

## A systematic literature review on AI governance platforms: ensuring responsible AI deployment

Firoz Mohammed Ozman \*

*Solutions Architect, Enterprise Architecture, Anecca Ideas Corp, Toronto, Canada.*

World Journal of Advanced Engineering Technology and Sciences, 2025, 16(02), 078-092

Publication history: Received on 27 June 2025; revised on 04 August 2025; accepted on 06 August 2025

Article DOI: <https://doi.org/10.30574/wjaets.2025.16.2.1259>

### Abstract

This paper conducts an SLR on the architectural solutions for the AI governance platforms that advocate for ethical, transparent, and legally compliant AI implementation, their performance, and the challenges associated with their frameworks. That said, it reveals that these platforms are designed for responsible AI by being modular, explainable, and compliant with the GDPR and ISO/IEC 42001 standard. However, there are some issues, including no integration, low standardization, and problems with high implementation. The study shall use thematic synthesis to draw conclusions on the technical and regulatory proposals for generalized cross-sectoral application and enhancement of governance. It also aids in strengthening the possibilities used for enhancing the concept of governance mechanisms to foster belief in artificial intelligence systems.

**Keywords:** AI Governance; Transparency; Compliance; SLR; Architecture; Ethics; Regulation

### 1. Introduction

AI governance platforms are the most crucial solutions in the management of the proper and legal use of AI. These features include the capability of the model, the exploration of the algorithm, and data handling and compliance automation (Butcher & Beridze, 2019). Such systems are increasingly helpful to guarantee that AI's life cycle is aligned with reference frameworks such as GDPR, ISO/IEC 42001, and the EU AI Act. This helps improve accountability and compliance in the AI development process, as approved by various stakeholders across different organizational settings.

#### 1.1. Problem Statement

While the use of AI governance platforms is now widespread, organizations still encounter issues concerning the implementation of AI ethical principles and regulatory requirements on a large scale. The challenges faced in the existing governance frameworks include interoperability, adaptability, and real-time monitoring and control features, which result in fragmented and higher risk governance in the organization. This is because there is no well-defined set of guidelines at the moment regarding fairness, interpretability, or accountability, which, in turn, affects the cross-sector application of the tools, with increasing attention from the regulatory authorities that have assumed more comprehensive roles as the EU AI Act or NIST AI RMF (Mikalef et al., 2022). There is a need to assess and improve the technical soundness and governance effectiveness of existing AI supervision solutions so that the AI solutions being built now can be viable to maintain, compliant to use, and ethical to employ in the future.

\* Corresponding author: Firoz Mohammed Ozman.

### *Aim*

The main aim of this research is to carry out an SLR (systematic literature review) to determine the evidence of AI architecture and the effectiveness of the governance platforms in promoting responsible AI adoption and to identify the challenges encountered in implementation.

### *Objectives*

- To review and classify some of the architectural approaches and essential features of AI government solutions.
- To assess the suitability of the selected AI governance platforms for making AI implementations emergent, ethical, transparent, and compliant.
- To identify the general implementation problems and constraints of adopting the AI governance platforms by various industries.

## **1.2. Research Questions**

- What are the most fundamental architectural models and technical elements that characterize modern AI governance platforms?
- To what extent are current AI governance platforms helpful in providing an appropriate, ethical, transparent, and compliant approach to the AI lifecycle?
- What are the primary technical, organizational, and regulatory obstacles to implementing AI governance platforms at scale?

## **1.3. Research Rationale**

Today's rapidly transforming AI environment causes organizations to face the challenge of establishing ethical standards, appropriate methods of algorithm behaviour control, and compliance with legislation (Tapalova & Zhiyebayeva, 2022). The purpose of this research is to offer a systematic evaluation of the governance of AI platforms concerning design and functionality. These aspects require a better understanding and improvement to ensure the increased adoption of responsible AI across multiple sectors, especially considering the new rules outlined in the GDPR, ISO/IEC 42001, and the EU AI Act.

---

## **2. Literature Review**

### **2.1. Architectural Frameworks and Core Functionalities**

The literature by Rai *et al.* (2019) critiques that while the AI framework's guidelines are robust, its versatility across industries can be challenging since the guidelines are high-level (Henman, 2020). Likewise, the work of Zheng *et al.* (2023) has been applied in recent years to ensure fairness and transparency in AI systems. However, Nitzberg and Zysman (2022) explain that these principles are criticized in practice because there is no common understanding of what fair and inclusive mean in such or similar contexts. Although platforms like the NIST AI RMF and the Microsoft Responsible AI Standard exist, they face challenges in practical application and have common gaps, including the harmonization or integration of their principles.

### **2.2. Effectiveness in Promoting Ethical and Transparent AI**

AI governance platforms are seen as a way of ensuring ethical integrity, transparency, and legal compliance of an AI, and their effectiveness is questionable (Ozman, 2025). According to Alomari *et al.* (2021), increasing the platforms' transparency and explainability enhances trust among stakeholders by enabling them to monitor the decision-making process of AI systems. As per Ferrari (2024), they can enable the avoidance of the harms caused by algorithmic bias and discrimination. However, according to Ulnicane *et al.* (2021), drawing on limitations, such platforms are not easy to implement, and knowledge in this field is needed. According to Gianni *et al.* (2022), there is another aspect that can be considered a significant issue, namely integration with other systems. Furthermore, according to Gorwa (2019), bias may not be eliminated by governance platforms, which speaks to the possibility that constant human supervision might help to tackle this situation.

### **2.3. Implementation Challenges and Limitations**

Despite the potential of using AI governance platforms for promoting more ethical and regulatory compliance, several main issues affect AI governance (Papagiannidis *et al.*, 2023). The authors Tapalova and Zhiyebayeva (2022) stated in their article that businesses still face various challenges, particularly in utilizing AI and implementing measures to

mitigate its adverse impacts. According to Meskó and Topol (2023), these risks require adequate AI governance practices to be put in place. However, Benbya *et al.* (2020) note that AI governance can have positive effects if organizations effectively identify and adopt best practices from a pool of identified practices for governing AI. Indeed, this study, based on the comparative analysis of three firms in the energy sector, identifies key governance factors and provides guidelines on how to avoid obstacles and facilitate the attainment of the intended impacts of AI.

