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Abstract

This review adopts the use of artificial intelligence based prediction models in enhancing energy efficiency in marine
energy generation using tidal power. Traditional forecasting techniques such as hydrodynamic simulation and
statistical modeling fail to capture dynamic and non-linear dynamics of aquatic systems. Hence, efficacy of energy output
is lost, and risk of operation failure is increased. Recent innovations in artificial intelligence such as machine learning
and deep learning capabilities enhance power of modeling, forecasting, and optimization. Techniques such as long
short-term memory (LSTM) networks, hybrid wavelet-convolutional neural networks (HW-CNNs), and physics-
informed neural networks (PINNs) have significantly increased forecasting precision and versatility compared to
conventional techniques. Artificial Intelligence-based models are seen to lower mean absolute percentage error (MAPE)
in forecasting of tides and marine power by up to 35% and prediction-based maintenance frameworks lower unplanned
downtime by more than 30%. Besides, usage of digital twins which are computerized replicas of physical assets, real-
time assimilation of data have increased adaptive control ability by a significant percent, resulting in reduced structural
fatigue and operating cost by 15 to 20%. Such contributions are not only technical but environmental and economical
such as minimizing ecological disruptions and enhancing financial viability of projects. Overall, Artificial Intelligence-
based prediction models are a disruptive methodology of scalable, efficient, and sustainable implementation of marine
energy technology using tidal power.

Keywords: Artificial Intelligence; Marine Energy; Tidal Power; Predictive Models; Renewable Energy Optimization.

