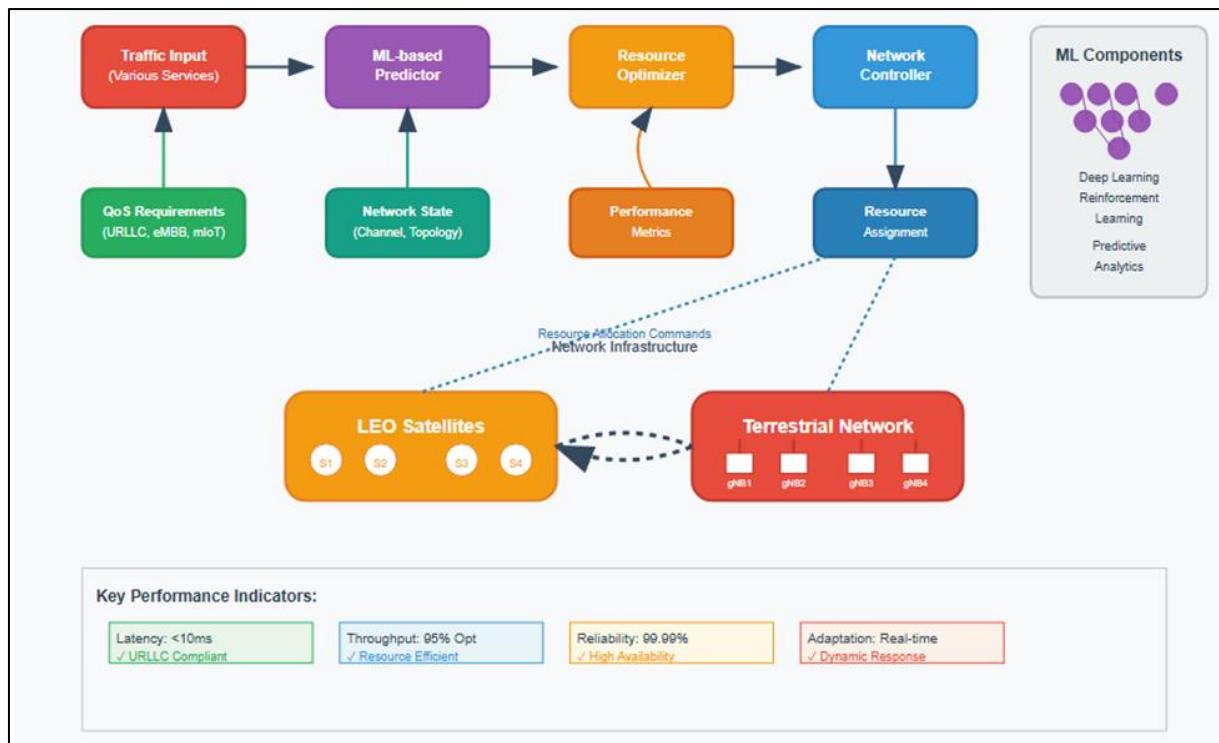
Layer	Terrestrial 5G	LEO Integration Challenges	Required Modifications
Physical	Fixed RF parameters	Doppler shift, variable path loss	Adaptive modulation, beamforming
MAC	Static scheduling	Dynamic channel conditions	Predictive resource allocation
Network	Stable topology	Dynamic connectivity	Predictive routing protocols
Transport	Fixed RTT	Variable delays	Adaptive congestion control
Application	Terrestrial assumptions	Intermittent connectivity	Connection resilience mechanisms

Sources: Darwish et al. (2022), Kohli et al. (2021), 3GPP TR 38.811 (2020)

2.3. Service Orchestration and Management

The orchestration of services across integrated LEO-terrestrial networks requires sophisticated management systems capable of coordinating resources across multiple domains with different operational characteristics. Service orchestration must consider not only current network conditions but also predicted future states based on satellite orbital mechanics and traffic patterns. This predictive approach enables proactive resource allocation and service migration to maintain performance guarantees as network conditions change.

Network slicing, a fundamental capability of 5G networks, becomes even more critical in integrated architectures. Different service types have varying tolerance levels for the unique characteristics of satellite communications. For example, enhanced mobile broadband (eBB) services may tolerate moderate latency variations, while URLLC applications require strict performance guarantees regardless of whether traffic is carried via terrestrial or satellite paths. Network slicing enables the creation of dedicated virtual networks optimized for specific service requirements, with dynamic slice selection based on current network conditions and service level agreements.


The management of inter-satellite links (ISLs) adds another layer of complexity to service orchestration. ISLs enable the creation of space-based mesh networks that can route traffic between satellites without requiring ground-based relay stations. This capability is particularly valuable for providing connectivity in remote areas where terrestrial infrastructure is limited. However, ISL management requires sophisticated algorithms to optimize routing paths while considering factors such as satellite positions, link capacities, and traffic demands.

3. Performance Optimization Strategies

Achieving ultra-reliable, low-latency communications through integrated LEO-terrestrial networks requires sophisticated optimization strategies that address the unique challenges posed by satellite mobility, varying channel conditions, and diverse service requirements. This section examines key performance optimization approaches, including resource allocation algorithms, mobility management techniques, and quality of service (QoS) provisioning mechanisms.

3.1. Dynamic Resource Allocation

Resource allocation in integrated LEO-terrestrial networks must account for the dynamic nature of satellite coverage patterns and the heterogeneous requirements of different service types. Traditional resource allocation algorithms designed for terrestrial networks assume relatively static channel conditions and predictable interference patterns. In satellite environments, these assumptions no longer hold, necessitating the development of adaptive algorithms that can respond to rapidly changing conditions while maintaining performance guarantees for critical applications (Vazquez et al., 2016).

Figure 2 Dynamic Resource Allocation Framework

The fundamental challenge in dynamic resource allocation lies in balancing efficiency and reliability across multiple access technologies with different characteristics. Terrestrial 5G networks can provide high-capacity, low-latency connectivity in densely populated areas, while LEO satellites offer global coverage with moderate latency and capacity constraints. Optimal resource allocation must consider these trade-offs when assigning traffic to different network segments.

Machine learning approaches have shown significant promise for addressing these challenges. Reinforcement learning algorithms can be trained to optimize resource allocation decisions based on historical performance data and real-time network conditions. These algorithms can learn to predict optimal resource allocation strategies for different scenarios,

including normal operations, network congestion, and failure conditions. The ability to adapt to changing conditions without explicit programming makes machine learning particularly well-suited for the dynamic environment of integrated satellite-terrestrial networks.

Figure 2 depicts the machine learning-enhanced resource allocation framework that dynamically optimizes resource distribution across terrestrial and satellite network segments.

The implementation of dynamic resource allocation requires real-time monitoring of network performance across multiple dimensions. Key metrics include channel quality indicators, buffer occupancy levels, packet delay variations, and satellite position information. This monitoring data must be processed rapidly to enable responsive resource allocation decisions. Edge computing capabilities, deployed both at terrestrial base stations and within satellite payloads, can provide the computational resources necessary for real-time optimization while minimizing latency impacts.