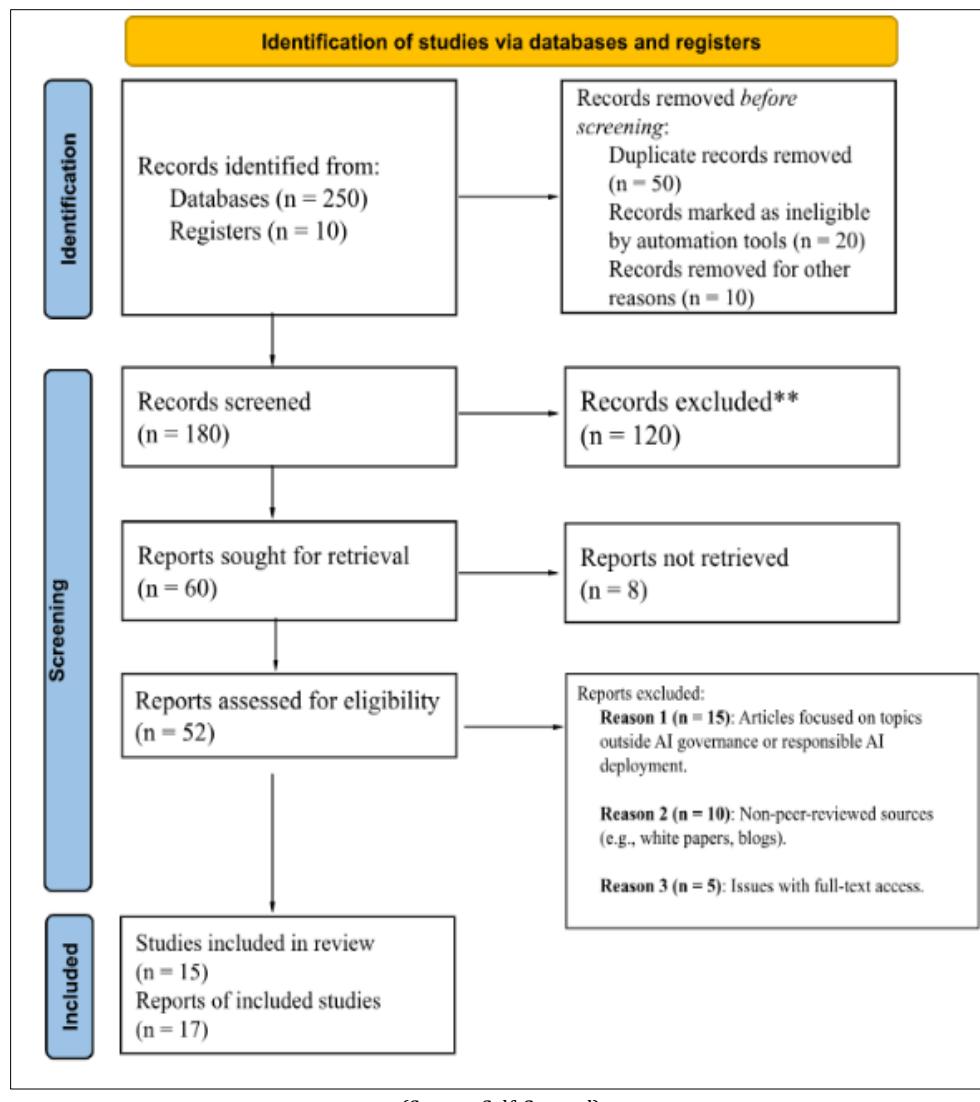
## 2.4. Theoretical Framework

The concepts presented in this study are therefore relevant to the Responsible Innovation Theory (RIT) and the Technology Governance Theory (TGT). RIT stresses the identification of probable ethical, social, and environmental implications of the product. According to Salako *et al.* (2024), innovation needs to be participative, self-aware, and adaptive. This theory will facilitate the assessment of how these AI governance platforms are helpful in the enactment of these core values of society. TGT deals with the way rules and processes, as well as institutions, are employed in overseeing technology and risk (Gorwa, 2019).

## 3. Materials and Methods

### 3.1. Search Strategy

Using the SLR method helps in providing high accuracy, systematic, and reproducible conduct of the review on the scholarly literature about AI governance platforms and responsible deployment of AI (Eitel-Porter, 2021). Boolean operators were used in constructing search terms to improve the amount of specificity. Therefore, the identified keyword string for the search was (“AI governance” OR “artificial intelligence governance” OR “AI ethics platform” OR “responsible AI”) AND (“deployment” OR “regulation” OR “compliance” OR “platform” OR “framework”).


**Table 1** Inclusion and Exclusion Criteria for SLR

| Inclusion Criteria                                                                                       | Exclusion Criteria                                    |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| • Articles published between 2019 and 2025                                                               | • Non-peer-reviewed sources (e.g., blogs, editorials) |
| • Peer-reviewed journal articles                                                                         | • Articles unrelated to governance or AI deployment   |
| • Written in English                                                                                     | • Papers lacking full-text access                     |
| • Focused on AI governance platforms and their role in ethical, transparent, and compliant AI deployment | • Articles not focused on governance or AI ethics     |

(Source: Self-Created)

### 3.2. Study Selection Using PRISMA Framework

The guidelines of the protocol used in this study were based on PRISMA 2020 to identify the articles under consideration systematically. For this SLR, the articles were sourced from databases (250) and registers (10) (Deshpande & Sharp, 2022). Following the removal of duplicate papers ( $n = 50$ ) and papers not included in the target population ( $n = 20$ ), 180 papers were reviewed. In total, 120 papers were excluded based on their relevance and other criteria. The 60 articles identified by the search terms had their full-text articles requested; however, eight of the reports could not be obtained. Fifty-two articles were finally reviewed for inclusion and exclusion due to factors such as being non-refereed or not available in full-text (Dunleavy & Margetts, 2025). Finally, 17 studies were selected for the thematic analysis. Figure 3.2 below is a complete diagram of PRISMA.



(Source: Self-Created)

**Figure 1** Prisma Diagram

### 3.3. Data Analysis Technique

This study used a “thematic analysis approach” to integrate findings derived from the selected academic and grey literature sources (Krook, 2025). An SLR framework guided the literature review, and studies were coded and sorted into the following three broad categories: architectural frameworks, performance, pros and cons, and issues of AI governance platforms (Stogiannos et al., 2024). Both sources of information were assessed for relevance based on these criteria and critically looked at to discover the patterns, the existing, and the divergent views (Vogl, 2021). This qualitative method proved practical for interpreting intricate governance issues, aligning them with the research objectives and questions, and providing a general overview of the pros and cons of modern AI governance (Taeihagh, 2021).

## 4. Results

### 4.1. Theme 1: Architectural Frameworks and Core Functionalities of AI Governance Platforms

This theme is relevant to the research’s objective since it explores one of the critical elements of developing structures for AI governance architectural foundations. It also investigates several technical perspectives on systematizing and regulating analytics and intelligence, demonstrating ways that governance is integrated into design. Chen et al. (2024) presented a layered system for risk management and governance controls, ensuring a technical approach in line with the principles of responsible AI. To this, Lu et al., (2024) and Li, (2023), add a compilation of the reusable design patterns

for integrating AI ethics, which appears to provide categorisation as a fundamental method for providing standardisation in line with ISO/ IEC 42001, the Standard for AI Management Systems, as well as the NIST AI Risk Management Framework (Tzachor et al., 2022; Vrontis et al., 2023).