1. Introduction

The ocean not only harbors vast untapped energy but stands as one of the few renewable domains with immense scale
and predictability. According to the International Energy Agency’s Ocean Energy Systems report, the theoretical global
potential exceeds 80,000 TWh/year across all marine sources. Specifically, tidal energy alone accounts for more than
300 TWh/year, while marine current power exceeds 800 TWh/year. To contextualize, global electricity consumption is
roughly 25,000 TWh/year. The marine energy potential, therefore, is on the same order or even surpasses idealizing a
transformative role in decarbonizing global grids, particularly in regions with strong tidal or current regimes [1, 2].
Despite colossal theoretical potential, practical deployment remains modest. As of 2023, installed ocean power capacity
stood at approximately 513 MW, with just 2 MW added that year comprising both tidal stream and wave systems. The
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lion’s share of existing capacity derives from two major tidal barrage installations:La Rance, France: 240 MW, Sihwa
Lake, South Korea: 254 MW. These projects alone contribute over 490 MW, whereas tidal stream and wave contribute
less and are still in pre-commercial phases.Yet, deployment is growing. Tidal stream installations have reached 41 MW
since 2010, with cumulative generation exceeding 90 GWh by end-2023. Wave energy, less mature, has seen 27 MW
deployed in the same period, with convergence towards utility-scale systems underway.The MeyGen project in Scotland
underscores this progression: at present, it operates 6 MW, generating 10.2 GWh in 2023, with expansion plans up to
400 MW [3, 4]. Market estimates project rapid growth despite current limitations. The global tidal power market was
valued at approximately USD 123.6 million in 2023, with expectations to reach USD 501.4 million by 2031, a CAGR of
19.4%. Another report cites a market size of USD 1.15 billion in 2024, rising at nearly 19.1% CAGR to USD 2.593 billion
by 2032 [5] .Wave and tidal combined markets show parallel expansion. Installed capacity reportedly hit 600 MW for
tidal and 400 MW for wave by 2023. In Europe, the ocean energy pipeline is ambitious: 100 MW deployments by 2027,
scaling to 40 GW by 2050, potentially supplying 10% of the continent's power [6, 7]. The central barrier for tidal energy
remains economic viability. Current levelized cost of energy (LCOE) for tidal stream ranges between $0.20-$0.50/kWh,
vastly higher than offshore wind ($0.13-$0.30) and solar PV ($0.03-$0.10) [8]. The Atir floating tidal farm assessment
(34.5 MW using 23 turbines) projects an LCOE of €0.125/kWh (~$0.13-$0.14), competitive with solar/land-based
renewables, as well as CO, emissions of 42.11 g CO,eq/kWh, a favorable environmental profile [9]. Looking outward,
the ORE Catapult's cost reduction pathway suggests tidal stream LCOE could drop to £78/MWh (~€90/MWh) by 2035
and even as low as £60/MWh (€70) by 2042, and £50/MWh (€57) by 2047, if economies of scale, foundation
optimization, and standardization occur [10]. Notably, Minesto’s Dragon 12 tidal kite technology claims an exceptionally
low LCOE of $54/MWh (~$0.054/kWh), outperforming offshore wind ($72), onshore wind ($24), geothermal ($61),
and even coal/gas on some metrics [11]. Tidal power's historical and modern hallmarks manifest through iconic
projects: La Rance (France) - Commissioned in 1966, 240 MW operational, ~500 GWh/year production (~24% capacity
factor). Sihwa Lake (South Korea): 254 MW capacity, ~552 GWh/year output, built using existing seawall costing
US$560 million. Jiangxia (China) - Smaller-scale (4.1 MW) tidal barrage producing ~6.5 GWh/year signifying regional
engineering expansion. MeyGen (Scotland) - Largest tidal stream farm: 6 MW (2023), planning 400 MW eventual scale.
Orbital Marine Power's 02: A floating twin-rotor (2 MW) turbine operating since 2021 in Orkney Islands, designed for
tow-back servicing, hydrogen production coupling representing next-gen flexibility. HydroWing in Indonesia (2024) -
A 10 MW tidal project agreement in East Nusa Tenggara leveraging Pacific-Indian Ocean currents. Minesto’s Dragon 12
(Faroe Islands) - 1.2 MW tidal kite with LCOE = $54/MWh; recognizes tidal as non-intermittent renewable like
geothermal [12, 13]. The strategic value of tidal energy resides in its predictability and dispatchability. Unlike solar and
wind, which produce highly intermittent output even curtailed due to grid constraints, tidal energy offers regular,
forecastable generation based on astronomical cycles. For instance, during an extended period of low sun and wind in
the UK (“10 days of gloom”), solar production fell to just 5.1 kWh, leaving tidal and hydro as still underutilized baseload
potentials. This highlighted the need for tidal inclusion in resilient energy portfolios [14]. Meanwhile, increasing grid
curtailment of wind and solar in 2024 nearly 10% in Britain, 30% in Northern Ireland emphasizes the limitations of
variable renewables and the value of predictable marine energy as a balancing resource [15, 16, 17]. Governmental
policy interventions are pivotal for tidal sector growth: UK’s CfD (Contracts for Difference) provides revenue certainty,
recently, tidal projects won bids at £240/MWh [18]. France's €30 million subsidy for Raz Blanchard project lowered
project LCOE by 22%. Licensing reforms in Canada and South Korea have cut permitting windows substantially,
reducing pre-development costs by millions per project. South Korea’s RPS (2.5% marine energy by 2026) spurred a
37% increase in domestic tidal investments since 2020, with the Incheon Bay (1.4 GW) project starting in 2023 [19].
Unmatched theoretical potential (~13,500 TWh/year combined tidal and marine currents) vs. modest current
deployment (~513 MW installed). Market growth is strong, with CAGRs ~19-20%, yet LCOE remains high, though
promising pathways to reduction exist. Historical mega-projects prove technical feasibility; modern innovations (tidal
kites, floating platforms) are stepping stones to scale. Predictability and seasonal stability offer grid synergy advantages
absentin solar/wind, especially amid curtailment challenges. Effective policy frameworks, subsidies, favorable auctions,
and streamlined regulation, are essential to catalyze further deployment [20].

1.1. Technical Characteristics of Tidal and Ocean Currents

Tidal current energy stems from horizontal flows induced by oscillating tides, driven by gravitational interactions
between the Earth, Moon, and Sun. These flows exhibit a combination of predictable periodicity (semi-diurnal, diurnal)
and site-specific variability caused by coastal morphology, bathymetry, and seasonal climate patterns [21]. Seminal
sinusoidal models can approximate this behavior, yet real-world applications require high-fidelity approaches to
account for nonlinearity, stratification, and turbulence. Numerical hydrodynamic models such as the Finite Volume
Community Ocean Model (FVCOM) are routinely employed for simulating local tidal regimes, capturing spring-neap
amplitude variations (order of 10-15%) and spatial heterogeneity at the 100-200 m scale. For instance, FVCOM analysis
in the Zhoushan Archipelago revealed peak spring-tide power densities of ~3.6 kW/m? in high-shear channels, with
corresponding estimated annual mean energy availability around 2.6 MW from a 12 MW array. These fluctuations
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induce velocity reduction zones downstream up to 8 cm/s with downstream hydrodynamic influences spanning several
square kilometers [22].

1.1.1. Hydrodynamic Power Capture Principles

The extractable power PPP from a tidal turbine follows:
P=(1/2) * p* A% Cp » U3 ---Eq1[23]
Where;

p represents sea water density (~1025 kg/m?),
A is the rotor swept area,

Cp is the turbine power coefficient,

U is the undisturbed flow speed.