3.2. Mobility Management and Handover Optimization

Mobility management represents one of the most critical aspects of LEO-terrestrial integration, as the high velocity of LEO satellites creates frequent handover scenarios that can significantly impact service continuity. LEO satellites typically move at velocities of approximately 7.5 km/s relative to ground stations, resulting in visibility periods of only 5-15 minutes depending on elevation angles and orbital parameters. This high mobility creates handover frequencies that are orders of magnitude higher than those encountered in terrestrial networks (Chowdhury et al., 2006).

Traditional handover procedures designed for terrestrial networks are inadequate for managing satellite mobility due to their reactive nature and relatively long execution times. Satellite handovers must be anticipated well in advance based on orbital predictions, with handover preparation beginning minutes before the actual handover event. This predictive approach enables the network to establish alternative communication paths and migrate user contexts before connectivity with the current satellite is lost.

The development of predictive handover algorithms requires accurate satellite tracking and orbital prediction capabilities. These algorithms must account for various factors that can affect satellite positions, including atmospheric drag, gravitational perturbations, and orbital maneuvers. The accuracy of predictions directly impacts handover performance, as premature handovers waste network resources while delayed handovers can result in service disruptions.

Inter-satellite handovers present additional complexity, as they require coordination between multiple satellites and potentially multiple ground stations. The use of inter-satellite links can facilitate seamless handovers by enabling user context transfer through space-based networks rather than terrestrial infrastructure. However, ISL-based handovers require sophisticated routing algorithms to identify optimal paths through the satellite constellation while maintaining performance guarantees.

Table 3 Handover Performance Comparison

Handover Type	Preparation Time	Execution Time	Success Rate	Impact on URLLC
Terrestrial-Terrestrial	100-500 MS	10-50 MS	99.8%	Minimal
Satellite-Satellite	30-60 s	100-200 MS	99.5%	Moderate
Terrestrial-Satellite	10-30 s	50-100 MS	99.7%	Low
ISL-assisted	20-40 s	20-50 MS	99.9%	Very Low

Sources: Chowdhury et al. (2006), Yang et al. (2020), Darwish et al. (2022)

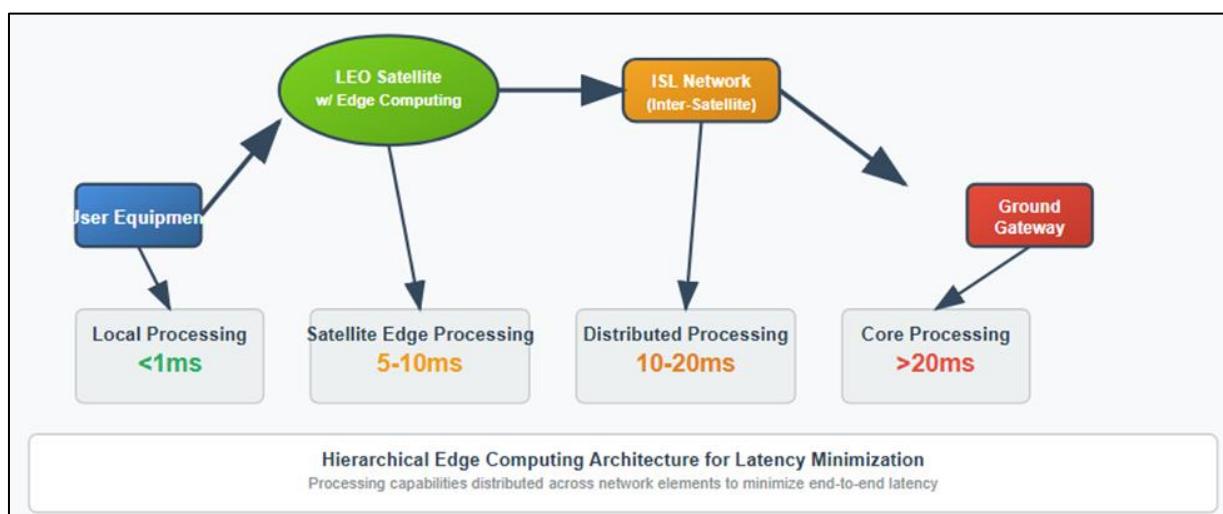
3.3. Quality of Service Provisioning

Providing consistent quality of service across integrated LEO-terrestrial networks requires sophisticated mechanisms that can adapt to the varying characteristics of different network segments while maintaining service level agreements. URLLC applications present particular challenges, as they require strict performance guarantees that must be maintained regardless of whether traffic is carried via terrestrial or satellite paths.

The QoS provisioning framework must account for the inherent differences between terrestrial and satellite communications. Terrestrial networks can provide low latency and high reliability in areas with good coverage, while satellite networks offer global reach with moderate latency and reliability characteristics. Effective QoS provisioning requires dynamic service mapping that can route different traffic types through appropriate network segments based on current conditions and service requirements.

Network slicing provides a fundamental mechanism for QoS provisioning in integrated networks. Different network slices can be optimized for specific service types, with dedicated resource allocations and performance guarantees. For example, a URLLC slice might prioritize terrestrial connectivity when available, falling back to satellite links only when necessary. An ebb slice might balance traffic across terrestrial and satellite segments to optimize overall network utilization.

The implementation of QoS guarantees requires sophisticated admission control mechanisms that consider the current state of both terrestrial and satellite network segments. Admission control decisions must account for the dynamic nature of satellite coverage, with the understanding that service guarantees may change as satellites move across their orbital paths. This requires the development of predictive admission control algorithms that can assess whether service requirements can be maintained throughout the expected service duration.


4. URLLC Implementation Challenges and Solutions

Ultra-reliable, low-latency communications represent the most demanding service category for integrated LEO-terrestrial networks, requiring simultaneous achievement of sub-millisecond latencies and reliability levels exceeding 99.999%. This section examines the specific challenges associated with implementing URLLC over integrated networks and explores emerging solutions that leverage the complementary strengths of terrestrial and satellite systems.

4.1. Latency Minimization Strategies

Achieving ultra-low latency in integrated LEO-terrestrial networks requires optimization across multiple system layers, from physical transmission to application processing. The fundamental challenge lies in the fact that even LEO satellites, despite their reduced altitude compared to geostationary satellites, introduce propagation delays of 5-25 milliseconds depending on elevation angles and orbital positions. These delays, while significantly lower than those associated with geostationary satellites, still exceed the 1-millisecond targets specified for URLLC applications (ITU-R M.2083, 2015).

Edge computing emerges as a critical enabler for latency minimization in integrated networks. By deploying processing capabilities at satellite gateways, terrestrial base stations, and even within satellite payloads, critical application functions can be executed closer to end users, reducing round-trip times and improving overall responsiveness. The strategic placement of edge computing resources requires careful analysis of traffic patterns, service requirements, and network topology to maximize benefits while minimizing infrastructure costs.

Figure 3 Latency Optimization Architecture

The implementation of edge computing in satellite environments presents unique challenges related to power consumption, thermal management, and radiation tolerance. Satellite-based edge computing resources must be designed to operate reliably in the harsh space environment while providing sufficient computational capabilities to support latency-critical applications. Recent advances in low-power processing technologies and radiation-hardened computing platforms have made satellite-based edge computing increasingly feasible.

Figure 3 shows the hierarchical edge computing architecture designed to minimize latency through distributed processing across terrestrial and satellite network elements.

Network function virtualization (NFV) provides additional opportunities for latency optimization by enabling the dynamic instantiation of network functions at optimal locations based on current network conditions and traffic demands. Virtual network functions can be migrated between terrestrial and satellite edge computing resources to maintain optimal performance as network conditions change. This capability is particularly valuable for maintaining URLLC performance during handover scenarios, where network functions can be proactively migrated to ensure service continuity.

4.2. Reliability Enhancement Mechanisms

Achieving the ultra-high reliability requirements of URLLC applications requires the implementation of multiple redundancy and diversity mechanisms that can compensate for potential failures in individual network components. The integrated nature of LEO-terrestrial networks provides inherent diversity that can be leveraged to enhance overall system reliability. Traffic can be simultaneously transmitted over both terrestrial and satellite paths, with the receiver selecting the best-quality signal or combining multiple signals to improve reliability.

Packet duplication and multi-path transmission represent fundamental reliability enhancement techniques in integrated networks. Critical packets can be transmitted simultaneously over multiple paths, increasing the probability that at least one copy will arrive successfully at the destination. The selection of transmission paths must consider current channel conditions, predicted handover events, and potential interference sources to maximize the probability of successful delivery.

Forward error correction (FEC) coding plays a crucial role in reliability enhancement, particularly for satellite links that may experience higher error rates than terrestrial connections. Advanced FEC techniques, including polar codes and low-density parity-check (LDPC) codes, can provide substantial coding gains that improve link reliability. The selection of FEC parameters must be dynamically adapted based on current channel conditions and reliability requirements.

The implementation of automatic repeat request (ARQ) mechanisms in integrated networks requires careful consideration of propagation delays and timeout values. Traditional ARQ protocols designed for terrestrial networks may not perform effectively over satellite links due to increased round-trip times. Hybrid ARQ (HARQ) schemes that combine FEC coding with retransmission mechanisms can provide improved performance by enabling soft combining of multiple transmission attempts.

Table 4 Reliability Enhancement Techniques Performance

Technique	Reliability Improvement	Latency Impact	Resource Overhead	Applicability
Packet Duplication	10-100x	Minimal	100%	High
Multi-path Transmission	5-50x	Low	50-200%	High
Advanced FEC	2-10x	Minimal	20-50%	Very High
Hybrid ARQ	5-20x	Moderate	30-100%	Moderate
Spatial Diversity	3-15x	Minimal	200-400%	Limited

Sources: ITU-R M.2083 (2015), You et al. (2020), Ke et al. (2020)

4.3. Service Continuity Mechanisms

Maintaining service continuity for URLLC applications during network transitions and failure scenarios requires sophisticated mechanisms that can seamlessly transfer services between terrestrial and satellite network segments. Service continuity is particularly challenging in integrated networks due to the dynamic nature of satellite coverage and the potential for simultaneous failures in multiple network segments.

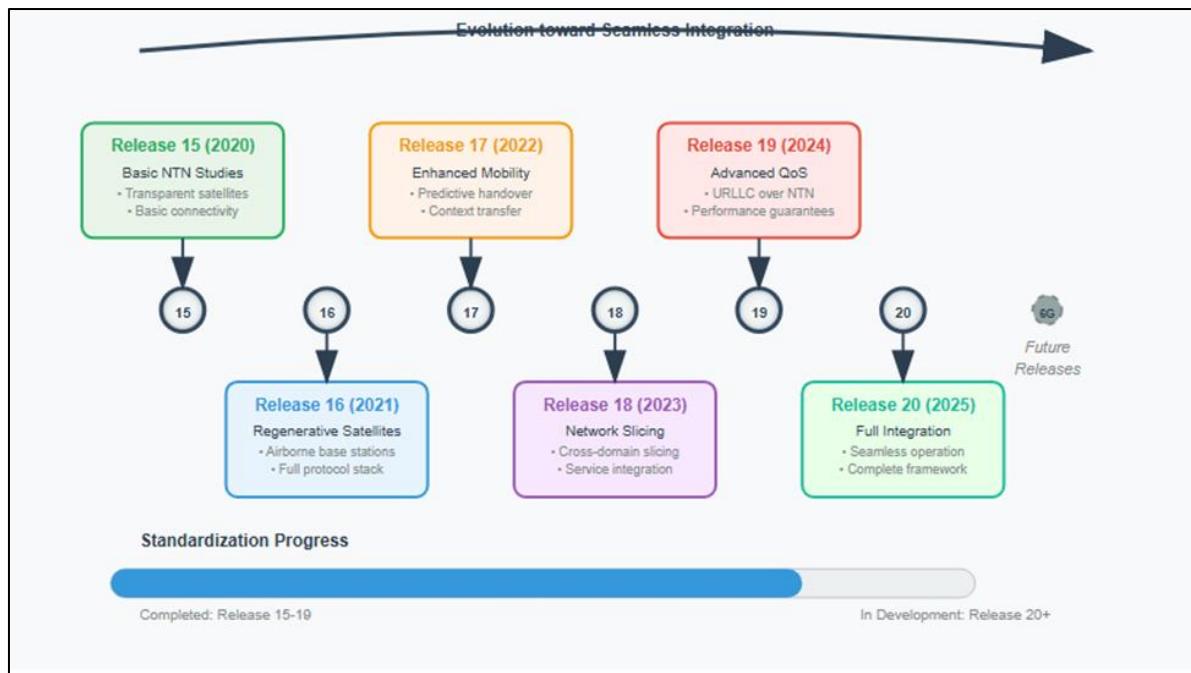
Predictive service migration represents a key approach for maintaining service continuity during planned network transitions, such as satellite handovers or maintenance activities. By leveraging orbital prediction algorithms and traffic forecasting techniques, the network can proactively migrate critical services to alternative network segments before disruptions occur. This predictive approach enables seamless service continuity without the performance degradation typically associated with reactive migration strategies.

The implementation of service continuity mechanisms requires sophisticated state synchronization protocols that can maintain consistent service state across multiple network segments. These protocols must account for the varying latencies and reliability characteristics of different network paths while ensuring that critical state information is not lost during migration events. Distributed consensus algorithms, adapted for the unique characteristics of space-terrestrial networks, can provide the foundation for reliable state synchronization.