Based on this observation, Pujari *et al.* (2024) put forth the idea of modular governance for directing autonomous systems, which is an obvious requirement for scalable AI environments with distributed oversight. Sonani and Govindarajan (2025) emphasize how to implement compliance solutions to be used within the cloud platforms to align with the OECD AI Principles, as well as for councils contained in the EU AI Act proposals. To maintain good practices for designing, developing, and implementing AI solutions, Baldassarre *et al.* (2024) list several practices to avoid problems. In contrast, Werder *et al.* (2022) focus on the idea of data provenance to improve the traceability and accountability of AI systems. Altogether, these contributions offer key aspects that describe the type of architectural requirements and frameworks needed for the development of AI governance platforms that are not only ethical but also sustainable and technically sound [Refer to Appendix 2].

#### **4.2. Theme 2: Effectiveness of AI Governance Platforms**

The theme focuses on how AI governance practices guarantee proper and appropriate AI implementations. Radanliev *et al.* (2024) evaluate the efficacy of regulating AI by considering the contribution of the regulation tools towards governance. In the paper by Camilleri (2024), AI policies establish the social responsibility where the accountability of platforms relates to outcome-based objectives. The paper by Roski *et al.* (2021) is on industry self-regulation, where they encourage the use of voluntary ethical principles to increase trust and accountability in AI systems. In their theoretical research, Burr and Leslie (2023) present a framework for ethical assurance with the help of case studies assessing the effectiveness of the specified types of governance. Roberts *et al.* (2023) discuss the current state of AI governance in the UK and evaluate the degree to which written regulations offer the required safeguards. Lastly, Díaz-Rodríguez *et al.* (2023) align AI ethics with the law since the platforms act as a link between the ethical norms and the legal standards. Altogether, these studies talk about the need to ensure proper ethical regulatory [Refer to Appendix 2].

#### **4.3. Theme 3: Implementation Challenges and Sectoral Limitations**

This theme focuses on the real-life issues that arise and the constraints of the specific sectors concerning AI governance platforms. To attain a consolidated framework regarding responsible AI, Batoool *et al.* (2023) examine their literature where they identify gaps in fragmentation, scalability, and misalignment of stakeholders, which affect the governance supply chain. Esmaeilzadeh (2024) discusses the healthcare industry to explore issues such as compatibility and trust, as the author underlines, governing structures cannot easily be applied to specific segments of the industry. Also, Reddy *et al.* (2020) proposed another clinical governance model for artificial intelligence healthcare, having structural issues within highly bureaucratic systems. Birkstedt *et al.* (2023) also observe that there is still a vital knowledge gap, and they indicate that there are both theoretical and pragmatic barriers across various sectors to building the fabric of AI governance. Further, Anagnostou *et al.* (2022) provided the industry-level view of the different challenges, which include policy and regulatory challenges, technical challenges, and context-related challenges. These papers collectively suggest that even though there is literature on good practice for AI governance, there are still substantial problems. These problems are related to implementing these systematic guidelines in practice due to the bureaucratic and sector-specific nature of AI decision-making processes [Refer to Appendix 2].

---

## **5. Discussion**

These findings effectively answer the research questions and contribute to the literature by providing an overview of the actual background of AI governance platforms, evaluating how effective they are in their functions, and identifying the problems that may be encountered when adopting the platforms (De Almeida *et al.*, 2021). The first theme relates to the first research question as it discusses major architectural frameworks such as layered, modular, and cloud-interconnected ones (Chen *et al.*, 2024; Pujari *et al.*, 2024; Sonani & Govindarajan, 2025); standardization and traceability are described as fundamentals. Theme 2 is also a direct answer to Research Question 2 concerning the performance of governance platforms in terms of practicality, ethics, and transparency of the AI lifecycle. For example, Burr and Leslie (2023) and Díaz-Rodríguez *et al.* (2023) show that ethical assurance and regulation can be ensured when governance is included in design and policy, respectively. However, as determined by Theme 3 targeting Research Question 3, many sectoral issues such as interoperability, incongruity of regulation, and resistance from stakeholders (Esmaeilzadeh, 2024; Anagnostou *et al.*, 2022) remain to be addressed. These outcomes support the statements of Rai *et al.* (2019) and Ulnicane *et al.* (2021) as to the inapplicability of such general concepts of governance across various industries. Thus, governance platforms can serve as a helpful model; however, they must overcome several barriers, which include contextual issues, ethical dilemmas, and the need to integrate platforms for AI to be implemented in an organized and accountable manner within various sectors.

## 6. Conclusion

### 6.1. Summary of Key Findings

This research aimed to identify the structure, efficiency, and main difficulties in the application of AI governance platforms in an SLR. The analysis revealed that AI governance is a multi-factor construct where the structural support should be adequately established in the organization; the AI system should have evidential records in ethical assurance and compliance; there are barriers to AI implementation that are sector-dependent and must be addressed. The results also observed that the modern platforms of governance in this field are diverse, tiered, block-based, and scalable with AI, as well as cloud-integrated designs that integrate governance controls into AI systems. Transparency, accountability, and responsibility are well-supported by these architectural models. However, some of their hurdles occurred in implementation across the sectors, as pointed out in the research. Some of these include limits in interoperability, a lack of cohesion between stakeholders, and standards in policies preventing the standard use of the platforms applicable in areas of high security concern, including the health sector (Cihon, 2019). Therefore, it can be concluded that, in general, there is a vast conceptual potential within AI governance platforms. However, their practical use is still problematic and largely depends on the sectoral adaptability and the preparedness of the environment.

### 6.2. Linking Findings with Objectives

The findings discussed in this study align with the specified research objectives of this research. It identifies and explains Theme 1 as fulfilling Objective 1, which focuses on the discovery of the architectural design of governance platforms for AI. Various forms of governance have been discussed in recent studies, such as layered, modular, and cloud-based governance by Chen et al. (2024) and Sonani and Govindarajan (2025). Such frameworks not only determine the technical architecture of governance systems but also incorporate documentation of processes related to traceability and compliance with ISO/IEC 42001 and NIST's AI RMF. The second objective of the paper, which is to assess the extent to which governance platforms can guarantee the ethical usage of AI, is captured in the second theme. This review shows that the integration of governance in the design and policy layers allows for better ethical supervision and regulatory approval, as illustrated by Burr and Leslie (2023) and Díaz-Rodríguez et al (2023). Theme 3, which investigated the challenges to governance platforms, addresses the fulfilment of the third research objective. Several limitations have been mentioned in the literature as hindering AI uptake, including problems of compatibility, low confidence in AI systems, and a poor fit of governance frameworks for sectors and industries such as healthcare and other regulated areas. These outcomes highlight the necessity for more context-sensitive approaches to governance for this research.

### Recommendations

The following are suggested strategies for improving AI governance platforms by the government. First, there is an urgent need for internationalization of AI governance frameworks by calls to industries to embrace existing ones, such as ISO/IEC 42001 and NIST AI Risk Management Frameworks. Some of these can offer a common framework within and between different sectors and jurisdictions. Secondly, it specified that AI governance platforms need to progress beyond these general models and come up with sector-related adaptations. For instance, in the healthcare industry, there are such challenges as a lack of trust, integration, and fragmentation of governance structures. Thirdly, the organization must encourage the cooperation of multiple stakeholders. Inclusive governance can therefore involve regulators, developers, users, and other stakeholders to ensure that the ethical, legal, or social implications are balanced in the right proportion. Fourthly, the investment in the understanding of the governance competencies of artificial intelligence is necessary.

## References

- [1] Alomari, M. K., Khan, H. U., Khan, S., Al-Maadid, A. A., Abu-Shawish, Z. K., & Hammami, H. (2021). Systematic Analysis of Artificial Intelligence - Based Platforms for Identifying Governance and Access Control. *Security and Communication Networks*, 2021(1), 8686469. <https://onlinelibrary.wiley.com/doi/10.1155/2021/8686469>
- [2] Anagnostou, M., Karvounidou, O., Katritzidaki, C., Kechagia, C., Melidou, K., Mpeza, E., ... and Peristeras, V. (2022). Characteristics and challenges in the industries towards responsible AI: a systematic literature review. *Ethics and Information Technology*, 24(3), 37. <https://lists.ellak.gr/epistimoniki-epitropi-ellak/2023/08/pdf7UNUr8HtGf.pdf>
- [3] Baldassarre, M. T., Caivano, D., Nieto, B. F., Gigante, D., & Ragone, A. (2024). Fostering human rights in responsible AI: a systematic review for best industry practices. *IEEE Transactions on Artificial Intelligence*,

6(2),416431.[https://ricerca.uniba.it/bitstream/11586/479162/3/\\_Camera\\_Ready\\_RAIE\\_IEEE\\_Transactions\\_on\\_AI.pdf](https://ricerca.uniba.it/bitstream/11586/479162/3/_Camera_Ready_RAIE_IEEE_Transactions_on_AI.pdf)

- [4] Batool, A., Zowghi, D., & Bano, M. (2023). Responsible AI governance: a systematic literature review. arXiv preprint arXiv:2401.10896.<https://arxiv.org/pdf/2401.10896.pdf>
- [5] Benbya, H., Davenport, T. H., & Pachidi, S. (2020). Artificial intelligence in organizations: Current state and future opportunities. MIS Quarterly Executive, 19(4).<https://papers.ssrn.com/sol3/Delivery.cfm?abstractid=3741983>
- [6] Birkstedt, T., Minkkinen, M., Tandon, A., and Mäntymäki, M. (2023). AI governance: themes, knowledge gaps and future agendas. Internet Research, 33(7), 133-167.<https://www.emerald.com/insight/content/doi/10.1108/INTR-01-2022-0042/full/pdf>
- [7] Burr, C., & Leslie, D. (2023). Ethical assurance: a practical approach to the responsible design, development, and deployment of data-driven technologies. AI and Ethics, 3(1), 73–98.<https://arxiv.org/pdf/2110.05164.pdf>
- [8] Butcher, J., & Beridze, I. (2019). What is the state of artificial intelligence governance globally?. The RUSI Journal, 164(56),8896.[https://www.researchgate.net/profile/JamesButcher3/publication/337640603\\_What\\_is\\_the\\_State\\_of\\_Artificial\\_Intelligence\\_Governance\\_Globally/links/5f53a062299bf13a31a1148b/What-is-the-State-of-Artificial-Intelligence-Governance-Globally.pdf](https://www.researchgate.net/profile/JamesButcher3/publication/337640603_What_is_the_State_of_Artificial_Intelligence_Governance_Globally/links/5f53a062299bf13a31a1148b/What-is-the-State-of-Artificial-Intelligence-Governance-Globally.pdf)
- [9] Camilleri, M. A. (2024). Artificial intelligence governance: Ethical considerations and implications for social responsibility. Expert systems, 41(7), e13406.<https://onlinelibrary.wiley.com/doi/10.1111/exsy.13406>
- [10] Chan, C. K. Y. (2023). A comprehensive AI policy education framework for university teaching and learning. International journal of educational technology in higher education, 20(1), 38.<https://link.springer.com/content/pdf/10.1186/s41239-023-00408-3.pdf>
- [11] Chen, C., Gong, X., Liu, Z., Jiang, W., Goh, S. Q., & Lam, K. Y. (2024). Trustworthy, responsible, and safe AI: A comprehensive architectural framework for AI safety with challenges and mitigations. arXiv preprint arXiv:2408.12935.<https://arxiv.org/pdf/2408.12935.pdf>
- [12] Cheng, L., Varshney, K. R., & Liu, H. (2021). Socially responsible ai algorithms: Issues, purposes, and challenges. Journal of Artificial Intelligence Research, 71, 1137-1181.<https://www.jair.org/index.php/jair/article/download/12814/26713/>
- [13] Cihon, P. (2019). Standards for AI governance: international standards to enable global coordination in AI research and development. Future of Humanity Institute. University of Oxford, 40(3), 340-342.[https://www.fhi.ox.ac.uk/wp-content/uploads/Standards\\_-FHI-Technical-Report.pdf](https://www.fhi.ox.ac.uk/wp-content/uploads/Standards_-FHI-Technical-Report.pdf)
- [14] De Almeida, P. G. R., dos Santos, C. D., & Farias, J. S. (2021). Artificial intelligence regulation: a framework for governance. Ethics and Information Technology, 23(3), 505-525.[https://www.researchgate.net/profile/Carlos-Santos-Jr/publication/351039094\\_Artificial\\_Intelligence\\_Regulation\\_a\\_framework\\_for\\_governance/links/6089bce6458515d315e3056e/Artificial-Intelligence-Regulation-a-framework-for-governance.pdf](https://www.researchgate.net/profile/Carlos-Santos-Jr/publication/351039094_Artificial_Intelligence_Regulation_a_framework_for_governance/links/6089bce6458515d315e3056e/Artificial-Intelligence-Regulation-a-framework-for-governance.pdf)
- [15] Deshpande, A., & Sharp, H. (2022, July). Responsible AI systems: who are the stakeholders?. In Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Society (pp. 227-236).<https://oro.open.ac.uk/84505/1/84505VOR.pdf>
- [16] Díaz-Rodríguez, N., Del Ser, J., Coeckelbergh, M., de Prado, M. L., Herrera-Viedma, E. y Herrera, F. (2023). Connecting the dots in trustworthy Artificial Intelligence: From AI principles, ethics, and key requirements to responsible AI systems and regulation. Information Fusion, 99, 101896.<https://www.sciencedirect.com/science/article/pii/S1566253523002129>
- [17] Dunleavy, P., & Margetts, H. (2025). Data science, artificial intelligence, and the third wave of digital era governance. Public Policy and Administration, 40(2), 185-214.<https://journals.sagepub.com/doi/pdf/10.1177/09520767231198737>
- [18] Eitel-Porter, R. (2021). Beyond the promise: implementing ethical AI. AI and Ethics, 1(1), 73-80.<https://link.springer.com/content/pdf/10.1007/s43681-020-00011-6.pdf>
- [19] Esmaeilzadeh, P. (2024). Challenges and strategies for wide-scale artificial intelligence (AI) deployment in healthcare practices: A perspective for healthcare organizations. Artificial Intelligence in Medicine, 151, 102861.<https://www.sciencedirect.com/science/article/pii/S0933365724001039>

