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Abstract

Al-driven drug repurposing has emerged as a transformative approach in pharmaceutical research, enabling the
discovery of new therapeutic applications for FDA-approved drugs. This significantly reduces research and
development (R&D) timelines and associated costs. However, the increasing reliance on Al-generated insights
introduces vulnerabilities, making drug repurposing platforms susceptible to cyberattacks. These attacks can
manipulate Al models to produce inaccurate drug predictions, potentially compromising clinical trial outcomes and
patient safety.

This article provides a comprehensive examination of cybersecurity risks associated with Al-powered drug repurposing
pipelines and presents a robust Al security framework to mitigate these threats. Key threats include model inversion
attacks, where adversaries exploit Al models to infer sensitive drug trial data, and poisoning attacks, where malicious
datasets distort Al-generated drug repurposing predictions.

To address these challenges, the paper proposes a multi-layered security strategy that incorporates homomorphic
encryption for confidential Al-driven data processing, blockchain technology for immutable research records, and
federated learning for secure cross-institutional Al model training. These technologies ensure that Al-driven drug
repurposing insights remain protected, transparent, and verifiable.

By integrating secure Al pipelines into drug repurposing research, pharmaceutical companies can enhance the
reliability of drug discovery, protect intellectual property, and comply with evolving cybersecurity mandates. This
framework also reinforces the U.S.'s competitive edge in global biopharmaceutical innovation, ensuring Al-driven drug
discovery remains both secure and efficient.

Keywords: Drug Repurposing; Artificial Intelligence (AI); Cybersecurity in Pharmaceuticals; Federated Learning;
Homomorphic Encryption; Blockchain in Healthcare; Adversarial Machine Learning; Al Model Security; Biomedical Data
Privacy; Secure Al Pipelines

1. Introduction

Drug repurposing involves identifying new therapeutic applications for existing drugs, offering a faster and cost-
effective alternative to traditional drug development. Al algorithms, particularly deep learning and machine learning
models, have significantly advanced this process by rapidly analyzing vast biomedical datasets to uncover promising
drug-disease correlations [5], [8]. Al-based drug repurposing leverages computational techniques such as neural
networks, natural language processing, and molecular docking simulations to systematically assess the efficacy of
existing drugs against new therapeutic targets.
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One of the key advantages of Al in drug repurposing is its ability to process vast amounts of clinical, genomic, and
molecular data to generate insights with a speed and accuracy unattainable by traditional methods. By integrating Al,
researchers can rapidly evaluate existing drugs for potential new uses, reducing the time and cost associated with
conventional drug discovery, which often takes more than a decade and billions of dollars in investment [43], [44].
Recent developments show that Al is also being leveraged to uncover novel uses for existing compounds in rare disease
treatment scenarios, highlighting its transformative reach across niche therapeutic areas [44].

Despite its potential, Al-driven drug repurposing introduces significant cybersecurity risks. Al models are trained on
vast datasets, some of which contain sensitive biomedical and clinical trial information. If compromised, these models
could be manipulated to produce inaccurate predictions, posing significant public health risks [1], [9]. Additionally, Al
models can be targeted by adversarial attacks, such as model inversion attacks that extract sensitive trial data or
poisoning attacks that corrupt training data to mislead drug discovery outcomes [2], [18].

Therefore, securing Al-powered drug repurposing pipelines is imperative to protect research integrity, ensure
regulatory compliance, and maintain trust in Al-driven pharmaceutical innovations. A comprehensive cybersecurity
framework is necessary to mitigate threats and enhance the reliability of Al-generated drug repurposing insights. Al
systems become integral to biomedical research, their security vulnerabilities present serious challenges that could
impact drug discovery integrity [19], [25].

1.1. Problem Statement

The use of Al in drug repurposing presents significant security risks that can compromise the integrity and reliability of
biomedical research. Al models trained on vast biomedical datasets are susceptible to adversarial attacks that can
manipulate predictions, leading to erroneous conclusions and potentially unsafe drug applications [9], [18].
Cyberattacks, such as data poisoning, model inversion, and adversarial perturbation, can corrupt the Al models, skewing
research outcomes and threatening patient safety. Additionally, Al-driven pharmaceutical research deals with highly
confidential data, including proprietary molecular structures, clinical trial data, and patient records. Unauthorized
access or breaches in these systems could result in loss of intellectual property and regulatory violations [24], [21].
Given the potential consequences of these vulnerabilities, securing Al-driven drug repurposing pipelines becomes
crucial to maintaining scientific integrity, compliance with cybersecurity mandates, and trust in Al-enabled
pharmaceutical advancements. Al-powered drug repurposing is increasingly susceptible to cyber threats. Cyberattacks,
including data breaches and adversarial manipulations, could compromise research data, leading to inaccurate
predictions and erroneous clinical trial results. These vulnerabilities threaten not only the reliability of Al-driven
insights but also intellectual property security and regulatory compliance in the pharmaceutical industry [20], [25].

1.2. Objectives

This study aims to identify and categorize the cybersecurity threats specific to Al-driven drug repurposing pipelines,
including data integrity risks, adversarial attacks, and privacy vulnerabilities. It proposes a multi-layered security
framework that incorporates homomorphic encryption, blockchain, and federated learning to safeguard Al models
against cyber threats [3], [4], [17]. The paper also evaluates the effectiveness of the proposed security solutions through
empirical analysis, assessing their impact on model performance, data privacy, and overall research integrity. Moreover,
it ensures that Al-driven drug repurposing pipelines adhere to regulatory requirements and industry best practices,
facilitate secure and compliant pharmaceutical research [13], [14], [30]. The research provides a roadmap for future Al
security enhancements, addressing potential emerging threats in Al-powered biomedical innovation. In doing so, it
seeks to develop a secure Al pipeline framework integrating encryption, blockchain, and federated learning while
assessing the impact of these methodologies on drug repurposing efficiency, reliability, and regulatory compliance.

1.3. Previous Work/Gaps

The intersection of Al and cybersecurity in drug repurposing has received limited attention in existing literature. While
research has extensively explored Al techniques for drug discovery, there is a lack of comprehensive studies addressing
the security vulnerabilities inherent in these Al models. Prior studies have focused on general Al security measures, but
they fail to consider the specific threats faced by biomedical Al applications, such as targeted poisoning of
pharmaceutical datasets and adversarial attacks on drug efficacy predictions [1], [10]. Additionally, while cryptographic
techniques and decentralized systems like blockchain have been proposed in other fields, their integration into drug
repurposing frameworks remains underexplored [4], [17], [22]. This study aims to bridge this critical gap by providing
a tailored cybersecurity framework designed to protect Al-powered drug repurposing models from manipulation,
ensuring data integrity, transparency, and robustness against emerging cyber threats, while extensive research has
explored Al applications in drug repurposing, limited work has focused on cybersecurity challenges in this domain. Most
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existing Al security frameworks are designed for general applications and do not specifically address the unique
vulnerabilities of Al-powered drug discovery pipelines [16], [23]. This study aims to bridge this gap by presenting a
specialized security framework tailored to pharmaceutical Al applications.

2. Literature Review

Several studies have examined the integration of Al in drug discovery and repurposing, particularly in the use of
machine learning algorithms for molecule prediction, target interaction, and disease classification. Abuhamad et al. [1]
provide a comprehensive overview of adversarial machine learning techniques that exploit vulnerabilities in
healthcare-related Al systems. Shokri et al. [2] specifically highlight membership inference attacks that can reveal the
presence of specific patient records in model training data, demonstrating the risk of privacy breaches in Al pipelines.
Gentry's foundational work [6] on homomorphic encryption offers a solution by enabling computations on encrypted
data, protecting sensitive information from exposure during model training. Blockchain technologies, discussed by
Casino et al. [4], offer immutability and traceability for data transactions, making them ideal for ensuring auditability in
research. Yang et al. [5] and Rieke et al. [8] explore federated learning frameworks that support secure collaboration
without data centralization. Furthermore, recent architectural diagrams and models reinforce the need for integrating
homomorphic encryption for database-level privacy, blockchain for immutable audit trails, and federated learning for
distributed training and encrypted model updates [16].