Optimal performance typically occurs at Tip-Speed Ratios (TSR) between 2-4. Hydraulic investigations of a hollow
adaptive variable-pitch turbine highlight a peak Cp of 0.368 at TSR %3 under optimized pitching, ~15-20% higher than
symmetric rigid-rotor benchmarks [24]. Adaptive pitching thus remains a promising efficiency-enhancement strategy.
Open-Rotor Turbines also known as Horizontal-axis tidal turbines (HATTSs) closely mirror wind turbines but contend
with significantly higher fluid density and fluctuating wake loading. CFD studies of full-scale ducted HATTs under yaw
angles (up to 45°) reveal that duct presence sustains axial flow velocities under yaw, yielding up to 3.4% rotor power
coefficient improvements, maintaining Cp = 0.35 at TSR = 2.0 [25]. Unsteady RANS CFD validated at SINTEF showed
full-scale HATT model achieving Cp = 0.435 at optimal pitch closely matching towing tank experiments [26]. These
metrics set benchmarks for performance and underlie guidelines for blade design and control algorithms. Ducted
turbine systems or diffusers employ a Venturi effect to accelerate upstream flow, elevating axial velocity into the rotor.
Park, ] et al. (2023) used adjoint-based CFD optimization to design a ducted turbine achieving ~54% efficiency across
conditions, outperforming the 46% of conventional Bahaj rotors [27]. Further, Park, | et al. (2024) showed a 5 kW
optimized ducted turbine reaching 50% efficiency despite practical geometric constraints, compared with a non-ducted
turbine at 45%. Ducted configurations also mitigate yaw sensitivity [28]. Borg, M. G et al. (2022) documented an ability
to maintain aerodynamic performance in yawed scenarios, suggesting reduced need for active yaw control systems that
add mechanical complexity.Wake interactions play a critical role in farm layout design. CFD and flume experiments in
Zhejiang University indicate that in tightly spaced arrays, wake turbulence competes with mean flow, affecting
downstream turbine yields. Preliminary 3D CFD arrays show coherent wake-developing turbulence, necessitating
spacing >5-7 rotor diameters to recover 90% of single-turbine flow [29]. At the channel scale, momentum sink modeling
using depth-averaged 3D or 2D models estimates that turbines cause velocity reductions of ~5-15% over 0.5 km [21].
These results highlight the need for strategic phase-offset deployment in spatially coherent channels to maximize
aggregate yield. Ocean currents are often accompanied by surface waves, leading to complex vertical velocity shears
and oscillations. Experimental tests by Xu, K et al. (2023) and numerical studies carried out by Barltrop, N et al (2006)
indicate that wave current interactions modulate turbine thrust and torque fluctuating loads periodically, increasing
fatigue risk, and reducing power output by 8-12% [30, 31]. Accordingly, horizontal-axis turbines must withstand
transient loads and damper-induced vibrations. Dynamic control regimes pitch control and speed modulation are
critical for fatigue mitigation in wave-driven loading contexts. Floating tidal devices combat multi-degree-of-freedom
motions pitch, surge, heave. CFD modeling of pitched HATTs on floating carriers shows substantial performance
deviations due to body motion in some cases reducing power by 5-10%. Surge-motion experiments he did
demonstrated that surge frequencies matched energy utilization coefficient oscillations, necessitating real-time reactive
control loops to optimize phase and power. Integrated dynamic mooring and semi-submergence design must balance
hydrodynamic losses with installation cost, especially for deep-water offshore configurations. Energy extraction alters
local hydrodynamics, potentially affecting sediment transport, nutrient flows, and ecosystem integrity. Wu, H et al
(2021) indicated that installing a 12 MW array in Zhoushan reduced downstream velocity by 8 cm/s a minor change for
larger ecosystems, though cumulative effects on sediment transport warrant longer-term monitoring [22]. Physical
ecosystem interactions are increasingly included in hydro-environmental networks, with coupled fluid-sediment-
ecological models tracking turbidity, resuspension, and pollutant pathways. These models impose real constraints on
allowable turbine wake models and farm placement to ensure sustainability. Tidal currents offer high-density, periodic
power potential; resource modeling relies on advanced numerical tools like FVCOM. Turbine efficiency depends on
optimal TSR, duct geometry, yaw adaptation, and adaptive pitch; Cp of 0.36-0.54 demonstrated in recent CFD studies.
Wake dynamics and array interaction modeling emphasize minimum spacing and phase-offset to sustain output.
Complex wave current and floating-body interactions introduce dynamic fatigue, requiring real-time control algorithms.
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Environmental hydrodynamic changes are substantial but currently within acceptable ecological tolerances, pending
long-term monitoring.

1.2. Evolution of Forecasting Approaches

Harmonic analysis has long been the backbone of tidal prediction, modeling tidal currents as the summation of
sinusoidal components with known frequencies tied to astronomical cycles [32]. Techniques such as least-squares
harmonic regression and their extensions (e.g., 1D-LSHM) continue to provide a baseline for prediction accuracy.
However, these methods inherently assume linear, stationary behavior and fail to capture the non-stationary, transient
anomalies (e.g., weather-driven surges, micro-turbulence) present in real-world marine environments [33]. Advanced
model-fitting strategies, including spectral decomposition, autoregressive models (AR), and autoregressive integrated
moving average (ARIMA) are sometimes layered onto harmonic frameworks to partially account for variability. Yet,
their efficacy drops significantly under conditions of high noise or nonlinearity, typical of coastal tidal systems [34]. The
limitations of purely statistical approaches have prompted the adoption of machine learning (ML) over the past decade.
Early exploratory models focused on multilayer perceptron (MLP) neural nets and support vector machines (SVM)
trained on historical tidal data to capture nonlinear patterns [35]. These remained largely research-focused with limited
scale. A notable breakthrough came, when Zhang, K et al. (2023) compared MLP, Long-Short-Term Memory (LSTM),
and attention-augmented ResNet models trained on ROMS-generated features in China’s Zhoushan region. All deep
learning models dramatically improved forecasting: correlation coefficients exceeded 0.8, and RMSE decreased by
32.9% (MLP), 34.4% (LSTM), and 42.0% (AR-ANN) over standard numerical models. Pure deep learning models, though
powerful, are constrained by their data-intensive and opaque nature. This has led researchers to explore hybrid
architectures that merge physical insight with ML flexibility [36]. Hierarchical ELM + LSTM: Saatloo, A. M (2021)
proposed a hybrid Hierarchical Extreme Learning Machine (H-ELM) and LSTM structure to model multi-depth current
layers [37]. H-ELM handled high-frequency turbulent components, while LSTM captured longer-term cycles, yielding
superior accuracy over standalone models [38]. Wavelet-enhanced Convolutional Network (WCN): Liu, ]. W et al. (2021)
developed WCN to distinguish intra- and inter-periodicities via time-frequency tensor representations. This model
achieved unprecedented accuracy, cutting MAE and MSE by up to 90.4% and 97.6% respectively in 10-step forecasts
[39]. Swarm-Decomposition + Multi-layer Kernel Meta-ELM: A hybrid using swarm-decomposition to isolate oscillatory
features and a kernel ELM architecture yielded R* = 0.9933 in predicting Gulf of Mexico currents, markedly
outperforming typical LSTM models [40]. Harmonic Residual Analysis (HRA) + Online ELM: Monahan, T et al. (2023)
fused residuals from harmonic predictors with online Extreme Learning Machines for near-real-time forecasting,
achieving positive results in shifting tidal regimes. These hybrid systems demonstrate the efficacy of combining domain
theory and ML, particularly for combatting issues like overfitting and seasonal parameter drift. Many tidal forecasts
today remain deterministic, but marine energy systems benefit from uncertainty quantification to optimize dispatch
and grid integration [41]. Approaches like Gaussian Process Regression (GPR) yield predictive distributions that are
valuable in stochastic planning. Butler, K et al. (2024) coupled GPR with harmonic constituents (1D-LSHM), effectively
modeling non-linear residuals and generating usable uncertainty bounds [42]. Similarly, Paolucci, I et al. (2023)
introduced a non-parametric interval model using Bayesian-optimized ELM to generate prediction intervals, thus
incorporating essential uncertainty metrics. To address the "black-box" nature of ML and the data scarcity in oceanic
settings, Physics-Informed Neural Networks (PINNs) have surged as a potent solution [43]. PINNs embed the governing
partial differential equations (PDEs), such as Navier-Stokes and continuity conditions, into network training as soft
constraints [44]. Applications in marine contexts are now emerging: English Channel Surrogate Modeling: Donnelly, ] et
al. (2023) implemented a PINN surrogate for a 2D Navier-Stokes flood model, embedding mass conservation via
additional loss terms. The model outperformed data-only CNN alternatives by 10-20% [45]. