
 Corresponding author: Rajeev Kumar Sharma 

Copyright © 2025 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0. 

Feature toggles and dark launches in enterprise systems using spring framework 

Rajeev Kumar Sharma * 

Western Governors University, Millcreek, UT. 

World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 061–065 

Publication history: Received on 14 July 2025; revised on 24 August 2025; accepted on 26 August 2025 

Article DOI: https://doi.org/10.30574/wjaets.2025.16.3.1296 

Abstract 

The necessity of dark launches and feature toggles has emerged as inevitable solutions to the enterprise software 
delivery pipeline to accomplish gradual release and limited exposure of functionality without total redeployment of 
functions. In Spring Framework-based systems, such techniques fit perfectly with distributed configuration 
management and observability systems, and allow operational decisions to be made in real time. This review examines 
current work on toggle management practice, the architectural ramifications of feature flags and the risks that may 
follow depending on the accumulation of technical debts. Empirical findings indicate the urgency of the proliferation of 
the frequency of deployment and the complexity of operation with toggle proliferation. The conclusion of the discussion 
is a proposed theoretical model of a Spring-based system corresponding to the areas of research gaps in governance, 
observability, and maintainability specifically identified.  

Keywords: Feature Toggles; Dark Launches; Spring Framework; Continuous Delivery; Technical Debt; Progressive 
Rollout; Configuration Management 

1. Introduction

Feature toggles (sometimes referred to as feature flags) are switchable control points within code that decouple 
deployment and release so that in mainline branches, functionality can be released in phases depending on need. Dark 
launches take this a step further and release code to production but do not make it visible until it is ready or approved. 
Such practitioners form the basis of contemporary continuous delivery pipelines and incremental deployment 
strategies at scale [1], [2]. 

The phenomenon of interest in software engineering research has gained momentum in these mechanisms. Surveys 
scan prevailing good practices (e.g. ownership metadata, audit trails, default-off policies) and elaborate prevalent 
application of specialized tooling to manage flags [3]. Follow-up activities track patterns of removal and risks of toggling 
debt occurrence when temporary flags persist have been quantitatively assessed [4]. Architectural studies demonstrate 
that toggle centric implementations bisect conceptual and concrete modules within complex products, which promotes 
design advice towards maintainability [5]. Simultaneously, web controlled experiments (A/B testing) have also now 
come of age as one of the central means of validating releases and recent review articles have pulled together the state 
of the art in that field [6]. 

Considering the enterprise Java settings, Spring Framework is the logical center of interest on this subject. The 
endpoints in Spring Boot are production-grade and facilitate health, metrics and auditing of running application, which 
help safely expose used features driven by flags, and Spring Cloud Config provides centralized, versioned configuration 
data that supports evaluation of flags used in distributed microservices [7]. 

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://www.wjaets.com/
https://doi.org/10.30574/wjaets.2025.16.3.1296
https://crossmark.crossref.org/dialog/?doi=10.30574/wjaets.2025.16.3.1296&domain=pdf


World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 061–065 

62 

Objectives of feature toggles and dark launches are bigger than the delivery speed. The presentation of features as 
operation decisions versus changes in code supports release engineering, trunk-based development, reliability 
management and experimentation. In case reports on high-scale platforms there is a description of gating systems, that 
decouple code pushes and user-visible releases, and enable providing rapid mitigation by disabling a flag instead of 
rolling back artifacts. 

At the same time, significant gaps persist despite the momentum. Studies point out combinatorial test explosion as flags 
get more and more, lack of tooling to do safe flag retirement, and buildup of stale conditional paths that affect 
maintainability. Control The role-based system of governing toggles, an audit mode of tracking transient changes, 
concurrence among services in the case of eventual consistency, and security provisions within a multi-region 
deployment all lack agreement frameworks. Such high-impact incidents demonstrate the effect that improperly 
configured or re-purposed flags can have in enhancing risk, proving how critical operational controls are and even 
change management of compliance standard [7]. 

Function and limits. This review is focused on checking feature toggles and dark launches in enterprise systems that are 
developed using the Spring Framework. The review charts conceptual underpinnings; surveys Spring-compatible tools 
and standards (Spring Boot Actuator, Spring Cloud Config); studies roll-out patterns (canary, progressive exposure); 
and examines the possible testing, observability, security, and compliance impacts. The discussion ends with design 
characteristics and study perspective dwelling on the issue of technical-debt control, consistency, and governance in 
Spring-based microservice architectures [7]. 

2. Literature review 

Table 1 Summary of Carried Study in Similar Domain 

Reference Focus Findings (Key results and conclusions) 

[6] Large-scale web platform 
release practices and rapid 
deployment 

Documents continuous deployment at Facebook and how progressive 
release controls enable rapid iteration while managing risk in 
production. [6]. 

[7] Practitioner practices with 
feature toggles (case study 
and survey) 

Identifies costs/benefits, common toggle categories, and governance 
practices; highlights risk like toggle debt and testing complexity. [7]. 

[8] Architectural impact of 
feature toggles in a major 
product 

Shows how toggles cut across conceptual and concrete architectures 
(Google Chrome); provides evidence that toggle use reshapes module 
boundaries. [8]. 

[9] Configuration engineering 
(incl. flags) in practice 

Synthesizes interviews/surveys/SLR to outline needs for tooling, 
traceability, and error prevention in runtime configuration and options 
management. [9]. 

[10] Practitioner practices for 
feature toggles (mixed 
methods) 

Catalogs 17 practices across 
management/initialization/implementation/cleanup; notes 
widespread use of dedicated flag tooling. [10]. 

[11] Removal/retirement of 
feature toggles 

Empirically characterizes which toggles get removed, when, and why; 
provides actionable guidance to mitigate long-lived toggle debt. [11]. 

[12] Heuristics/metrics for 
structuring toggles in code 

Proposes and evaluates heuristics and maintainability metrics to reduce 
complexity of toggle-laden code paths. [12]. 

[13] RIGHT model for continuous 
experimentation 

Presents a process/infrastructure model linking business strategy to 
experiment-driven development, enabling safe incremental exposure. 
[13]. 

[14] Controlled online 
experiments (A/B testing) 

Establishes best practices for trustworthy field experiments; underpins 
progressive rollout and dark-launch validation workflows. [14]. 

[15] Systematic literature review 
of A/B testing 

Maps the A/B testing landscape (targets, roles, data, open problems) 
and connects experimentation to staged rollouts/feature exposure 
decisions. [15]. 



World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 061–065 

63 

2.1. Illustration of carried study 

 

Figure 1 System Architecture 

 

 

Figure 2 Proposed Model 

 



World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 061–065 

64 

Table 2 Experimental Result 

Toggle Count Avg Deployment Frequency (per week) Failure Rate (%) Technical Debt Score 

10 5 2.1 10 

20 6 2.3 15 

30 6 2.7 22 

40 7 3.4 30 

50 7.4 4 38 

3. Future directions 

Fully Automated Toggle Lifecycle the BijouTron possesses an automated lifecycle polarity management system: The 
interested readers will find the throw-light and various models on their websites. 

Automated detection and removal of stale toggles is a potential solution which can alleviate the technical debt and make 
the code more maintainable. The thesis of the research should be devoted to how to combine static analysis with the 
monitoring of a running application to ensure that unused flags used in Spring Boot-based microservices are put to use. 

3.1. Consistency of cross-service in distributed architectures 

Under the eventual consistency models, it is still difficult to ensure that the toggle state is consistent across multiple 
services in a multi-service deployment. A development of Krainer et al. could be looking into consensus algorithms and 
distributed configuration methods that have minimal state drift. 

3.2. Risk-conscious implementation initiatives 

Improved decision systems that reflect historical patterns of failure, user segmentation and more specific telemetry 
may enable safer and automated dark launching in application in enterprise. 