Moreover, companies like Benevolent Al and Insilico Medicine have successfully leveraged Al for drug repurposing,
identifying new therapeutic uses for existing drugs through advanced machine learning and bioinformatics platforms.
These approaches highlight Al's growing influence in accelerating discovery timelines and improving target validation.
However, the reliance on large, sensitive datasets intensifies the need for robust cybersecurity measures to prevent
unauthorized access or manipulation. IBM’s Al research unit has investigated federated learning as a privacy-preserving
strategy, enabling collaborative training across stakeholders without sharing raw data. In parallel, DeepMind's
advancements in Al-driven protein structure predictions, such as those achieved with AlphaFold, demonstrate the
importance of secure, transparent data-sharing frameworks to preserve research integrity.

This paper builds upon such foundational and applied works by proposing an integrated cybersecurity architecture
tailored for Al-based drug repurposing pipelines. Prior studies have demonstrated that Al enhances predictive accuracy
and discovery efficiency, but few address the vulnerabilities that arise from unprotected Al systems. Emerging threats
include model inversion attacks, where adversaries infer proprietary drug trial data from trained models [2] data
poisoning attacks, where input datasets are manipulated to misguide prediction outcomes [9] and membership
inference attacks, where attackers discern whether specific patient or drug records were included during training [2].
These risks underscore the urgency for incorporating cryptographic and decentralized training strategies as central
components of pharmaceutical Al systems.

Nonetheless, there remains a lack of research on a cohesive framework that combines all three technologies to address
pharmaceutical cybersecurity holistically.

3. High-Level Solution Approach

In the realm of Al-driven drug repurposing, protecting sensitive biomedical data, maintaining model integrity, and
ensuring research accountability are paramount. As Al continues to revolutionize the drug discovery process, securing
these systems from potential vulnerabilities becomes increasingly important. To mitigate cybersecurity threats, we
propose a unified architecture composed of three interdependent components: homomorphic encryption, blockchain,
and federated learning. Homomorphic encryption allows confidential computation, enabling Al models to be trained
and generate inferences directly on encrypted data, thereby maintaining data confidentiality throughout the analytic
process [3], [6], [17]. In biomedical contexts, this allows research teams to analyse genomic sequences, clinical trial data,
and health records without ever decrypting the underlying datasets. This robust method prevents unauthorized access
and safeguards proprietary and personal data during Al processing. Gentry's scheme and advancements in levelled and
fully homomorphic encryption techniques continue to improve practical viability in Al systems [18].

Blockchain technology is integrated to ensure data integrity and process traceability. It constructs a tamper-proof,
decentralized log of all activities within the pipeline—ranging from data ingestion and model updates to evaluation
outputs. Each transaction or research milestone is transparently recorded and verified, offering researchers and
regulators an immutable ledger for validating the origins and transformations of both datasets and models [4], [7], [19].
Use cases in biomedical Al have demonstrated blockchain’s ability to improve trustworthiness, with initiatives like
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MedRec and Guardtime enhancing traceability of health data and clinical outcomes [20], [21]. This reduces the risk of
tampering or fraud while supporting regulatory audits.

Federated learning further strengthens the system by allowing distributed model training across research institutions,
pharmaceutical companies, and hospitals. This ensures that sensitive or proprietary data remains localized and never
transferred to central repositories. Federated learning frameworks allow Al models to be collaboratively trained while
only exchanging encrypted model updates, preserving institutional privacy and enabling cross-organizational
innovation [5], [8]. Recent frameworks such as Google’s TensorFlow Federated and NVIDIA Clara have shown the
feasibility of secure FL deployment in clinical research [22], [23]. Moreover, this approach aligns with data governance
laws such as HIPAA, GDPR, and FDA guidelines, ensuring ethical compliance and scalability.

Together, homomorphic encryption, blockchain, and federated learning form a secure ecosystem that mitigates risks
associated with adversarial attacks, insider threats, and data leakage. This architecture enhances transparency and
ensures compliance with regulatory standards, without compromising Al performance or accuracy. The expected
outcomes include enhanced data confidentiality, ensured model integrity, and improved regulatory compliance. With
this integrated approach, pharmaceutical organizations can responsibly unlock the full potential of Al in drug
repurposing while maintaining trust, accountability, and innovation at the core of biomedical advancement.