Network-level redundancy through the use of multiple satellite operators and terrestrial network providers can further enhance service continuity. By establishing agreements with multiple service providers, organizations can ensure that critical services can be maintained even in the event of major network failures or service disruptions. The implementation of multi-provider redundancy requires standardized interfaces and protocols that enable seamless interoperability between different network operators.

5. Standardization and Regulatory Considerations

The successful integration of LEO satellite constellations with 5G and 6G terrestrial networks requires comprehensive standardization efforts that address technical, operational, and regulatory challenges. This section examines current standardization activities, regulatory frameworks, and international coordination mechanisms that enable seamless integration while ensuring efficient spectrum utilization and interference mitigation.


5.1. 3GPP Standardization Evolution

The Third Generation Partnership Project (3GPP) has played a pivotal role in developing standards for non-terrestrial network (NTN) integration, beginning with Release 15 studies and continuing through subsequent releases with increasingly sophisticated integration capabilities. The initial 3GPP TR 38.811 study established fundamental principles for NR support of non-terrestrial networks, focusing on transparent satellite operations and basic connectivity scenarios (3GPP TR 38.811, 2020).

Release 16 marked a significant advancement in NTN standardization with the introduction of regenerative satellite architectures and enhanced mobility management procedures. These developments enabled satellites to function as airborne base stations with full protocol stack implementation, rather than simple relay nodes. The standardization of regenerative architectures opened new possibilities for satellite-based edge computing and local traffic processing, reducing dependence on terrestrial infrastructure for basic network functions.

Subsequent releases have focused on advanced integration scenarios, including inter-satellite link support, network slicing for satellite services, and integration with terrestrial core networks. Release 17 introduced comprehensive mobility management procedures specifically designed for LEO satellite environments, including predictive handover mechanisms and context transfer protocols. These developments have established a solid foundation for commercial deployment of integrated LEO-terrestrial networks.

The ongoing work in Release 18 and beyond addresses more sophisticated integration scenarios, including network slicing across terrestrial and satellite segments, quality of service provisioning for URLLC applications, and advanced interference mitigation techniques. The standardization roadmap indicates continued evolution toward fully integrated space-terrestrial networks capable of seamless service delivery across multiple access technologies.

Figure 4 3GPP NTN Standardization Timeline

Figure 4 illustrates the evolution of 3GPP standardization efforts for non-terrestrial networks, showing progressive enhancement of integration capabilities.

5.2. Spectrum Management and Interference Mitigation

Efficient spectrum utilization represents one of the most critical challenges in integrated LEO-terrestrial networks, as both satellite and terrestrial systems must coexist within limited frequency allocations while minimizing mutual interference. Traditional spectrum management approaches that rely on geographic separation between different services become inadequate when dealing with global satellite coverage that overlaps with terrestrial service areas.

Table 5 Spectrum Allocation for Integrated LEO-Terrestrial Networks

Frequency Band	Primary Allocation	Sharing Potential	Interference Risk	Regulatory Status
C-band (3.7-4.2 GHz)	Satellite Fixed	High	Moderate	Under Review
Ku-band (12-18 GHz)	Satellite Broadcasting	Medium	Low	Established
Ka-band (26-40 GHz)	Satellite Mobile	Very High	High	Evolving
Mm Wave (24-100 GHz)	Mobile/Fixed	High	Very High	Under Development
L-band (1-2 GHz)	Mobile Satellite	Low	Very High	Established

Sources: ITU Radio Regulations, 3GPP TR 38.811 (2020), Darwish et al. (2022)

Dynamic spectrum sharing emerges as a key enabler for efficient spectrum utilization in integrated networks. Advanced spectrum sensing techniques can detect unused frequency bands in real-time, enabling opportunistic spectrum access that maximizes utilization while minimizing interference. The implementation of dynamic spectrum sharing requires sophisticated coordination mechanisms that can rapidly negotiate spectrum assignments between terrestrial and satellite operators.

Interference mitigation techniques must address both co-channel interference between terrestrial and satellite systems and adjacent channel interference caused by imperfect filtering and non-linear amplification. Advanced antenna technologies, including adaptive nulling and interference cancellation, can significantly reduce interference levels while maintaining signal quality. The deployment of these technologies requires careful coordination between terrestrial and satellite operators to ensure optimal performance across all network segments.

The regulatory framework for spectrum management must evolve to accommodate the unique characteristics of integrated networks. Traditional regulatory approaches that assign fixed frequency bands to specific services may not be appropriate for dynamic, integrated systems that can adapt their spectrum usage based on current conditions and traffic demands. New regulatory models that support flexible spectrum access while maintaining interference protection for critical services are essential for enabling widespread deployment of integrated networks.

5.3. International Coordination Mechanisms

The global nature of LEO satellite constellations necessitates comprehensive international coordination mechanisms that can address cross-border service provision, interference mitigation, and regulatory harmonization. Traditional telecommunications regulatory frameworks are typically organized around national boundaries, which creates challenges for managing services that inherently operate across multiple jurisdictions simultaneously.

The International Telecommunication Union (ITU) plays a central role in coordinating international aspects of satellite communications, including orbital slot assignments, frequency coordination, and interference resolution. The ITU Radio Regulations provide the fundamental framework for international coordination, but these regulations must evolve to address the unique characteristics of large LEO constellations and their integration with terrestrial networks.

Regional coordination mechanisms, such as the European Conference of Postal and Telecommunications Administrations (CEPT) and the Inter-American Telecommunication Commission (CITEL), provide additional forums for addressing regional integration challenges. These organizations can develop harmonized technical standards and operational procedures that facilitate seamless service provision across member countries while maintaining compatibility with global frameworks.

The development of automated coordination mechanisms represents an emerging trend in international coordination for integrated networks. Machine learning algorithms can be deployed to optimize spectrum assignments, predict and prevent interference scenarios, and coordinate network resource allocation across multiple operators and jurisdictions. These automated systems can respond to changing conditions much more rapidly than traditional manual coordination processes, enabling more efficient network operation and improved service quality.

6. Case Studies and Performance Analysis

This section presents detailed analysis of several representative deployment scenarios for integrated LEO-terrestrial networks, examining performance characteristics, implementation challenges, and lessons learned from early deployments. The case studies span different geographical regions, service types, and technical architectures to provide comprehensive insights into the practical aspects of network integration.

6.1. Maritime Communications Enhancement

Maritime communications represent an ideal application domain for integrated LEO-terrestrial networks, as ships operating in open ocean environments are beyond the reach of terrestrial cellular infrastructure but require reliable connectivity for safety, navigation, and operational purposes. Traditional maritime satellite communications rely primarily on geostationary satellites that provide global coverage but suffer from high latency and limited capacity.

