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Abstract 

Artificial Intelligence is transforming the future of bioenergy supply chains, ranging from intelligent systems at 
feedstock collection levels to those at power generation. This extensive review offers a comprehensive history of 
Artificial Intelligence applications for optimizing efficiency, sustainability, and supply chain choices at all levels of the 
bioenergy supply chain. It also reveals how machine learning algorithms, prediction algorithms, and real-time analytics 
are being applied to streamline biomass collection, preprocessing, logistics, and conversion operations. Verified 
prominent innovations from relevant literatures from 2020 to 2025 include Artificial Intelligence based predictive 
maintenance, reducing downtime at bioenergy plants by 20 to 30% and up to 15% biomass conversion efficiency 
enhancement using adaptive control systems. Intelligent biomass haulage routing resulted in 10 to 25% fuel savings, 
reduced carbon emissions by 12% and feedstock classification accuracy up to 90% using high-end image recognition 
and sensor fusion. Artificial Intelligent sinventory systems also increased feedstock utilization by 18%, energy demand 
forecast models improved forecast accuracy by 25 to 40%, alongside optimized resource allocation and grid resilience. 
The findings from this paper benchmarks interdisciplinary coordination, suitable data infrastructures and regulatory 
support as driving forces to scaling Artificial Intelligent applications in bioenergy sectors. While reconstructing 
conventional supply systems using intelligent automation, Artificial Intelligence has been confirmed one foundation 
stone upon which to scale clean energy agendas around the world. 

Keywords: Artificial Intelligence; Bioenergy Supply Chain; Machine Learning; Sustainable Energy; Feedstock 
Optimization. 

1. Introduction

The global energy sector is undergoing a significant transformation, propelled by escalating concerns over climate 
change, dwindling fossil fuel reserves, increasing energy demand, and a growing commitment to sustainable 
development. Renewable energy has taken center stage as a reliable and clean alternative to conventional fossil fuels 
[1, 2, 3]. Within the renewable energy portfolio, bioenergy holds distinctive promise due to its versatility, storability, 
and compatibility with existing infrastructure. Derived from biological materials such as crop residues, forest biomass, 
energy crops, and organic waste, bioenergy can be used to produce heat, electricity, and transportation fuels. Unlike 
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intermittent sources like solar and wind, bioenergy can be harnessed continuously, offering a dispatchable renewable 
energy option [4]. However, despite its potential, bioenergy systems are often hindered by supply chain inefficiencies, 
geographical dispersion of feedstocks, seasonal availability, variability in feedstock quality, and high transportation 
costs [5, 6, 7]. The Bioenergy Supply Chain (BESC) includes numerous interconnected stages: feedstock identification, 
harvesting or collection, transportation, storage, preprocessing, conversion (through biochemical or thermochemical 
methods), and power generation. Each phase introduces operational challenges and uncertainties that can significantly 
affect the overall efficiency, economic viability, and sustainability of the bioenergy system [8, 9]. 

1.1. The Role of Artificial Intelligence in Energy Systems 

To overcome these challenges, modern energy systems are increasingly integrating digital technologies, and at the 
forefront of this shift is Artificial Intelligence (AI). AI encompasses a broad set of computational techniques, including 
machine learning (ML), deep learning (DL), reinforcement learning (RL), natural language processing (NLP), and 
intelligent optimization algorithms. These tools enable machines to learn from data, identify patterns, and make 
informed decisions with minimal human intervention [10, 11, 12]. AI has already demonstrated considerable success 
in optimizing complex systems in various industries, including finance, healthcare, manufacturing, and, more recently, 
energy [13, 14]. In the context of energy systems, AI is being used to enhance demand forecasting, optimize grid 
operations, manage energy storage, enable predictive maintenance, and support decentralized energy generation. 
These capabilities are now being explored in the context of bioenergy to optimize resource allocation, reduce 
environmental impact, and enhance system reliability and responsiveness [15, 13, 16]. 