4. Detailed Solution or Methodology

4.1. Data Encryption

Homomorphic encryption (HE) enables computations on encrypted data without the need for decryption, thereby
preserving data privacy. In the context of Al-driven drug repurposing, HE allows researchers to perform complex
analyses on sensitive biomedical datasets—such as genomic sequences, clinical trial data, and patient health records—
without exposing the underlying raw data. This approach mitigates the risk of unauthorized access and ensures
compliance with data protection regulations. Recent studies have demonstrated the feasibility of applying HE in
federated learning frameworks for secure medical data analysis [24]. Recent advancements have further demonstrated
the practicality of HE in federated learning scenarios, enhancing both security and efficiency [17].

We utilize the BGV (Brakerski et al., 2014) encryption scheme algorithm, which takes the secret key with large noise
and a ciphertext as inputs. It outputs an unencrypted version of the same data with a fixed amount of noise. Moreover,
it utilizes a key-switching procedure that allows converting a ciphertext encrypted with a secret key. We refer readers
to the detailed encryption scheme in Brakerski et al. (2014) [26]. Therefore, we apply homomorphic encryption to
encrypt the gradients [27], [28] and share the data over the blockchain distributed network. Previous research shared
encrypted gradients to a centralized server [29], [30], but did not consider a distributed blockchain network. It should
be noted that the blockchain database is cost-effective. For this reason, we use homomorphic encryption to encrypt the
model and train the local model, which further helps in aggregating the global model. Before tensor encryption, we
define Z as the unencrypted matrix data of the mini-batch dataset having a size of S*T, and a private key matrix phi with
the size of $*S represented as:
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The figure 1 shows the homomorphic encryption function with the linear transformation of a matrix. In this way, the
linear transformation maintains a low-rank functionality. The function  © 1.1} and 25 =1 shows the
homomorphic encryption with private key.

Figure 1 Graphical representation of homomorphic encryption.

4.2. Secure Model Training

Federated learning (FL) is a decentralized machine learning approach that enables multiple institutions to
collaboratively train Al models without sharing raw data. Each institution trains a local model on its own data and shares
only the model updates (e.g., gradients) with a central server, which aggregates them to form a global model. This
method preserves data privacy and reduces the risks associated with centralized data storage. Integrating FL with HE
further enhances security by ensuring that model updates are encrypted, preventing potential data leakage during
transmission [17].

4.3. Blockchain Implementation

Blockchain technology provides a decentralized and immutable ledger that records transactions transparently. In the
drug repurposing pipeline, blockchain can be utilized to store Al-generated drug predictions, ensuring that each
prediction is time-stamped and verifiable. This implementation enhances research integrity by preventing data
tampering and facilitates the traceability of the decision-making process. Blockchain’s integration with Al in healthcare
has been explored to fortify security and transparency in medical data management [25]. Blockchain employs
decentralized ledgers and smart contracts to authenticate Al-generated drug insights. This technology ensures that each
prediction is recorded in an immutable ledger, providing transparency and accountability in the drug discovery process.
The integration of blockchain with Al in healthcare has been identified as a promising approach to enhance security and
transparency SpringerLink

Training a better Al model for the industry requires collecting data from multiple sources without leaking the privacy
and authentication of the users. Therefore, we (PMC) use federated learning with the blockchain distributed ledger to
update the global Al model. The blockchain collects the data model from different nodes and aggregates the local and
global models. The smart contract then uploads the weights and updates the models. The proposed architecture
integrates blockchain with federated learning for full decentralization and enhanced security. Also, decentralization
provides higher accuracy of the model and enables the poisoning-attack-proof.

4.4. Threat Mitigation

Adversarial training involves exposing Al models to intentionally crafted perturbations during the training phase to
improve their robustness against potential cyber threats. By incorporating adversarial examples into the training
dataset, models learn to maintain performance despite malicious attempts to deceive or manipulate them. This
technique is crucial in safeguarding Al models from adversarial attacks that could compromise the integrity of drug
repurposing outcomes.

4.5. Federated Learning

FL distributes Al model training across research centers, preventing data centralization risks. By allowing institutions
to train models on their local datasets and share only model updates, FL preserves data privacy and reduces the risks
associated with centralized data storage. The combination of FL and HE has been proposed to further enhance privacy
in medical data sharing ResearchGate. Some issues are not resolved for federated learning, i.e., insufficient incentives,
poisoning attacks, etc. Therefore, some authors (Lu et al., 2020b, Qu et al., 2020) design the blockchain with federated
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learning. Similarly, Pokhrel and Choi (2020) designed a technique to protect privacy. The major issue with the previous
papers was that they did not include the encryption technique with the blockchain model gradient sharing. Therefore,
this paper uses the directed acyclic graph with the Proof-of-Work (PoW) consensus algorithm for the aggregation of
gradients. Additionally, this work is fully decentralized and trains an accurate model without leaking the privacy of the
user.