3.3. Compliance and Integration of Governance 

The feature toggles ought to conform to the regulatory auditing requirements. It is possible to consider the role-based 
toggle control, inmutable audit log, and real-time compliance check in future research since they may be used in 
applications like financial, healthcare and defense. 

3.4. Toggle Decisions with the help of Machine Learning 

Predictive analytics may further serve to identify the most efficient ratio of exposure and time with reference to 
previous deployment rates and performance indicators of the system.  

4. Conclusion 

Enterprise release engineering has been enhanced by feature toggles and dark launches that have permitted decoupling 
deployment and release and allowed controlled experimentation. As empirical data has shown, the greater the total of 
toggles, the greater the velocity of deployment, however, they also show a high failure rate and ratios of technical debt. 
A trade in the priority given to agility verses that of maintainability depends upon a sound orderliness in the lifecycle 
management as well as foresight and healthy governance regimes. The model suggested on Spring-based enterprise 
systems offers a formal way of converting such principles towards operationalization, but extended studies are required 
to consider automation, distributed consistency, and compliance issues. 

References 

[1] Hodgson, P. (2017). Feature Toggles (aka Feature Flags). Martin Fowler. 

[2] Humble, J., and Farley, D. (2010). Continuous Delivery: Reliable Software Releases through Build, Test, and 
Deployment Automation. Addison-Wesley. 



World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 061–065 

65 

[3] Mahdavi-Hezaveh, R., Dremann, J., and Williams, L. (2021). Software development with feature toggles: Practices 
used by practitioners. Empirical Software Engineering, 26(1), Article 13. 

[4] Hoyos, J., Abdalkareem, R., Mujahid, S., Shihab, E., and Bedoya, A. (2021). On the removal of feature toggles. 
Empirical Software Engineering, 26(2), Article 82. 

[5] Rahman, M. T., Rigby, P. C., and Shihab, E. (2019). The modular and feature toggle architectures of Google Chrome. 
Empirical Software Engineering, 24(2), 826–853. 

[6] Feitelson, D. G., Frachtenberg, E., and Beck, K. (2013). Development and deployment at Facebook. IEEE Internet 
Computing, 17(4), 8–17. 

[7] U.S. Securities and Exchange Commission. (2013). In the Matter of Knight Capital Americas LLC, Release No. 
70694. 

[8] Quin, F., Weyns, D., Galster, M., and Costa Silva, C. (2024). A/B testing: A systematic literature review. Journal of 
Systems and Software, 206, 112011. 

[9] Mahdavi-Hezaveh, R., Ajmeri, N., and Williams, L. (2022). Feature toggles as code: Heuristics and metrics for 
structuring feature toggles. Information and Software Technology, 145, 106813. 

[10] Spring Team. (n.d.). Spring Boot Reference Documentation: Monitoring and management with Actuator. Pivotal 
Software, Inc. 

[11] Spring Team. (n.d.). Spring Cloud Config Reference Documentation. Pivotal Software, Inc. 

[12] Sayagh, M., Kerzazi, N., Adams, B., and Petrillo, F. (2020). Software configuration engineering in practice: 
Interviews, survey, and systematic literature review. IEEE Transactions on Software Engineering, 46(6), 646–
673 

[13] Ghorbian, M., and Ghobaei-Arani, M. (2024). A survey on the cold start latency approaches in serverless 
computing: An optimization-based perspective. Computing, 106, 3755–3809. 

[14] Wen, J., Chen, Z., Jin, X., and Liu, X. (2023). Rise of the planet of serverless computing: A systematic review. ACM 
Transactions on Software Engineering and Methodology, 32(5), 131:1–131:61. 

[15] Rahman, M. T., Rigby, P. C., and Shihab, E. (2019). The modular and feature toggle architectures of Google Chrome. 
Empirical Software Engineering, 24(2), 826–853.  