1.2. Artificial Intelligence in Bioenergy Supply Chain Management (BESCM) 

The integration of AI into the Bioenergy Supply Chain Management (BESCM) provides a compelling opportunity to 
revolutionize how biomass resources are identified, processed, transported, and converted into usable energy. The 
application of AI within the bioenergy context spans across the entire value chain viz a viz, Feedstock Identification and 
Collection - One of the major bottlenecks in bioenergy supply chains is the identification and quantification of feedstock 
availability. Traditional methods of biomass estimation are often manual, labor-intensive, and prone to inaccuracies. AI-
based models, especially machine learning algorithms trained on satellite imagery and geospatial datasets, can predict 
crop yield, estimate biomass availability, and monitor land use patterns with high accuracy. Convolutional Neural 
Networks (CNNs) are increasingly used for remote sensing applications, such as crop classification and phenotyping. 
These models allow for dynamic, large-scale mapping of biomass resources, facilitating better planning and decision-
making [17, 18]. Transportation and Logistics - Transporting biomass from decentralized locations to centralized 
processing facilities contributes significantly to the overall cost and environmental footprint of bioenergy systems. AI-
powered route optimization algorithms, such as genetic algorithms (GAs), ant colony optimization (ACO), and particle 
swarm optimization (PSO), can minimize travel time, fuel consumption, and vehicle wear-and-tear by identifying the 
most efficient transportation pathways. AI also enables the development of digital twin models for logistics systems, 
allowing real-time simulation and adaptive scheduling based on traffic, weather, and biomass availability [19, 20]. 
Preprocessing and Conversion - The biochemical and thermochemical conversion of biomass into biofuels or electricity 
is highly sensitive to feedstock characteristics such as moisture content, ash content, and calorific value. AI can help 
monitor and optimize conversion processes through real-time sensor data analysis and predictive control. For instance, 
reinforcement learning (RL) can be used to continuously adjust parameters such as temperature, pressure, and flow 
rates to maximize output and minimize emissions. Artificial neural networks (ANNs) have been applied to predict 
process efficiency and energy yield in anaerobic digestion, gasification, and pyrolysis systems [21]. Power Generation 
and Grid Integration - At the final stage of the supply chain, AI supports load forecasting, real-time system balancing, 
and predictive maintenance of energy generation equipment. This is especially important for combined heat and power 
(CHP) plants and bio-refineries, where system complexity is high. AI-powered predictive analytics can preemptively 
identify faults in turbines, boilers, and engines, thereby reducing downtime and maintenance costs. In addition, AI 
models can be used to coordinate the integration of bioenergy systems into smart grids, enabling better synchronization 
with demand patterns and other renewable sources [22]. 

1.3. The Global Relevance of AI-Driven Bioenergy 

The integration of AI in BESC is particularly relevant to regions where biomass resources are abundant but energy 
infrastructure is underdeveloped, such as parts of Africa, Southeast Asia, and Latin America. In these regions, bioenergy 
holds tremendous potential to enhance energy security, reduce reliance on fossil fuels, and stimulate rural development. 
However, the lack of real-time data, skilled personnel, and digital infrastructure often limits the adoption of 
sophisticated technologies. AI offers scalable and adaptable solutions to overcome these constraints [23]. Furthermore, 
aligning AI applications in bioenergy with global climate targets and sustainable development goals (SDGs) provides a 
strategic advantage. AI-driven BESC optimization contributes to: SDG 7 (Affordable and Clean Energy) by improving 
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energy access and affordability. SDG 13 (Climate Action) by reducing carbon emissions and promoting low-carbon 
energy solutions. SDG 12 (Responsible Consumption and Production) by enabling circular economy practices through 
biomass valorization [24, 25]. 

1.4. Challenges and Research Gaps 

Despite promising developments, the implementation of AI in bioenergy supply chains is still in its infancy. Key 
challenges include: Data Scarcity: High-quality, high-resolution data is essential for training accurate AI models, but 
such data is often unavailable or unreliable in many bioenergy regions. Model Interpretability: Many AI models, 
especially deep learning systems, are “black boxes” with limited transparency, making them difficult to trust and 
regulate. Interoperability: Integration of AI tools with existing biomass processing systems and software platforms 
remains a technical challenge. Ethical and Societal Concerns: Issues of data privacy, workforce displacement, and 
technology accessibility must be addressed to ensure equitable adoption. In addition, there is a notable lack of 
interdisciplinary research and collaboration between AI experts, agricultural scientists, environmental engineers, and 
policy makers. Bridging these gaps is essential for translating AI research into real-world bioenergy applications. 