[20] Ferrari, F. (2024). State roles in platform governance: AI's regulatory geographies. *Competition and Change*, 28(2), 340–358. <https://journals.sagepub.com/doi/pdf/10.1177/10245294231218335>

[21] Gianni, R., Lehtinen, S., and Nieminen, M. (2022). Governance of responsible AI: From ethical guidelines to cooperative policies. *Frontiers in Computer Science*, 4, 873437. <https://www.frontiersin.org/articles/10.3389/fcomp.2022.873437/pdf>

[22] Gorwa, R. (2019). What is platform governance?. *Information, communication and society*, 22(6), 854–871. <https://osf.io/preprints/socarxiv/fbu27/download>

[23] Henman, P. (2020). Improving public services using artificial intelligence: possibilities, pitfalls, governance. *Asia Pacific Journal of Public Administration*, 42(4), 209–221. <https://www.academia.edu/download/66396222/23276665.2020.pdf>

[24] Krook, J., Winter, P., Downer, J., & Blockx, J. (2025). A systematic literature review of artificial intelligence (AI) transparency laws in the European Union (EU) and United Kingdom (UK): a socio-legal approach to AI transparency governance. *AI and Ethics*, 1–22. [https://research-information.bris.ac.uk/files/443151654/ssrn-4976215\\_1\\_.pdf](https://research-information.bris.ac.uk/files/443151654/ssrn-4976215_1_.pdf)

[25] Li, B., Qi, P., Liu, B., Di, S., Liu, J., Pei, J., ... and Zhou, B. (2023). Trustworthy AI: From principles to practices. *ACM Computing Surveys*, 55(9), 1–46. <https://dl.acm.org/doi/pdf/10.1145/3555803>

[26] Lu, Q., Zhu, L., Xu, X., Whittle, J., Zowghi, D., and Jacquet, A. (2024). Responsible ai pattern catalogue: A collection of best practices for ai governance and engineering. *ACM Computing Surveys*, 56(7), 1–35. <https://dl.acm.org/doi/pdf/10.1145/3626234>

[27] Meskó, B., & Topol, E. J. (2023). The imperative for regulatory oversight of large language models (or generative AI) in healthcare. *NPJ digital medicine*, 6(1), 120. <https://www.nature.com/articles/s41746-023-00873-0.pdf>

[28] Mikalef, P., Conboy, K., Lundström, J. E., & Popovič, A. (2022). Thinking responsibly about responsible AI and 'the dark side' of AI. *European Journal of Information Systems*, 31(3), 257–268. <https://www.tandfonline.com/doi/pdf/10.1080/0960085X.2022.2026621>

[29] Nitzberg, M., & Zysman, J. (2022). Algorithms, data, and platforms: the diverse challenges of governing AI. *Journal of European Public Policy*, 29(11), 1753–1778. [https://brie.berkeley.edu/sites/default/files/algorithms\\_data\\_and\\_platforms-\\_the\\_diverse\\_challenges\\_of\\_governing\\_ai.pdf](https://brie.berkeley.edu/sites/default/files/algorithms_data_and_platforms-_the_diverse_challenges_of_governing_ai.pdf)

[30] Nitzberg, M., & Zysman, J. (2022). Algorithms, data, and platforms: the diverse challenges of governing AI. *Journal of European Public Policy*, 29(11), 1753–1778. [https://brie.berkeley.edu/sites/default/files/algorithms\\_data\\_and\\_platforms-\\_the\\_diverse\\_challenges\\_of\\_governing\\_ai.pdf](https://brie.berkeley.edu/sites/default/files/algorithms_data_and_platforms-_the_diverse_challenges_of_governing_ai.pdf)

[31] Ozman, F.M. (2025). Systematic literature review on the critical role of data integrity in AI-driven enterprises. *World Journal of Advanced Engineering Technology and Sciences*, [online] 15(2), pp.1664–1683. doi:<https://doi.org/10.30574/wjaets.2025.15.2.0427>.

[32] Papagiannidis, E., Enholm, I. M., Dremel, C., Mikalef, P., and Krogstie, J. (2023). Toward AI governance: Identifying best practices, potential barriers, and outcomes. *Information Systems Frontiers*, 25(1), 123–141. <https://link.springer.com/content/pdf/10.1007/s10796-022-10251-y.pdf>

[33] Pujari, T., Goel, A., & Sharma, A. (2024). Ethical and responsible AI: Governance frameworks and policy implications for multi-agent systems. *International Journal of Science and Technology*, 3(1), 72–89. <https://journal.admi.or.id/index.php/IJST/article/download/1962/1928>

[34] Radanliev, P., Santos, O., Brandon-Jones, A., & Joinson, A. (2024). Ethics and responsible AI deployment. *Frontiers in Artificial Intelligence*, 7, 1377011. <https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2024.1377011/pdf>

[35] Rai, A., Constantinides, P., & Sarker, S. (2019). Next generation digital platforms: Toward human-AI hybrids. *MIS quarterly*, 43(1), iii-ix. <https://wrap.warwick.ac.uk/id/eprint/113653/1/WRAP-next-generation-digital-platforms-human-al-hybrids-Constantinides-2019.pdf>

[36] Reddy, S., Allan, S., Coghlan, S., & Cooper, P. (2020). A governance model for the application of AI in health care. *Journal of the American Medical Informatics Association*, 27(3), 491–497. <https://pmc.ncbi.nlm.nih.gov/articles/PMC7647243/pdf/oczl92.pdf>

[37] Roberts, H., Babuta, A., Morley, J., Thomas, C., Taddeo, M., & Floridi, L. (2023). Artificial intelligence regulation in the United Kingdom: a path to good governance and global leadership?. *Internet Policy Review*, 12(2), 1-31.<https://www.econstor.eu/bitstream/10419/278798/1/1862630933.pdf>

[38] Roski, J., Maier, E. J., Vigilante, K., Kane, E. A., & Matheny, M. E. (2021). Enhancing trust in AI through industry self-governance. *Journal of the American Medical Informatics Association*, 28(7), 1582-1590.<https://academic.oup.com/jamia/article-pdf/28/7/1582/38983302/ocab065.pdf>

[39] Salako, A. O., Fabuyi, J. A., Aideyan, N. T., Selesi-Aina, O., Dapo-Oyewole, D. L., and Olaniyi, O. O. (2024). Advancing information governance in AI-driven cloud ecosystem: Strategies for enhancing data security and meeting regulatory compliance. *Asian Journal of Research in Computer Science*, 17(12), 66-88.<http://journal.submanuscript.com/id/eprint/2644/>