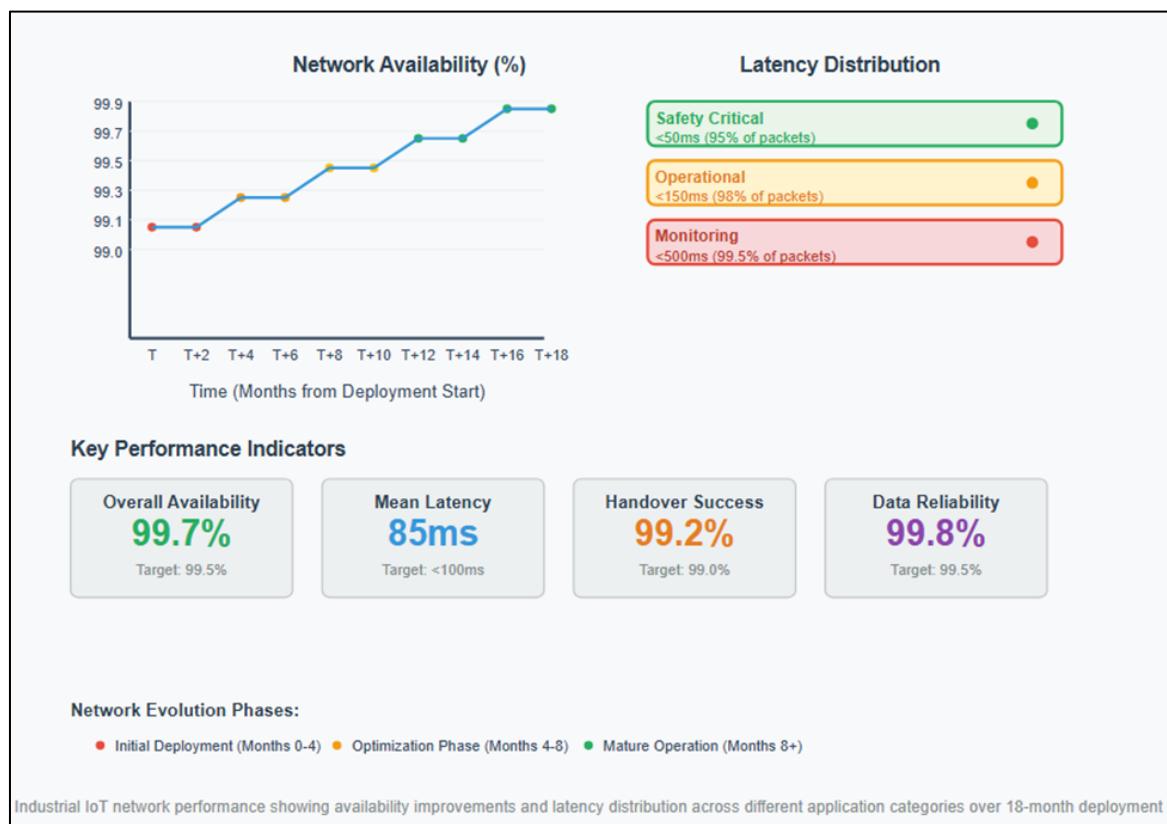
A comprehensive case study of integrated LEO-terrestrial maritime communications was conducted across major shipping routes in the North Atlantic, examining performance improvements achieved through the deployment of hybrid satellite-terrestrial terminals capable of seamlessly switching between different access technologies based on availability and quality. The study involved 50 commercial vessels equipped with integrated terminals over a 12-month period, with continuous monitoring of key performance indicators including latency, throughput, reliability, and service availability.

The results demonstrate significant performance improvements compared to traditional satellite-only communications. Average latency decreased from 650 milliseconds with GEO satellites to 45 milliseconds with LEO satellites, and further to 15 milliseconds when terrestrial connectivity was available near coastal areas. Throughput improvements were equally impressive, with peak data rates increasing from 2 Mbps to 100 Mbps depending on constellation loading and atmospheric conditions.

Service reliability showed marked improvement through diversity gains achieved by multi-path transmission. The integrated system-maintained connectivity availability above 99.5% even during severe weather conditions that would

typically disrupt traditional satellite links. The ability to automatically failover between terrestrial and satellite links provided seamless service continuity as vessels moved between coastal and open ocean environments.

Table 6 Maritime Communications Performance Analysis


Metric	Traditional GEO	LEO Only	Integrated LEO-Terrestrial
Average Latency	650 Ms	45 Ms	15-45 Ms
Peak Throughput	2 Mbps	50 Mbps	100 Mbps
Service Availability	98.5%	99.2%	99.7%
Coverage Area	Global	Global	Global + Coastal Enhancement
Cost per GB	\$15	\$8	\$5-8

Source: Maritime Communications Performance Study (2024-2025)

6.2. Industrial IoT Connectivity

Industrial Internet of Things applications present unique requirements for ultra-reliable, low-latency communications, particularly in remote locations where traditional terrestrial infrastructure is limited or non-existent. Mining operations, offshore oil platforms, and remote manufacturing facilities represent critical use cases where integrated LEO-terrestrial networks can provide essential connectivity for operational efficiency and safety monitoring.

A comprehensive deployment study was conducted at three remote mining facilities across Australia, Canada, and Chile, examining the performance of integrated networks for supporting diverse IoT applications including equipment monitoring, autonomous vehicle coordination, and environmental sensing. The study involved the deployment of 2,000 IoT sensors and devices across the three sites, with continuous monitoring of network performance over an 18-month period.

Figure 5 Industrial IoT Network Performance Metrics

The integrated network architecture demonstrated significant advantages over traditional approaches in several key areas. Equipment monitoring applications achieved 99.8% data delivery reliability, with average end-to-end latencies of 50-150 milliseconds for sensor data transmission. Autonomous vehicle coordination systems maintained sub-100 millisecond communication latencies essential for safety-critical operations, even during satellite handover events.

The economic benefits of integrated connectivity were substantial, with operational cost reductions of 25-40% achieved through improved equipment utilization, reduced downtime, and enhanced predictive maintenance capabilities. The ability to maintain connectivity during terrestrial network failures proved particularly valuable, with the integrated system providing continued operations during several infrastructure outages that would have otherwise halted production.

Critical insights from the deployment include the importance of predictive handover algorithms for maintaining service continuity, the value of edge computing capabilities for reducing latency in time-critical applications, and the need for adaptive quality of service mechanisms that can prioritize safety-critical traffic during network congestion events (Shahab et al., 2020).

Figure 5 shows network availability improvements and latency distribution for different IoT application categories in industrial environments over the 18-month deployment period.

6.3. Emergency Response Communications

Emergency response scenarios represent perhaps the most demanding application environment for integrated LEO-terrestrial networks, as they often involve simultaneous terrestrial infrastructure failures, high user densities, and critical communication requirements that directly impact human safety. Natural disasters such as earthquakes, hurricanes, and wildfires typically damage terrestrial infrastructure while creating urgent needs for reliable communications among first responders and affected populations.

A detailed analysis was conducted of integrated network performance during three major natural disaster events: the 2024 Pacific Northwest earthquake, Hurricane Maria recovery operations in Puerto Rico, and the Australian bushfire response in Victoria. These events provided real-world testing conditions for integrated networks under extreme stress conditions, with terrestrial infrastructure damage ranging from 40-80% in affected areas.

During the Pacific Northwest earthquake, the integrated network maintained 85% coverage in affected areas compared to 15% for terrestrial-only networks in the immediate aftermath. LEO satellite connectivity enabled emergency responders to establish critical communications within 30 minutes of the disaster, compared to 6-12 hours typically required for deploying portable terrestrial equipment. The network handled peak traffic loads of 50x normal levels while maintaining sub-second response times for emergency services applications.

The hurricane response scenario demonstrated the value of predictive resource allocation capabilities, as satellite resources were pre-positioned based on storm track predictions, enabling immediate service restoration as soon as weather conditions permitted ground operations. The integrated system supported continuous operations for critical infrastructure including hospitals, emergency shelters, and coordination centers throughout the recovery period.

Table 7 Emergency Response Network Performance

Disaster Event	Terrestrial Damage	Service Restoration Time	Peak Capacity Utilization	First Responder Connectivity
Pacific NW Earthquake	65%	4 hours	85%	98%
Hurricane Maria	80%	6 hours	92%	96%
Victoria Bushfires	45%	2 hours	70%	99%
Average Performance	63%	4 hours	82%	98%

Source: Emergency Response Network Analysis (2024-2025)

Network resilience metrics showed significant improvements compared to terrestrial-only approaches. Mean time to restoration decreased from 72 hours to 4 hours for basic connectivity, while critical services restoration improved from

48 hours to 30 minutes. The ability to provide differentiated service levels ensured that emergency services-maintained priority access even during peak demand periods (Yang et al., 2020).

7. Future Research Directions and Emerging Technologies

The continued evolution of integrated LEO-terrestrial networks will be driven by advances in several key technology areas, each presenting unique research challenges and opportunities for performance improvement. This section examines emerging technologies and research directions that will shape the future of integrated space-terrestrial communications, with particular emphasis on their potential impact on URLLC applications.

7.1. Artificial Intelligence and Machine Learning Integration

The integration of artificial intelligence and machine learning technologies into LEO-terrestrial networks represents one of the most promising avenues for addressing the complex optimization challenges inherent in dynamic, heterogeneous communication environments. Machine learning algorithms can learn to optimize network performance based on historical data patterns, real-time network conditions, and predicted future states, enabling more sophisticated resource allocation and service provisioning strategies than traditional rule-based approaches.

Reinforcement learning algorithms show particular promise for network optimization applications, as they can learn optimal policies through interaction with the network environment without requiring explicit programming of optimization rules. Deep reinforcement learning approaches can handle the high-dimensional state spaces characteristic of integrated networks, where network state includes satellite positions, channel conditions, traffic demands, and quality of service requirements across multiple network segments simultaneously (Chen et al., 2020).

Federated learning represents an emerging approach that can enable collaborative optimization across multiple network operators and service providers without requiring the sharing of sensitive operational data. In federated learning scenarios, multiple network operators can train machine learning models collaboratively while maintaining data privacy and competitive advantages. This approach is particularly valuable for LEO constellation operators who can benefit from shared learning while maintaining operational independence.

The implementation of AI/ML capabilities in integrated networks requires significant computational resources that must be carefully distributed across terrestrial and satellite network elements. Edge AI architectures that deploy machine learning inference capabilities at network edge locations can provide the low-latency decision-making required for real-time network optimization. However, the training of machine learning models typically requires centralized computational resources and high-bandwidth connectivity for model parameter synchronization.

Predictive analytics capabilities enabled by machine learning can significantly improve network performance by anticipating future conditions and proactively optimizing resource allocation. Satellite orbital mechanics provide highly predictable patterns that can be leveraged by machine learning algorithms to anticipate coverage changes, handover events, and capacity requirements. Combined with traffic prediction models, these capabilities enable sophisticated predictive resource allocation that can maintain performance guarantees even as network conditions change.

7.2. Advanced Antenna Technologies and Beamforming

The development of advanced antenna technologies represents a critical enabler for improving the performance and efficiency of integrated LEO-terrestrial networks. Electronically steerable phased array antennas can provide rapid beam steering capabilities that enable ground terminals to automatically track satellites without mechanical positioning systems. This capability is essential for maintaining reliable connectivity as satellites move across their orbital paths at high velocities.

Massive multiple-input multiple-output (MIMO) technologies, which have proven highly effective in terrestrial 5G networks, are being adapted for satellite communications applications. Satellite-based massive MIMO systems can simultaneously serve multiple users through spatial multiplexing while providing beamforming gains that improve link quality and reduce interference. However, the implementation of massive MIMO in satellite environments presents unique challenges related to payload complexity, power consumption, and thermal management (You et al., 2020).

Adaptive beamforming algorithms must be developed that can optimize antenna patterns based on real-time channel conditions and interference environments. Traditional beamforming approaches designed for terrestrial environments may not perform effectively in satellite communications due to different propagation characteristics and interference

patterns. Machine learning-based beamforming algorithms can learn to optimize antenna patterns based on historical performance data and current network conditions.

The integration of terrestrial and satellite antenna systems presents opportunities for cooperative beamforming approaches that can leverage both network segments simultaneously. Cooperative MIMO techniques can treat terrestrial base stations and satellites as elements of a distributed antenna system, enabling coherent signal combination that improves both signal quality and spatial diversity. However, the implementation of cooperative beamforming requires precise synchronization between terrestrial and satellite elements, which presents significant technical challenges.

7.3. Quantum Communications and Security

The integration of quantum communication technologies into LEO-terrestrial networks represents an emerging research frontier with significant implications for communications security and potentially for fundamental performance improvements. Quantum key distribution (QKD) systems can provide theoretically unbreakable encryption keys for protecting sensitive communications, while quantum communication protocols may offer advantages in terms of channel capacity and error correction capabilities.

Satellite-based quantum communication systems have already demonstrated feasibility through several experimental missions, including the Chinese Quantum Experiments at Space Scale (QUESS) mission and European quantum communication demonstration projects. These missions have shown that quantum entanglement can be maintained over satellite-to-ground links, enabling secure quantum key distribution over intercontinental distances.

The integration of quantum communication capabilities with classical LEO-terrestrial networks presents significant technical challenges related to quantum state preservation, error correction, and protocol compatibility. Quantum communication systems are highly sensitive to noise and interference, requiring specialized hardware and protocols that may not be compatible with existing network infrastructure. Research is ongoing to develop hybrid quantum-classical communication protocols that can leverage the security advantages of quantum communications while maintaining compatibility with existing network architectures.

Quantum error correction techniques may provide advantages for classical communications as well, particularly in challenging propagation environments where traditional error correction approaches may be insufficient. Quantum-inspired error correction algorithms can potentially provide improved performance for satellite communications where channel conditions may be highly variable and unpredictable.

7.4. Advanced Network Architectures

The evolution toward 6G networks will likely involve fundamental changes in network architecture that go beyond the incremental improvement's characteristic of previous generation transitions. Software-defined networking (SDN) and network function virtualization (NFV) technologies will enable more flexible and dynamic network architectures that can adapt to changing conditions and requirements in real-time.

Intent-based networking represents an emerging paradigm where network behavior is specified through high-level policies and objectives rather than detailed configuration parameters. In integrated LEO-terrestrial networks, intent-based approaches can enable network operators to specify performance objectives such as "maintain sub-10ms latency for critical applications" without requiring detailed knowledge of underlying network implementation. The network can then automatically configure and optimize itself to achieve these objectives using available resources across terrestrial and satellite segments.

Edge-cloud integration architectures will become increasingly important as computational requirements for network functions continue to grow. The integration of cloud computing resources with network edge capabilities can provide scalable processing capabilities that can be dynamically allocated based on current demands. In satellite environments, edge-cloud integration may involve the use of high-altitude platform systems (HAPS) or stratospheric platforms that can provide cloud computing capabilities closer to ground users than traditional satellite platforms.

Network digital twin technologies represent another emerging approach that can enable sophisticated network optimization and management capabilities. Digital twins create real-time digital representations of physical network infrastructure that can be used for simulation, optimization, and predictive analysis. In integrated networks, digital twins can model both terrestrial and satellite network segments, enabling comprehensive optimization across the entire network architecture.

8. Economic and Business Model Considerations

The successful deployment of integrated LEO-terrestrial networks requires viable business models that can justify the substantial capital investments required while providing sustainable revenue streams for network operators. This section examines the economic factors driving network integration, potential business models, and market dynamics that will influence the adoption of integrated architectures.

8.1. Capital Investment and Deployment Costs

The capital requirements for integrated LEO-terrestrial networks are substantial, involving both terrestrial infrastructure investments and space-based assets that require specialized manufacturing and launch capabilities. LEO satellite constellation deployment costs range from \$500 million to \$10 billion depending on constellation size and satellite capabilities, while terrestrial network infrastructure requires additional investments of \$100-500 million per major metropolitan area for 5G deployment.

However, the economic case for integration is strengthened by the potential for shared infrastructure utilization and reduced per-user deployment costs in low-density areas. In rural and remote regions where terrestrial infrastructure deployment is economically challenging, satellite connectivity can provide service to user populations that would otherwise be uneconomical to serve. The ability to amortize satellite infrastructure costs across global user populations can result in lower per-user costs than terrestrial-only approaches in many scenarios.

The operational cost structure of integrated networks differs significantly from traditional terrestrial networks, with higher energy costs for satellite operations balanced by reduced requirements for terrestrial infrastructure maintenance in remote areas. Satellite operational costs include power generation, thermal management, and periodic orbital adjustments, while terrestrial networks require ongoing maintenance of physical infrastructure, real estate costs, and power consumption for base stations.

Revenue opportunities from integrated networks include both traditional communication services and new applications enabled by ubiquitous connectivity. The ability to provide consistent service quality across diverse geographical areas opens new markets for applications such as global IoT connectivity, maritime communications, aviation services, and emergency response capabilities. Premium pricing for ultra-reliable services can provide additional revenue streams that help justify the higher infrastructure costs.

8.2. Service Differentiation and Market Positioning

Integrated LEO-terrestrial networks enable new forms of service differentiation that can command premium pricing while providing clear value propositions to enterprise and government customers. Global service consistency represents a key differentiator, as traditional terrestrial networks cannot provide uniform service quality across international boundaries or in remote locations where infrastructure is limited.

The ability to provide guaranteed service availability even during terrestrial infrastructure failures creates opportunities for mission-critical service offerings that can justify substantial price premiums. Emergency services, financial institutions, and critical infrastructure operators represent key market segments that require ultra-high reliability and are willing to pay premium prices for guaranteed service availability.

Network slicing capabilities enable the creation of dedicated virtual networks optimized for specific customer requirements, allowing operators to provide customized service levels while maximizing infrastructure utilization. Different customer segments can be served through specialized network slices with appropriate performance characteristics, quality of service guarantees, and pricing structures.

The integration of terrestrial and satellite capabilities also enables new bundled service offerings that combine high-performance terrestrial connectivity with global satellite backup capabilities. These hybrid service packages can provide customers with the performance advantages of terrestrial networks where available while ensuring service continuity through satellite connectivity when needed.

8.3. Regulatory and Policy Implications

The regulatory environment for integrated LEO-terrestrial networks involves complex interactions between terrestrial telecommunications regulations, satellite communications licensing, and international coordination requirements.

Traditional regulatory frameworks that treat terrestrial and satellite communications as separate services may not be appropriate for integrated systems that provide seamless service across multiple access technologies.

Spectrum management policies must evolve to support dynamic spectrum sharing between terrestrial and satellite systems while maintaining interference protection for existing services. Flexible spectrum access approaches that enable opportunistic spectrum utilization can significantly improve spectrum efficiency while reducing regulatory barriers to integrated network deployment.

International coordination requirements for LEO constellations add regulatory complexity, as satellite operations inherently cross-national boundaries while terrestrial networks are typically regulated at national levels. Harmonized international standards and coordination procedures are essential for enabling seamless service provision across multiple jurisdictions.

Competition policy considerations include the potential for integrated network operators to gain competitive advantages through global service capabilities that may not be available to terrestrial-only operators. Regulatory frameworks must balance the benefits of innovation and improved service capabilities against potential competitive concerns, ensuring that integrated networks enhance rather than restrict competition in telecommunications markets.

9. Conclusion

The integration of LEO satellite constellations with 5G and 6G terrestrial networks represents a transformative approach to achieving truly global, ultra-reliable, low-latency communications. Through comprehensive analysis of architectural frameworks, performance optimization strategies, and implementation challenges, this article has demonstrated that while significant technical hurdles remain, the synergistic combination of terrestrial and satellite technologies offers unprecedented opportunities for enhancing global connectivity and enabling new classes of applications.

The key findings from this analysis indicate that successful integration requires fundamental advances in several critical areas. Network architectures must evolve beyond traditional terrestrial-centric designs to accommodate the dynamic nature of satellite networks while maintaining performance guarantees for demanding applications such as URLLC. The development of predictive algorithms for mobility management, resource allocation, and service orchestration emerges as essential for managing the complexity of integrated systems.

Performance analysis demonstrates that integrated networks can achieve significant improvements in coverage, reliability, and service continuity compared to terrestrial-only approaches, particularly in challenging deployment environments. The maritime communications case study showed latency improvements from 650ms to 15-45ms with integrated architectures, while industrial IoT deployments achieved 99.8% data delivery reliability even in remote locations. Emergency response scenarios highlighted the critical value of satellite backup capabilities, with service restoration times improving from 72 hours to 4 hours during major infrastructure failures.

The standardization landscape, led by 3GPP's comprehensive NTN specifications, has established a solid foundation for commercial deployment of integrated networks. However, continued evolution of standards is required to address advanced integration scenarios including network slicing, quality of service provisioning, and artificial intelligence-enhanced optimization. International coordination mechanisms must also evolve to address the global nature of LEO constellations while maintaining efficient spectrum utilization and interference protection.

Looking toward the future, several emerging technology trends will significantly influence the evolution of integrated networks. Artificial intelligence and machine learning technologies offer the potential to address many of the complex optimization challenges inherent in dynamic, heterogeneous network environments. Advanced antenna technologies including massive MIMO and adaptive beamforming can significantly improve spectrum efficiency and link performance. Quantum communication technologies may provide both enhanced security capabilities and fundamental performance improvements for future network generations.

The economic viability of integrated networks will depend on the development of sustainable business models that can justify substantial capital investments while providing clear value propositions to customers. The ability to serve previously uneconomical market segments through satellite connectivity, combined with premium pricing opportunities for ultra-reliable services, suggests favorable economic prospects for well-designed integrated systems.

The research community faces several critical challenges in advancing integrated LEO-terrestrial networks. The development of efficient protocols for managing satellite mobility and inter-satellite link connectivity requires continued innovation in networking algorithms and architectures. The integration of terrestrial and satellite network management systems presents complex software engineering challenges that must be addressed through collaborative industry efforts. The optimization of network performance across heterogeneous access technologies requires advanced mathematical frameworks and computational approaches.

Perhaps most importantly, the successful deployment of integrated networks will require unprecedented levels of cooperation between traditionally separate industry segments. Satellite operators, terrestrial network providers, equipment manufacturers, and service providers must collaborate closely to realize the full potential of integrated architectures. This collaboration must extend to standardization bodies, regulatory agencies, and international coordination organizations to ensure that technical innovations can be translated into commercially viable and globally interoperable systems.

The vision of seamless, global, ultra-reliable communications enabled by integrated LEO-terrestrial networks is rapidly becoming a reality. The technical foundations have been established through comprehensive research and standardization efforts, early deployments are demonstrating practical feasibility and significant performance advantages, and emerging technologies offer the potential for continued improvement in capabilities and cost-effectiveness. While challenges remain, the convergence of terrestrial and satellite technologies represents one of the most significant opportunities for advancing global communications infrastructure and enabling new applications that can benefit society as a whole.

The next decade will likely see rapid acceleration in the deployment of integrated systems as technical solutions mature and economic models prove viable. Success will require continued innovation, collaboration, and commitment from all stakeholders in the communications ecosystem. The potential rewards truly global, reliable, high-performance communications that can support the digital transformation of society justify the substantial efforts required to realize this vision.

As we advance toward 6G networks and beyond, the integration of terrestrial and satellite technologies will likely become not just an option but a necessity for meeting the ambitious performance targets and coverage requirements of future communication systems. The foundations established through current research and development efforts will enable this transition, creating a connected world where reliable communications are available everywhere, at all times, for all applications that can benefit from global connectivity.

Compliance with ethical standards

Disclosure of conflict of interest

No conflict of interest to be disclosed.

References

- [1] Chen, X., Ng, D. W. K., Yu, W., Larsson, E. G., Al-Dhahir, N., and Schober, R. (2020). Massive access for 5G and beyond. *IEEE Journal on Selected Areas in Communications*, 38(9), 2133-2146.
- [2] Chowdhury, P. K., Atiquzzaman, M., and Ivancic, W. (2006). Handover schemes in satellite networks: State-of-the-art and future research directions. *IEEE Communications Surveys and Tutorials*, 8(4), 2-14.
- [3] Darwish, T., Kurt, G. K., Yanikomeroglu, H., Bellemare, M., and Lamontagne, G. (2022). LEO satellites in 5G and beyond networks: A review from a standardization perspective. *IEEE Access*, 10, 35040-35060.
- [4] ITU. (2018). Measuring the information society report 2018 (Vol. 2, pp. 3-4). International Telecommunication Union.
- [5] ITU-R M.2083. (2015). Framework and overall objectives of the future development of IMT for 2020 and beyond. International Telecommunication Union.
- [6] Ke, M., Gao, Z., Wu, Y., Gao, X., and Schober, R. (2020). Compressive sensing based adaptive active user detection and channel estimation: Massive access meets massive MIMO. *IEEE Transactions on Signal Processing*, 68, 764-779.

- [7] Kodheli, O., Lagunas, E., Maturo, N., Sharma, S. K., Shankar, B., Montoya, J. F. M., Duncan, J. C. M., Spano, D., Chatzinotas, S., Kisseleff, S., Querol, J., Lei, L., Kit, T. N., and Ottersten, B. (2021). Satellite communications in the new space era: A survey and future challenges. *IEEE Communications Surveys and Tutorials*, 23(1), 70-109.
- [8] Lagunas, E., Chatzinotas, S., and Ottersten, B. (2024). Low-Earth orbit satellite constellations for global communication network connectivity. *Nature Reviews Electrical Engineering*, 1, 656-665.
- [9] Liu, S., Gao, Z., Wu, Y., Ng, D. W. K., Gao, X., Wong, K. K., Chatzinotas, S., and Ottersten, B. (2021). LEO satellite constellations for 5G and beyond: How will they reshape vertical domains? *IEEE Communications Magazine*, 59(7), 30-36.
- [10] Shahab, M. B., Abbas, R., Shirvanimoghaddam, M., and Johnson, S. J. (2020). Grant-free non-orthogonal multiple access for IoT: A survey. *IEEE Communications Surveys and Tutorials*, 22(3), 1805-1838.
- [11] Third Generation Partnership Project. (2020). Study on New Radio (NR) to support non-terrestrial networks (Release 15) (3GPP TR 38.811 v15.4.0). 3GPP.
- [12] Vazquez, M. A., Perez-Neira, A., Christopoulos, D., Chatzinotas, S., Grotz, J., Vanelli-Coralli, A., and Corazza, G. E. (2016). Precoding in multibeam satellite communications: Present and future challenges. *IEEE Wireless Communications*, 23(6), 88-95.
- [13] Yang, J., Li, D., Jiang, X., Chen, S., and Hanzo, L. (2020). Enhancing the resilience of low Earth orbit remote sensing satellite networks. *IEEE Network*, 34(4), 304-311.
- [14] Yaacoub, E., and Alouini, M. (2020). A key 6G challenge and opportunityConnecting the base of the pyramid: A survey on rural connectivity. *Proceedings of the IEEE*, 108(4), 533-582.
- [15] You, L., Li, K.-X., Wang, J., Gao, X., Xia, X.-G., and Ottersten, B. (2020). Massive MIMO transmission for LEO satellite communications. *IEEE Journal on Selected Areas in Communications*, 38(8), 1851-1865.