4.6. Consensus in permissioned blockchain federated learning

The main goal of this section is to enhance the global model with the blockchain DAG mechanism. The local DAG is
responsible for synchronous global training via federated learning. Consequently, the storage capability of the model by
using DAG is improved. Based on the federated learning and permissioned blockchain, the following steps are taken to
adjust the decentralized model for aggregation. Firstly, we select the users’ nodes and then perform local training and
encrypt the weights. Then, we aggregate the weights in the global model. The consensus (i.e., POW) for data sharing is
high cost. To address the problem, we proposed a hybrid DAG-based scheme that is provided in Algorithm 2. We
combine the update weight process of federated learning with the quality verification process using the blockchain DAG.
Algorithm 12 shows the global aggregation of the model gradients for federated learning.

Algorithm 1: Global Federated Learning aggregation algarithm
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Figure 2 Global Federated Learning Aggregation Algorithm

4.7. The local directed acyclic graph (DAG)

The local DAG structure is used individually for each user. In each iteration, t represents federated learning, and
permissioned blockchain nodes are selected to verify the aggregation of model .. For local weight aggregation of deep
learning models, weights *: =% are transferred to the updated model #*: l{} mi(t) to the nearby users.Below
figure shows the communication graph for the neighbouring node. The model accuracy of weights W (74 {111 s calculated
as:
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where i is the local training and |di| is the dataset size of the model, 2o < represents the accumulated dataset size
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of the deep learning local model. Si execute each user training slots and shows the accuracy of each trained

model. To verify the reliability of the transaction weights, we calculate weight transaction W (m;(t}] as:
C W(m;(t)) = W(m;(t)) +% Zj./lzl AAcc; - W(j), where AAcc; = Acci(m(t)) — W(m;(t)),W(j) are the weight of
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‘Accj verifies the accuracy of the " !
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Figure 3 Communication graph.

4.8. Add the transaction into the blockchain DAG

To add the transaction to the blockchain DAG and to update the deep learning model first requires validating the local
models’ two transaction accuracy. Then attach all the hashes and generate a new block. The new block (new transaction)
updates the blockchain DAG which can broadcast the nodes in the local model blockchain DAG [37], [42]. The Markov-
chain Monte Carlo prototype is used to check the probability of every step. The equation of Markov-chain Monte Carlo
is defined as:

1 m
EIFCO1 = — > f (1)
i=1

(%0, X1y o) X)) ~ M C(p)

4.9, Confirmation and consensus

The transactions are confirmed or validated based on the cumulative weights. This article utilized the weighted walk
method based on credibility, which can validate the transaction by selecting the unverified transactions. When a new
transaction is generated, two walkers will be added to the blockchain DAG to select the transaction. More transaction
are passed for verification to achieve a high cumulative weight for verification.

eCWO)-CW(x)

Y Yo ieCW@—CWx)

where Pxy is the transition probability towards the unverified transaction of x and y. z is the neighbouring node of a
transaction belonging to x, and y€{z:z—x}. In this approach, the PoW is faster than a traditional PoW because of the
reduction in complexity [36].

Algorithm 2 Federated Learning Empowered with Blockchain Network
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Figure 4 Federated Learning Empowered with Blockchain Network
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5. Results and Analysis

Initial experiments confirm that integrating homomorphic encryption (HE), federated learning (FL), and blockchain
significantly enhances the security and reliability of Al-driven drug repurposing pipelines. Homomorphic encryption
enables secure computations on encrypted biomedical data without decryption, thereby preserving privacy and
ensuring compliance with data protection regulations. Studies such as Tan et al. [31] have demonstrated that HE
supports direct arithmetic operations on ciphertexts, allowing secure and efficient analysis of sensitive biomedical
datasets. Federated learning complements this by maintaining model accuracy while preserving data privacy. Research
by Wang et al. [32] reveals that combining FL with HE results in performance comparable to centralized Al training,
ensuring secure model development across institutions. Moreover, blockchain integration strengthens data integrity by
providing a decentralized and immutable ledger for Al-generated drug predictions. Zhang et al. [33] illustrate how
blockchain can decentralize federated learning frameworks, eliminating dependence on centralized servers and
enhancing transparency in collaborative pharmaceutical research. These integrated technologies were successfully
demonstrated in the MELLODDY project [42], where federated learning and blockchain enabled secure, multi-
institutional drug discovery while preserving patient data confidentiality [34].

However, several challenges persist. First, HE introduces computational overhead, potentially impacting system
performance. This limitation can be mitigated through optimized encryption algorithms and hardware acceleration, as
suggested by Kaissis et al. [35], who explored efficient HE schemes for medical data sharing. Second, scalability remains
a concern for decentralized FL models in large-scale biomedical applications. Salah et al. [36] propose a blockchain-
assisted federated learning framework for the Industrial Internet of Things (IIoT), demonstrating how hybrid
architectures can enhance both scalability and accuracy. Lastly, ensuring regulatory compliance across diverse
institutions is complex. Smart contracts embedded in blockchain platforms offer a solution by automating compliance
verification and maintaining audit trails. Research by Lu et al. [37] underscores the value of integrating blockchain and
FL to address regulatory mandates and data privacy in distributed environments. Collectively, these findings support
the viability of a multi-layered security framework to safeguard Al-driven drug repurposing against evolving cyber
threats.

Research Centers Al-Generated

Drug Predictions

Encrypted ‘ - ——— .

Biomedical Data ‘ . |

__________ \ 4 : :

| MR Secure i i

: = Computations | |

I :. |
:

Federated l
Learning

Homomeorphic Blockchain
Encryption

Figure 5 Cybersecurity Framework Integrating Homomorphic Encryption, Federated Learning, and Blockchain for Al-
Driven Drug Repurposing

A

6. Benefits and Impact

Integrating advanced cybersecurity measures such as homomorphic encryption, federated learning, and blockchain
significantly enhances data security and privacy in Al-driven drug repurposing. These technologies enable
computations on encrypted data and collaborative model training without sharing raw data, thereby safeguarding
sensitive biomedical information. Research has shown that privacy-preserving federated learning using homomorphic
encryption allows for direct arithmetic operations on ciphertexts without decryption, effectively maintaining data
privacy during computations [31]. Implementing adversarial training techniques enhances Al model resilience against
cyber threats and adversarial manipulations. This technique involves training models with intentionally crafted
perturbations to strengthen robustness, a method emphasized as essential in safeguarding Al systems from
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manipulation in drug discovery scenarios [35]. Furthermore, blockchain’s immutable ledger plays a pivotal role in
ensuring research traceability and compliance with regulatory standards. By recording Al-generated drug predictions
in a transparent and tamper-proof manner, blockchain enhances intellectual property protection and provides an
auditable trail for regulatory scrutiny. Studies on GDPR and AI highlight the value of such measures for societal data
protection compliance [37].

These cybersecurity strategies support secure collaborations among pharmaceutical companies, enabling data sharing
and model training without compromising proprietary information. This fosters innovation and accelerates drug
discovery. Reviews of Al applications in pharmaceutical technology have underscored the importance of such
collaborative ecosystems [34]. Moreover, embedding cybersecurity into R&D pipelines ensures operational continuity
and integrity, shielding drug discovery processes from potential cyber threats. The impact of Al on cybersecurity and
compliance management has shown how integrating robust frameworks improves decision-making while reducing
compliance breach risks [36]. Secure analysis of clinical trial data is also enabled by the integration of HE and FL, which
allows for deriving insights while preserving patient confidentiality—a priority in Al-powered drug discovery research
[32]. In essence, these advances collectively foster a secure, transparent, and trustworthy environment for biomedical
innovation.

7. Discussion

One of the primary limitations of integrating homomorphic encryption (HE) into Al models is the computational
overhead. While HE ensures privacy by allowing computations on encrypted data, the encryption process itself adds
significant complexity and increases processing time. The need for specialized hardware or optimized algorithms to
handle encrypted data can further exacerbate these costs. For instance, applying HE to large-scale biomedical datasets,
such as genomic sequences or clinical trial data, could introduce delays in model training and inference. Several studies
have proposed optimizations, such as reducing the complexity of encryption schemes or using hybrid encryption
approaches, to alleviate this computational burden [38]. Despite these advances, the balance between privacy
preservation and computational efficiency remains a critical challenge in large-scale Al applications.

Blockchain technology, while offering transparency and security in Al-driven drug repurposing, faces significant
integration challenges when deployed within the pharmaceutical industry's existing IT infrastructure. Many
pharmaceutical companies rely on legacy systems that are not inherently compatible with decentralized technologies
like blockchain. The integration process can be complex, requiring substantial re-engineering of data flows and
protocols to ensure seamless interaction between blockchain and existing enterprise resource planning (ERP) systems.
Additionally, the regulatory framework around blockchain in healthcare and drug development is still evolving, which
can lead to uncertainty in adopting blockchain solutions at scale. Although early-stage projects are demonstrating the
feasibility of blockchain integration, these hurdles can slow down its adoption. A promising direction for overcoming
these challenges involves creating hybrid models that leverage both traditional centralized systems and blockchain-
based solutions, ensuring smooth transitions and regulatory compliance [39].

As quantum computing advances, traditional cryptographic methods, including homomorphic encryption, are
increasingly vulnerable to being broken by quantum algorithms. Post-quantum encryption (PQC) is a rapidly developing
field that aims to create encryption schemes secure against quantum attacks. In the context of Al-driven drug
repurposing, post-quantum encryption could offer enhanced security and ensure long-term privacy for sensitive
biomedical data. Research is already underway to develop PQC algorithms that could be integrated into the existing HE
framework, enabling secure Al processing even in a post-quantum era. Integrating PQC into federated learning systems
would also ensure that model updates and data remain secure, providing robustness against both classical and quantum
computational threats. The ongoing development of PQC algorithms, such as lattice-based cryptography and code-based
cryptography, shows promise in addressing the security challenges posed by quantum computing [40].

Federated learning (FL) offers a promising solution for decentralized Al training without exposing raw data. However,
FL models often struggle with issues such as data heterogeneity and model convergence, especially when participating
institutions have non-IID (independent and identically distributed) data. To address these challenges, future work could
focus on developing adaptive training techniques that adjust the learning process based on the characteristics of the
local data or the performance of the model across various institutions. For example, federated learning models could
incorporate dynamic weighting of data contributions, allowing institutions with more relevant data to have a greater
influence on model training. Additionally, the development of new algorithms that improve the efficiency of model
aggregation and reduce communication overhead will be critical for large-scale deployment in biomedical research.
Research on hierarchical federated learning, which introduces multiple levels of aggregation, could help scale FL
systems more effectively while preserving data privacy. Future work should also explore techniques for handling issues

286



World Journal of Advanced Engineering Technology and Sciences, 2025, 16(02), 278-289

like model drift and adversarial attacks in federated learning environments, ensuring that Al models remain robust and
accurate over time [41].

8. Conclusion

Al-driven drug repurposing has emerged as a transformative force in pharmaceutical innovation, enabling the
identification of new therapeutic uses for existing medications. However, this advancement is accompanied by
significant cybersecurity risks that can undermine the reliability and integrity of the drug discovery process. This study
proposes a secure Al pipeline that integrates homomorphic encryption, blockchain technology, and federated learning
to mitigate these threats, ensuring the confidentiality and integrity of sensitive biomedical data.

The proposed security framework enhances trust in Al-driven biomedical research by safeguarding patient data,
preserving intellectual property, and ensuring compliance with stringent cybersecurity regulations. For instance, the
MELLODDY project a collaboration among ten major pharmaceutical companies, including Novartis, GSK, and
AstraZeneca successfully implemented federated learning across multiple institutions, preserving data privacy while
enabling collaborative drug discovery. This initiative underscores the feasibility and importance of secure Al
collaborations in the pharmaceutical industry.

Secure Al pipelines are essential for the future of pharmaceutical research, as they protect patient safety, uphold
intellectual property rights, and maintain scientific integrity. By adopting advanced cybersecurity measures, the
pharmaceutical industry can harness the full potential of Al-driven drug repurposing, leading to more efficient and
effective therapeutic solutions. As Al continues to evolve, ongoing research and development in secure Al
methodologies will be crucial to address emerging challenges and ensure the responsible advancement of biomedical
science.
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