[40] Sonani, R., & Govindarajan, V. (2025). Cloud Integrated Governance Driven Reinforcement Framework for Ethical and Legal Compliance in AI-Based Regulatory Enforcement. *Journal of Selected Topics in Academic Research*, 1(1).<http://jstarpublication.com/index.php/jstar/article/view/2>

[41] Stahl, B. C. (2021). Artificial intelligence for a better future: an ecosystem perspective on the ethics of AI and emerging digital technologies (p. 124). Springer Nature.<https://library.oapen.org/bitstream/handle/20.500.12657/48228/9783030699789.pdf?sequence=1>

[42] Stogiannos, N., O'Regan, T., Scurr, E., Litosseliti, L., Pogose, M., Harvey, H., ... and Malamateniou, C. (2024). AI implementation in the UK landscape: knowledge of AI governance, perceived challenges and opportunities, and ways forward for radiographers. *Radiography*, 30(2), 612-621.<https://www.sciencedirect.com/science/article/pii/S1078817424000324>

[43] Stone, M., Aravopoulou, E., Ekinci, Y., Evans, G., Hobbs, M., Labib, A., ... and Machtynger, L. (2020). Artificial intelligence (AI) in strategic marketing decision-making: a research agenda. *The Bottom Line*, 33(2), 183-200.<https://research.stmarys.ac.uk/id/eprint/3892/1/AI%20in%20strategic%20marketing%20decision%20making%20final%20V2.pdf>

[44] Taeihagh, A. (2021). Governance of artificial intelligence. *Policy and society*, 40(2), 137-157.<https://academic.oup.com/policyandsociety/article-pdf/40/2/137/42564427/14494035.2021.1928377.pdf>

[45] Tapalova, O., & Zhiyenbayeva, N. (2022). Artificial intelligence in education: AIEd for personalized learning pathways. *Electronic Journal*.<https://files.eric.ed.gov/fulltext/EJ1373006.pdf>

[46] Tzachor, A., Devare, M., King, B., Avin, S., & Ó hÉigearthaigh, S. (2022). Responsible artificial intelligence in agriculture requires a systemic understanding of risks and externalities. *Nature Machine Intelligence*, 4(2), 104-109.<https://www.nature.com/articles/s42256-022-00440-4>

[47] Ulnicane, I., Knight, W., Leach, T., Stahl, B. C., & Wanjiku, W. G. (2021). Framing governance for a contested emerging technology: insights from AI policy. *Policy and Society*, 40(2), 158-177.<https://academic.oup.com/policyandsociety/article-pdf/40/2/158/42564407/14494035.2020.1855800.pdf>

[48] Vogl, T. (2021). Artificial intelligence in local government: Enabling artificial intelligence for good governance in UK local authorities.[https://ora.ox.ac.uk/objects/uuid:60fad1d4-b297-4070-81ce-36c8d18b4dd5/download\\_file?safe\\_filename=Local-Government-report.pdf&file\\_format=pdf&file\\_type\\_of\\_work=Report](https://ora.ox.ac.uk/objects/uuid:60fad1d4-b297-4070-81ce-36c8d18b4dd5/download_file?safe_filename=Local-Government-report.pdf&file_format=pdf&file_type_of_work=Report)

[49] Vrontis, D., Christofi, M., Pereira, V., Tarba, S., Makrides, A., & Trichina, E. (2023). Artificial intelligence, robotics, advanced technologies, and human resource management: a systematic review. *Artificial intelligence and international HRM*, 172-201.[https://www.researchgate.net/profile/Demetris-Vrontis/publication/349383945\\_Artificial\\_intelligence\\_robots\\_advanced\\_technologies\\_and\\_human\\_resource-management\\_a\\_systematic\\_review/links/6094db5e92851c490fbfb49/Artificial-intelligence-robots-advanced-technologies-and-human-resource-management-a-systematic-review.pdf](https://www.researchgate.net/profile/Demetris-Vrontis/publication/349383945_Artificial_intelligence_robots_advanced_technologies_and_human_resource-management_a_systematic_review/links/6094db5e92851c490fbfb49/Artificial-intelligence-robots-advanced-technologies-and-human-resource-management-a-systematic-review.pdf)

[50] Werder, K., Ramesh, B., & Zhang, R. (2022). Establishing data provenance for responsible artificial intelligence systems. *ACM Transactions on Management Information Systems (TMIS)*, 13(2), 1-23.<https://dl.acm.org/doi/abs/10.1145/3503488>

[51] Zheng, X., Zhou, G., & Zeng, D. D. (2023). Platform governance in the era of AI and the digital economy. *Frontiers of Engineering Management*, 10(1), 177-182.<https://journal.hep.com.cn/fem/EN/article/downloadArticleFile.do?attachType=PDF&id=33983>

## Appendices

### Appendix 1 Summary Table

| Authors                    | Theme                                   | Key Findings                                                                                             | Methodology                                      | Implications                                                         |
|----------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------|
| Radanliev et al. (2024)    | Ethical and Transparent Deployment      | Highlights ethical considerations for responsible AI use, identifying gaps in current deployment models. | Theoretical analysis, case examples              | Stresses need for ethical frameworks in governance platforms         |
| Lu et al. (2024)           | Architectural Frameworks                | Provides a taxonomy of AI governance patterns and engineering best practices.                            | Systematic pattern collection and classification | Enables structured design of governance frameworks                   |
| Batool et al. (2023)       | Effectiveness and Evaluation            | Reviews current state of responsible AI governance models; identifies gaps and future directions.        | SLR                                              | Points to lack of real-world effectiveness measurement               |
| Camilleri (2024)           | Ethical and Transparent Deployment      | Discusses social responsibility and ethical dilemmas in AI governance.                                   | Conceptual analysis                              | Promotes integration of CSR principles into AI systems               |
| Chen et al. (2024)         | Architectural Frameworks                | Proposes architectural framework for AI safety including risk mitigation and compliance.                 | Framework development with technical detail      | Aids design of robust AI systems                                     |
| Salako et al. (2024)       | Implementation Challenges               | Focuses on data security and regulatory compliance in AI cloud systems.                                  | Qualitative analysis, use cases                  | Supports secure AI governance practices                              |
| Cihon (2019)               | Global Coordination and Standards       | Advocates for international AI standards to promote safety and innovation                                | Policy analysis                                  | Encourages harmonized standards to reduce regulatory fragmentation   |
| Esmaeilzadeh (2024)        | Sector-Specific Governance (Healthcare) | Identifies barriers like data security and lack of trust; proposes strategic frameworks                  | Perspective analysis (healthcare setting)        | Emphasizes need for sector-specific AI governance protocols          |
| Reddy et al. (2020)        | Sector-Specific Governance (Healthcare) | Introduces layered governance model (technical, organizational, societal) for safe AI use in health      | Conceptual framework                             | Enhances ethical and effective AI implementation in health systems   |
| Birkstedt et al. (2023)    | Knowledge Gaps and Research Agendas     | Maps literature, identifies underexplored areas (e.g., enforcement mechanisms)                           | SLR                                              | Calls for cross-disciplinary, forward-looking governance models      |
| Deshpande and Sharp (2022) | Stakeholder Analysis                    | Identifies roles/responsibilities across AI lifecycle, especially marginalized stakeholders              | Empirical, stakeholder mapping                   | Ensures inclusion of all stakeholders in governance strategies       |
| Eitel-Porter (2021)        | Implementation Challenges               | Emphasizes the 'implementation gap' between principles and practice                                      | Case-based discussion                            | Urges companies to operationalize ethics in AI development pipelines |
| Pujari et al. (2024)       | Framework Design for Complex AI         | Explores governance policies in multi-agent and decentralised systems                                    | Theoretical with case implications               | Supports complex, adaptable frameworks for AI ecosystems             |