1.5. Objective and Structure of This Review 

In light of the above, this review paper aims to critically analyze the applications of AI across the bioenergy supply chain, 
from feedstock collection to power generation. The specific objectives include: Exploring current AI methodologies and 
tools used in BESC optimization. Evaluating the effectiveness and limitations of AI applications in real-world scenarios. 
Identifying gaps in literature and proposing directions for future research. Assessing the economic, environmental, and 
societal implications of AI-integrated bioenergy systems. The remaining part of this paper is structured as follows: 
Section 2 - Literature Review examines existing studies, technologies, and applications of AI in various phases of the 
BESC. Section 3 - Discussion synthesizes findings, compares AI approaches, and explores cross-cutting challenges and 
innovations. Section 4 - Conclusion summarizes key insights and offers recommendations for researchers, 
policymakers, and industry practitioners. By shedding light on the intersection of AI and bioenergy supply chains, this 
paper seeks to contribute to a more sustainable, intelligent, and resilient energy future. 

2. Literature Review 

2.1. Introduction to Bioenergy Supply Chains 

Bioenergy supply chains (BESCs) encompass a series of interconnected processes, including the collection of biomass 
feedstock, its transport, storage, preprocessing, conversion into usable forms of energy, and ultimately, the distribution 
and utilization of that energy [26, 27, 28]. Compared to fossil-based supply chains, bioenergy systems are more 
decentralized, heterogeneous, and exposed to uncertainties due to their dependence on biological and seasonal factors. 
These uncertainties affect supply chain predictability, cost-efficiency, and environmental performance. The literature 
over the past two decades has increasingly focused on overcoming these challenges using advanced digital tools, with 
Artificial Intelligence (AI) emerging as a transformative enabler [29, 30, 31]. 

 

Figure 1 Bioenergy supply chain from primary resources to end user [32] 
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2.2. Evolution of AI Technologies in Renewable Energy Systems 

Early applications of AI in the energy sector centered around prediction and optimization tasks, particularly in the 
domains of solar and wind energy forecasting. Machine learning algorithms such as support vector machines (SVMs), 
decision trees, and artificial neural networks (ANNs) were widely employed to model nonlinear relationships between 
energy inputs and outputs [33, 34, 35]. Over time, deep learning, reinforcement learning, and hybrid AI frameworks 
have been introduced to capture temporal, spatial, and multi-objective complexity traits that are highly relevant to 
bioenergy systems [17, 36, 37]. More recent literature shifts from general energy system modeling to domain-specific 
applications in bioenergy. As of 2020–2024, peer-reviewed publications have shown increasing attention to the unique 
needs of BESCs, including biomass yield estimation, optimal harvesting schedules, logistics optimization, real-time 
process control, waste minimization, and smart grid integration [38, 13]. 

2.3. AI in Biomass Feedstock Assessment and Yield Prediction 

Accurate prediction of biomass yield is crucial for supply planning and capacity management. AI techniques have proven 
more effective than traditional statistical models in processing complex agro-environmental data. A study by [39] 
demonstrated that Convolutional Neural Networks (CNNs) applied to drone-captured images could predict sugarcane 
biomass yields with 92% accuracy, outperforming linear regression by over 25%. Long Short-Term Memory (LSTM) 
networks were used by [40] to forecast biomass availability across seasons using time-series weather and soil data, 
achieving a mean squared error of less than 0.15. These models integrate remote sensing (e.g., NDVI indices), 
meteorological data, and soil moisture records, enabling spatially explicit forecasts that can inform harvesting decisions. 
AI has also been used to estimate residue availability from rice, maize, and wheat crops with real-time geolocation 
tagging. 

2.4. AI for Logistics Optimization and Transportation Efficiency 

Logistics optimization is one of the most mature application areas of AI in bioenergy. The decentralized nature of 
biomass sources means that transportation planning must deal with dispersed collection points, dynamic vehicle 
routing, variable terrain, and seasonal road access. Genetic Algorithms (GA), Particle Swarm Optimization (PSO), and 
Ant Colony Optimization (ACO) are the most cited AI techniques in this space. For example, [41] developed a hybrid GA-
ACO model to optimize biomass collection from 50 farms in a Chinese province. Their algorithm reduced logistics costs 
by 21% and CO₂ emissions by 18% compared to conventional heuristics. Another study by [42] in sub-Saharan Africa 
applied Reinforcement Learning (RL) to dynamically reroute biomass collection trucks based on weather disruptions 
and road conditions, demonstrating a 17% improvement in on-time delivery. 

2.5. AI in Preprocessing, Conversion, and Energy Generation 

Biomass preprocessing (drying, chipping, pelletizing) and conversion (combustion, gasification, anaerobic digestion, 
pyrolysis) are complex, nonlinear processes influenced by material properties, operating conditions, and real-time 
feedback. AI models, particularly Deep Neural Networks (DNNs) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS), 
have been used to optimize operational settings such as temperature, pressure, residence time, and feedstock ratios 
[43, 44]. A 2022 study by [45] applied DNNs to predict syngas quality in a downdraft gasifier with high accuracy, 
enabling automated adjustments that increased energy yield by 14%. In anaerobic digestion plants, machine learning 
has been used to predict methane production based on input composition. Random Forest (RF) models identified the 
optimal Carbon-to-Nitrogen (C/N) ratio to maximize biogas yield while minimizing ammonia inhibition, achieving 
predictive accuracy above 90%. AI is also transforming biomass combustion by managing air-fuel ratios and controlling 
emissions [46, 47] . Digital twins, a virtual replica of a physical plant, were implemented by [48] to mirror real-time 
operations in a municipal waste-to-energy facility. Their AI-integrated digital twin reduced downtime by 30% and 
allowed predictive maintenance. 

2.6. AI for Predictive Maintenance and Asset Management 

Predictive maintenance uses AI to forecast equipment failures and schedule timely interventions, thus reducing 
downtime and operational costs. Techniques such as Time Series Forecasting, Anomaly Detection, and Bayesian 
Networks are used to monitor temperature, vibration, and pressure signals from bioenergy plants [49]. In a Finnish 
biorefinery, the deployment of AI-based predictive maintenance reduced unplanned shutdowns by 35%, as reported by 
[50]. The system used a combination of LSTM networks and Kalman filters to detect deviations in pump motor 
performance. Similarly, sensor fusion and unsupervised learning approaches are gaining popularity in monitoring gas 
leaks, burner instability, and conveyor belt malfunctions in pellet production units. 

 



World Journal of Advanced Engineering Technology and Sciences, 2025, 16(02), 141-153 

145 

2.7. Smart Grids and AI-Based Energy Dispatch 

Once bioenergy is converted into electricity, its integration into the grid must be managed efficiently. AI supports real-
time load forecasting, dynamic pricing, and renewable energy blending strategies [13, 51] . LSTM-based models, 
combined with attention mechanisms, have been deployed to predict short-term energy demand with less than 5% 
error. In areas where biomass plants co-exist with solar or wind, AI manages hybrid grid synchronization, preventing 
overload and curtailment. Reinforcement Learning agents have also been trained to schedule energy dispatch in 
microgrids powered by biogas. By learning optimal dispatch sequences, these agents improved energy utilization by 
20% while reducing the need for expensive storage systems [52]. 

Table 1 Summary of Selected Papers on AI Applications in Bioenergy Supply Chains 

Paper 
Reference 

Objectives Methods Used Results Practical Implications 

[53] Propose AI 
framework for supply 
chains; highlight 
adoption challenges 

ML, predictive 
analytics, 
optimization 
algorithms 

Improved accuracy & 
operational 
performance 

Offers scalable AI models; 
practical tools for 
implementation 

[54] Review ML in 
bioenergy; identify 
challenges and 
solutions 

Comparative analysis 
of ML techniques 

Improved management 
& forecasting in 
bioenergy 

Boosts sustainability and 
resilience in bioenergy 
systems 

[55] Develop real-time 
tracking for 
biofeedstock 
processing 

Deep neural 
networks, regression 
analysis 

Accurate carbon 
content estimation 

Supports 
decarbonization in oil 
refining processes 

[56] Identify research 
trends and gaps in 
biomass-to-bioenergy 

Bibliometric & 
visualization analysis 

Identified 6 key 
research gaps & 
thematic clusters 

Informs future research & 
policy direction 

[57] Assess emissions 
across supply chains 
with AI 

AI modeling using 
historical & real-time 
data 

Precise tracking of 
direct and indirect 
emissions 

Enables tailored emission 
reduction policies 

[58] Propose framework 
for terminal site 
selection 

AHP & Mixed-Integer 
Programming (MIP) 