|                                |                                          |                                                                                      |                                        |                                                                                                    |
|--------------------------------|------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------|
| Roski et al. (2021)            | Industry Self-Governance                 | Industry-led frameworks can complement public regulation in healthcare AI            | Sectoral case study (US health sector) | Encourages hybrid (public-private) governance models                                               |
| Burr and Leslie (2023)         | Assurance and Ethics                     | Proposes "ethical assurance" lifecycle approach to responsible AI                    | Practice-based framework               | Helps embed ethics into AI system design from the outset                                           |
| Sonani and Govindarajan (2025) | Legal and Ethical Compliance             | Presents a cloud-integrated reinforcement model for compliance in regulatory AI use  | Technical framework with legal mapping | Strengthens alignment of technical systems with legal mandates                                     |
| Mikalef et al. (2022)          | Ethical Risks and AI's Dark Side         | Discusses potential risks and harms of AI, including bias and discrimination         | Conceptual analysis                    | Stresses the need to address the "dark side" through ethical AI practices                          |
| Baldassarre et al. (2024)      | Human Rights and AI                      | Proposes best practices for ensuring human rights are embedded in AI systems         | Systematic review                      | Calls for an integrated approach to AI governance with a focus on human rights                     |
| Werder et al. (2022)           | Data Governance                          | Highlights the importance of data provenance in ensuring responsible AI deployment   | Empirical analysis                     | Recommends enhanced transparency in data sources and processing for trust-building                 |
| Papagiannidis et al. (2023)    | Best Practices and Barriers              | Identifies key practices and barriers to effective AI governance across sectors      | Literature review                      | Urges the identification of scalable governance practices to overcome implementation barriers      |
| Taeihagh (2021)                | Policy and Governance Frameworks         | Analyses different governance approaches for AI at the policy level                  | Policy analysis                        | Promotes multi-stakeholder collaboration to design adaptive and comprehensive AI policies          |
| Cheng et al. (2021)            | Algorithmic Responsibility               | Discusses the ethical and social implications of algorithm design in AI systems      | Conceptual and theoretical             | Encourages the integration of social responsibility into AI algorithmic design                     |
| Li et al. (2023)               | Trust and AI Principles                  | Reviews the gap between AI principles and their practical application                | Survey and review                      | Proposes frameworks to bridge the gap between ethical guidelines and real-world implementation     |
| Tzachor et al. (2022)          | Sector-Specific Governance (Agriculture) | Explores AI's role in agriculture, highlighting environmental and societal risks     | Case study and systemic analysis       | Recommends systems-level governance frameworks to mitigate agricultural risks                      |
| Anagnostou et al. (2022)       | Sectoral Challenges in AI                | Identifies industry-specific challenges in implementing responsible AI               | SLR                                    | Proposes tailored AI governance strategies for different industries based on identified challenges |
| Butcher and Beridze (2019)     | Global Governance Landscape              | Reviews the current global AI governance landscape, assessing effectiveness and gaps | Comparative analysis                   | Calls for global coordination and cohesive governance structures to address AI challenges          |
| Roberts et al. (2023)          | AI Regulation and Governance             | Explores the UK's potential leadership role in AI                                    | Conceptual analysis                    | Highlights the need for effective AI regulation to                                                 |

|                                  |                                       |                                                                                                                            |                                    |                                                                                                                            |
|----------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
|                                  |                                       | governance, examining regulatory challenges                                                                                |                                    | ensure global leadership and ethical AI practices                                                                          |
| Krook et al. (2025)              | AI Transparency and Legal Governance  | Provides a socio-legal analysis of transparency laws in AI across the EU and UK, identifying key governance principles     | SLR                                | Advocates for more robust and standardised AI transparency regulations in the EU and UK                                    |
| Stogiannos et al. (2024)         | AI in Healthcare and Governance       | Investigates AI's role in healthcare governance, specifically for radiographers, highlighting challenges and opportunities | Empirical survey                   | Calls for increased training in AI governance for healthcare professionals to foster better AI adoption                    |
| Vogl (2021)                      | AI in Local Government and Governance | Discusses the potential of AI to enhance governance in UK local authorities, focusing on opportunities and challenges      | Case study                         | Encourages local governments to implement AI for better service delivery and public governance                             |
| Nitzberg and Zysman (2022)       | AI Governance and Platforms           | Identifies challenges in AI governance, focusing on algorithmic accountability, data, and platform regulation              | Theoretical and empirical analysis | Highlights the need for diverse, flexible governance frameworks to address the complexities of AI in platforms             |
| Dunleavy and Margetts (2025)     | AI and Digital Governance             | Explores the impact of AI and data science on governance in the digital era, focusing on evolving policy challenges        | Conceptual analysis                | Calls for new governance frameworks to manage the increasing role of AI in digital governance                              |
| De Almeida et al. (2021)         | AI Regulation Frameworks              | Proposes a regulatory framework for AI, emphasizing the need for clear guidelines and ethical considerations               | Framework development              | Recommends the establishment of a standardised regulatory approach to manage AI across sectors                             |
| Gorwa (2019)                     | Platform Governance                   | Defines platform governance and examines the role of platforms in regulating digital interactions and data flow            | Conceptual analysis                | Suggests that platform governance needs clearer regulation to ensure fairness and transparency                             |
| Tapalova and Zhiyenbayeva (2022) | AI in Education                       | Explores the role of AI in creating personalised learning pathways in education                                            | Case study                         | Advocates for AI-driven educational systems to support personalized learning at scale                                      |
| Meskó and Topol (2023)           | AI in Healthcare Regulation           | Discusses the need for regulatory oversight of generative AI models in healthcare to ensure ethical use                    | Literature review                  | Calls for the implementation of regulatory frameworks to oversee the use of AI in healthcare, especially generative models |
| Benbya et al. (2020)             | AI Organisations in                   | Reviews the current state of AI implementation in organisations, identifying future opportunities and challenges           | Literature review                  | Suggests that organisations need to focus on AI integration strategies and governance to enhance productivity              |
| Stahl (2021)                     | AI Ethics and Governance              | Explores ethical challenges and governance frameworks needed to ensure AI benefits society                                 | Conceptual analysis                | Emphasizes the importance of an ecosystem approach for AI                                                                  |

|                            |                                       |                                                                                                                        |                                    |                                                                                                                                  |
|----------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
|                            |                                       |                                                                                                                        |                                    | governance and ethical considerations in AI development                                                                          |
| Stone et al. (2020)        | AI in Marketing                       | Identifies opportunities and challenges in using AI for strategic marketing, proposing a framework for future research | Literature review                  | Calls for further exploration of AI's role in marketing decisions and its potential to revolutionise marketing strategies        |
| Henman (2020)              | AI in Public Services                 | Discusses the potential of AI to improve public services while highlighting governance issues and risks                | Empirical case study               | Argues for well-designed governance frameworks to mitigate risks and maximise AI benefits in the public sector                   |
| Chan (2023)                | AI Policy and Education               | Proposes a framework for AI policy education in universities to enhance understanding of AI governance among students  | Framework development              | Suggests integrating AI policy education into university curricula to prepare future professionals for the evolving AI landscape |
| Vrontis et al. (2023)      | AI in Human Resource Management       | Reviews the impact of AI and robotics on HRM, focusing on automation, decision-making, and workforce management        | Systematic review                  | Highlights the importance of adaptive HR policies and governance to address challenges posed by AI and robotics in HRM           |
| Rai et al. (2019)          | AI in Digital Platforms               | Explores the integration of human and AI capabilities in digital platforms, emphasising hybrid models                  | Literature review                  | Calls for new governance approaches that combine human intelligence with AI to enhance decision-making in digital platforms      |
| Zheng et al. (2023)        | AI in Platform Governance             | Analyses AI's role in platform governance, focusing on how platforms are governed in the digital economy               | Conceptual analysis                | Proposes new governance models for AI platforms in the digital economy to address transparency and accountability challenges     |
| Nitzberg and Zysman (2022) | AI Governance and Platforms           | Discusses the governance challenges of algorithms, data, and AI platforms, focusing on accountability                  | Theoretical and empirical analysis | Emphasizes the need for diverse governance frameworks to address the complexities of AI platforms and algorithms                 |
| Alomari et al. (2021)      | AI in Platform Governance             | Investigates AI-based platforms for governance and access control, focusing on security and privacy concerns           | Systematic analysis                | Recommends stronger access control and governance mechanisms for AI platforms to enhance security and privacy                    |
| Ferrari (2024)             | AI Regulation and Platform Governance | Explores the role of states in regulating AI platforms, focusing on regulatory geographies and state intervention      | Conceptual analysis                | Argues for more coordinated state-level interventions to regulate AI platforms and ensure fairness in the digital economy        |
| Ulnicane et al. (2021)     | AI Policy and Governance              | Analyses how AI governance is framed in policy discussions                                                             | Case study analysis                | Highlights the importance of clear and inclusive AI policies that address                                                        |

|                      |                        |                                             |                                                                                                                                |                                                |                                                                                                                       |
|----------------------|------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
|                      |                        | focusing on contested issues and challenges |                                                                                                                                | contested issues to ensure balanced governance |                                                                                                                       |
| Gianni et al. (2022) | Responsible Governance | AI                                          | Discusses the transition from ethical guidelines to cooperative policies in AI governance, focusing on responsible development | Literature review and policy analysis          | Proposes cooperative governance mechanisms to ensure responsible AI development and implementation in various sectors |

(Source: Self-Created)

## Appendix 2 Thematic Table

### Theme 1: Architectural Frameworks and Core Functionalities of AI Governance Platforms

| Author(s) and Year             | Focus Area                            | Key Findings                                                                       | Relevance to Theme                                                  |
|--------------------------------|---------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Chen et al. (2024)             | Architectural framework for AI safety | Introduces a layered framework focusing on risk mitigation and governance controls | Offers a comprehensive technical view of AI governance architecture |
| Lu et al. (2024)               | Pattern catalogue for AI governance   | Catalogues reusable design patterns for AI ethics integration                      | Framework-based classification of governance mechanisms             |
| Pujari et al. (2024)           | Multi-agent systems governance        | Emphasises modular governance for autonomous systems                               | Presents functional models for distributed AI governance            |
| Sonani and Govindarajan (2025) | Cloud-integrated AI governance        | Proposes a framework integrating cloud compliance and legal reinforcement          | Demonstrates infrastructural integration for AI oversight           |
| Baldassarre et al. (2024)      | Industry best practices               | Maps out technical practices supporting responsible AI in industry                 | Defines structural and practical features of governance tools       |
| Werder et al. (2022)           | Data provenance                       | Emphasises traceability in AI development processes                                | Links data lineage to functional governance components              |

### Theme 2: Effectiveness of AI Governance Platforms in Ensuring Ethics, Transparency, and Compliance

| Author(s) and Year           | Focus Area                    | Key Findings | Relevance to Theme                                                   |                                                             |
|------------------------------|-------------------------------|--------------|----------------------------------------------------------------------|-------------------------------------------------------------|
| Radanliev et al., (2024)     | Responsible deployment        | AI           | Assesses the ethical impact of AI regulation tools                   | Measures the ethical efficacy of governance frameworks      |
| Camilleri (2024)             | Ethical governance            | AI           | Evaluates the role of AI policies in promoting social responsibility | Reflects on AI platform accountability and outcomes         |
| Roski et al. (2021)          | Industry self-governance      |              | Promotes trust via voluntary ethical frameworks                      | Real-world application of governance promoting transparency |
| Burr and Leslie (2023)       | Ethical assurance             |              | Proposes a practical framework for integrating ethical principles    | Case-based validation of ethical governance performance     |
| Roberts et al. (2023)        | UK AI regulation              |              | Reviews governance maturity in UK lawmaking                          | Evaluates compliance effectiveness of formal policies       |
| Díaz-Rodríguez et al. (2023) | Ethics to regulation pipeline |              | Bridges AI ethics principles with legal frameworks                   | Maps how well platforms ensure compliance with ethics       |

**Theme 3 Implementation Challenges and Sectoral Limitations of AI Governance Platforms**

| Author(s) and Year       | Focus Area                             | Key Findings                                                        | Relevance to Theme                             |
|--------------------------|----------------------------------------|---------------------------------------------------------------------|------------------------------------------------|
| Batool et al. (2023)     | Literature synthesis on responsible AI | Identifies fragmentation, scalability, and stakeholder misalignment | Highlights widespread deployment obstacles     |
| Esmaeilzadeh (2024)      | Healthcare sector deployment           | Addresses interoperability and trust barriers                       | Sector-specific governance adoption challenges |
| Reddy et al. (2020)      | Healthcare governance model            | Introduces a governance structure for clinical AI                   | Practical barriers in regulated environments   |
| Birkstedt et al. (2023)  | Knowledge gaps in AI governance        | Maps' limitations in conceptual and practical integration           | Summarises adoption issues across industries   |
| Anagnostou et al. (2022) | Industry-specific adoption challenges  | Industry-wide review of obstacles to responsible AI                 | Provides a sectoral overview of limitations    |