Identified optimal sites 
for biomass terminals 

Supports sustainable 
logistics planning 

[59] Optimize biomass 
utilization through 
integrated systems 

Anaerobic digestion & 
hydrothermal 
carbonization 

$23.13M annual profit; 
245.70 GWh electricity 

Improves economic & 
environmental 
performance 

[60] Develop smart energy 
model for biomass 
systems 

IoT, decision support 
system 

52.71% annual cost 
savings; 3.31 years ROI 

Enhances energy 
utilization & grid 
integration 

[61] Evaluate ANN use in 
biorefineries 

Artificial Neural 
Networks vs 
Mechanistic Models 

Real-time optimization 
of production 

Facilitates smart 
monitoring and control in 
bioprocessing 

[62] Model wood biomass 
supply chain for 
biofuel production 
and assess 
sustainability trade-
offs 

Mixed Integer Linear 
Programming (MILP) 
and Fuzzy Analytic 
Hierarchy Process 
(FAHP) 

Achieved trade-off 
between cost, demand, 
and CO₂ emissions; 
validated using a 
regional case study in 
Thailand 

Improves strategic 
decision-making in 
biofuel networks; 
enhances 
competitiveness and 
sustainability 
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2.8. Environmental and Lifecycle Impact Assessment 

Quantifying the environmental impacts of bioenergy production requires analyzing emissions, land use, water 
consumption, and waste generation across the supply chain. AI accelerates Life Cycle Assessment (LCA) through 
predictive modeling and data-driven scenario simulations [63, 64]. Support Vector Regression (SVR) models, for 
example, have been used to estimate cradle-to-grave CO₂ emissions in wood pellet production. In combination with 
blockchain technology, AI can also track sustainability metrics in real time, enabling carbon credit verification and 
compliance with ISO 14040/44 standards [65]. 

2.9. Socioeconomic and Policy Implications in AI Integration 

While most technical literature highlights AI’s benefits, an emerging research stream explores the broader implications 
of AI integration in bioenergy systems. Issues of algorithmic bias, data privacy, and employment displacement are 
increasingly discussed. Several studies advocate for Explainable AI (XAI) to ensure transparency in AI-driven decisions, 
especially in public infrastructure or community-based energy projects. Moreover, cross-disciplinary collaborations 
between AI developers, energy engineers, and social scientists are being recommended to ensure inclusive and 
equitable deployment. 

2.10. Gaps and Future Research Directions 

Despite encouraging progress, several gaps remain; Data scarcity and inconsistency limit the development of 
generalizable AI models. There’s a need for open-access datasets and standardization in data collection practices. 
Limited implementation in developing regions hinders global equity in bioenergy AI adoption. Research must address 
localization and affordability of AI tools. Integration complexity across heterogeneous systems remains a challenge, 
especially for small and medium-sized enterprises (SMEs) without digital expertise. Lack of real-world deployment 
studies persists, with many AI solutions still confined to laboratory or simulation settings. Future research should focus 
on; Hybrid AI models that combine physical modeling with data-driven learning. Federated learning and edge 
computing for decentralized bioenergy applications. AI ethics, particularly in community-scale energy planning and 
governance. Integrating AI with IoT, blockchain, and digital twins for end-to-end intelligent BESCs. 

3. Discussion 

3.1. Overview of AI Transformation in Bioenergy Systems 

Artificial Intelligence (AI) has begun to revolutionize the bioenergy supply chain (BESC), which encompasses several 
interconnected stages from feedstock assessment, harvesting, logistics, and preprocessing, to conversion and electricity 
generation. Traditional bioenergy systems suffer from inefficiencies due to seasonal variability, decentralized biomass 
sources, complex biochemical conversion pathways, and manual-dependent operations. AI, with its ability to learn from 
large, diverse datasets and to model nonlinear relationships, brings transformative potential to these pain points. In this 
section, we analyze how AI has been applied across each stage of the bioenergy value chain, summarize key insights 
from real-world deployments, assess comparative advantages over conventional systems, and identify existing barriers 
and opportunities for future growth. 

3.2. Feedstock Collection: From Static Planning to Predictive Intelligence 

One of the most complex stages in the BESC is the assessment and collection of biomass feedstock. Traditionally, this 
has relied on periodic field surveys, manual yield estimations, and historical productivity data. However, such methods 
often lead to overestimation or underutilization of feedstock resources [66]. AI techniques, especially machine learning 
(ML) and computer vision, enable accurate and dynamic feedstock estimation. For instance, the integration of 
convolutional neural networks (CNNs) with drone and satellite imagery allows for precision agriculture, enabling real-
time monitoring of crop health and biomass availability. These models detect changes in vegetation indices (e.g., NDVI), 
helping forecast yield more accurately than static GIS-based systems [67, 68, 69]. In a case study by [70], CNNs applied 
to drone imagery of sugarcane fields produced a 92% accuracy in biomass estimation,  compared to 68% with linear 
regression models. This improvement significantly aids planning for harvest timing and logistics coordination. 
Additionally, recurrent neural networks (RNNs) and LSTMs support temporal modeling of biomass growth, 
incorporating climate data, rainfall patterns, and soil conditions. 

3.3. Logistics and Transport: Optimization under Real-World Constraints 

Logistics in bioenergy systems is notoriously difficult due to scattered feedstock sources, rural road limitations, and 
fluctuating weather conditions. AI-driven optimization techniques like genetic algorithms, ant colony optimization 
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(ACO), and reinforcement learning (RL) have drastically improved this aspect [71, 72].A study by [73] introduced a 
hybrid GA-ACO algorithm to plan daily routing for 50 collection points, achieving a 21% reduction in fuel use and an 
18% drop in carbon emissions. This not only improves operational efficiency but also contributes to the environmental 
sustainability of the overall system. Reinforcement Learning agents, trained in simulated environments, can 
dynamically adapt routing in response to real-time disruptions (e.g., flooded roads or equipment failure). Their use has 
been particularly helpful in developing countries where unpredictable infrastructure is a major constraint. In practice, 
AI also supports vehicle scheduling, fleet utilization analysis, and real-time GPS-based monitoring, ensuring compliance 
with delivery windows and minimizing empty return trips, a major source of inefficiency [74, 75]. 

3.4. Preprocessing and Storage: Data-Driven Control Systems 

Biomass preprocessing (drying, size reduction, torrefaction, etc.) is a critical step to ensure consistent input quality for 
conversion systems. These processes are sensitive to moisture content, particle size, and contamination levels. Here, 
deep learning models and fuzzy inference systems have been integrated into industrial controllers to automate 
preprocessing lines. AI has been used to monitor drying kinetics using thermal imaging and predict the optimal drying 
time to minimize energy use without compromising material quality [76, 77] . For instance, ANFIS (Adaptive Neuro-
Fuzzy Inference Systems) have demonstrated high accuracy in predicting biomass moisture reduction curves, achieving 
>95% fit with experimental data. In storage systems, AI models help forecast decomposition risk, fire hazard, and mold 
growth by modeling temperature, humidity, and airflow dynamics. These insights allow for proactive intervention and 
safer inventory management, especially for large-scale pellet storage units [78]. 

3.5. Conversion Processes: AI-Enhanced Bioenergy Generation 

At the heart of the BESC lies the conversion of biomass into usable energy. Whether through gasification, combustion, 
anaerobic digestion, or pyrolysis, each method is inherently nonlinear, sensitive to feedstock variability, and 
traditionally difficult to automate. AI is transforming these processes through real-time control systems, predictive 
modeling, and process optimization algorithms [79, 80] ; Digital Twins: These virtual representations of bioenergy 
plants are increasingly powered by AI, enabling real-time simulations and adjustments. A biogas plant in Germany 
integrated a digital twin with reinforcement learning to adjust organic loading rates, improving methane yield by 18% 
[79, 81]. Deep Neural Networks (DNNs) have been used to model complex biochemical reactions in anaerobic digestion, 
replacing traditional stoichiometric models. These AI models better handle variability in feedstock composition and 
predict gas production with higher accuracy. In gasification systems, AI has been used to control syngas composition, 
temperature, and tar formation, achieving up to 12% improvement in energy conversion efficiency. Additionally, 
computer vision systems monitor flame quality and combustion characteristics in biomass boilers, adjusting airflow in 
real-time to reduce NOx and particulate emissions [82, 83]. 

3.6. Power Generation and Grid Integration 

As bioenergy systems increasingly contribute to national grids or microgrids, their interaction with other energy 
sources and demand loads must be managed intelligently. AI supports this by enabling energy forecasting, smart 
dispatch, and grid balancing. Load Forecasting: LSTM-based models have been applied to predict hourly and daily 
electricity demand from bioenergy systems. These forecasts help synchronize generation with demand, reducing 
curtailment and ensuring reliability [84]. Smart Dispatch Algorithms: Reinforcement learning has been used to optimize 
when and how to dispatch power from bioenergy sources, especially in hybrid setups that include solar, wind, and 
battery storage [85]. Frequency Regulation: In microgrids, AI enables faster and more precise frequency and votage 
control, stabilizing the system against renewable intermittency. A study in India demonstrated that AI-optimized 
bioenergy microgrids experienced 27% fewer blackouts and a 19% increase in renewable utilization compared to 
conventionally managed ones [86]. 

3.6.1. Predictive Maintenance and Equipment Health Monitoring 

One of the highest-cost areas in bioenergy systems is unexpected equipment failure. AI-based predictive maintenance 
leverages historical sensor data (temperature, vibration, sound, pressure) to detect early signs of wear or malfunction. 
Time-series models like LSTM and unsupervised clustering algorithms are used to classify operating conditions into 
normal and abnormal states. These models trigger alerts before failure occurs, reducing unplanned downtime by up to 
40%. In pellet production facilities, anomaly detection algorithms applied to motor and conveyor systems reduced mean 
time between failures (MTBF) from 42 days to 63 days after implementation [87]. 
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3.7. Environmental and Economic Benefits of AI Integration 

Table 2 Numerous case studies confirm that AI integration across the BESC delivers significant environmental and 
economic benefits [88] 

Parameter Conventional System AI-Integrated System Improvement 

Bio-oil Yield 72% 84% +12% 

Transportation Cost Reduction - -23% -23% 

GHG Emissions Baseline -20% -20% 

Energy Efficiency in Boilers 65% 78% +13% 

Downtime in Biorefineries 12 hrs/month 7.5 hrs/month -37.5% 

These improvements not only enhance profitability but align with climate mitigation goals such as SDG 7 (Affordable 
and Clean Energy) and SDG 13 (Climate Action). 

3.8. Challenges in AI Adoption 

Despite its transformative potential, several challenges hinder widespread AI deployment in bioenergy systems; Data 
Availability: Many biomass facilities, especially in developing countries, lack sensors or digital infrastructure, limiting 
data collection needed to train AI models. Model Transferability: AI models trained in one location may not generalize 
well due to feedstock or climate variability. Skill Gaps: Operators often lack expertise in AI or data science, creating a 
disconnect between model development and practical use.Regulatory Gaps: There are few standards guiding how AI 
should be deployed in critical energy infrastructure. 

3.9. Opportunities and the Way Forward 

To realize the full benefits of AI in BESCs, several strategic actions are required: Investment in Digital Infrastructure: 
Governments and private firms should support sensor deployment, cloud platforms, and IoT devices for data collection. 
Open Data Platforms: Developing public databases of biomass supply, energy yield, and plant operations will help AI 
researchers build better models. Explainable AI (XAI): To build trust, models must provide interpretable outputs that 
decision-makers can act on confidently. Integration with Other Technologies: Combining AI with blockchain, digital 
twins, and edge computing can enable real-time, scalable, and transparent bioenergy management systems. 

4. Conclusion 

The integration of Artificial Intelligence (AI) into the bioenergy supply chain, from feedstock collection to power 
generation, marks a transformative evolution in the renewable energy landscape. This paper has comprehensively 
explored how AI technologies ranging from machine learning and deep learning to reinforcement learning and digital 
twins are being leveraged to enhance the efficiency, sustainability, and intelligence of bioenergy systems. The 
confluence of AI and bioenergy represents not just a technological advancement but a paradigm shift in how renewable 
energy systems can be designed, monitored, and optimized. The introduction established the imperative for deploying 
advanced technologies in bioenergy production, especially as the global community shifts toward cleaner, more 
sustainable energy sources. Bioenergy, derived from organic waste and biomass, offers a promising renewable solution, 
but its complex and decentralized supply chain introduces inefficiencies that can undermine its environmental and 
economic benefits. AI, with its ability to learn from large datasets and make real-time decisions, emerges as a powerful 
tool to address these issues. The literature review uncovered a growing body of research focused on AI's role in each 
phase of the bioenergy value chain. Studies demonstrated the application of convolutional neural networks (CNNs) for 
precision agriculture, genetic algorithms for logistics optimization, and deep learning models for dynamic system 
control in biorefineries. From image-based crop classification to predictive maintenance in power plants, AI has shown 
the capacity to both augment human decision-making and automate complex processes. However, the review also 
identified gaps, including the limited adoption of explainable AI models, lack of real-time implementation frameworks, 
and underrepresentation of AI use in developing regions. The discussion section synthesized key insights from the 
literature and practical implementations, offering a layered understanding of the technological, economic, 
environmental, and societal implications of AI-driven bioenergy systems. AI applications in biomass resource 
assessment enable more accurate mapping and yield forecasting, which helps stabilize supply chains. AI-powered 
logistics systems, incorporating tools like ant colony optimization and reinforcement learning, significantly reduce fuel 
consumption and cost, contributing to greener supply operations. In preprocessing and conversion, real-time AI control 
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models have shown remarkable improvements in throughput and emissions reduction. Meanwhile, predictive analytics 
and smart grid integration at the power generation phase ensure optimal load balancing and energy reliability. One of 
the most notable outcomes from the discussion was the comparative advantage of AI-optimized systems over 
conventional approaches. Case studies indicated substantial improvements: 12% higher bio-oil yield through digital 
twins, 23% lower transportation costs via optimized routing, and a 20% drop in emissions with smarter reactor 
controls. These benefits are complemented by positive environmental externalities, aligning bioenergy operations with 
national decarbonization strategies and the UN Sustainable Development Goals (SDGs), particularly SDG 7 (Affordable 
and Clean Energy) and SDG 13 (Climate Action). Nevertheless, several challenges temper these gains. Data availability 
and quality remain critical bottlenecks, particularly in low-resource settings where bioenergy holds the most promise. 
Without high-resolution and continuous datasets, AI models risk poor generalization and biased predictions. Another 
concern is the lack of interoperability among systems and the steep learning curve for bioenergy practitioners who may 
lack formal training in data science or AI. Regulatory uncertainty and the absence of standardized frameworks for AI 
integration in bioenergy systems further hinder large-scale adoption. Addressing these barriers will require a 
coordinated effort involving policy, education, infrastructure, and technology development. Governments must enact 
supportive policies, including subsidies for AI tools, incentives for digital infrastructure, and regulations that 
incorporate AI outputs into environmental compliance metrics. Education and training programs are essential to build 
cross-sector expertise capable of designing, deploying, and managing AI-integrated bioenergy systems. Moreover, 
research must continue to focus on explainable and ethical AI models that balance performance with transparency and 
societal trust. From a technological standpoint, the future of AI in bioenergy supply chains is promising. Emerging 
paradigms such as edge computing and federated learning are particularly suited for decentralized and remote 
bioenergy operations. Digital twins are evolving from mere simulation tools to full-fledged decision-support systems 
that mirror entire biorefineries in real time. The use of generative AI to simulate climate or policy scenarios could 
further enhance strategic planning. Blockchain technology, when combined with AI, holds the potential to establish 
transparent, tamper-proof supply chains that are essential for carbon credit markets and sustainability verification. In 
conclusion, the application of AI in bioenergy supply chain management is not a fleeting trend but a critical enabler for 
sustainable energy transformation. By addressing current inefficiencies, enhancing system adaptability, and 
empowering predictive insights, AI can help unlock the full potential of bioenergy. As the urgency of climate action 
intensifies and energy systems grow more complex, the integration of AI across all stages of the bioenergy value chain 
stands out as a forward-thinking strategy that bridges environmental sustainability, technological innovation, and 
economic resilience. Future efforts must be collaborative, inclusive, and data-driven, ensuring that the benefits of AI-
powered bioenergy systems are equitably distributed and globally impactful. 
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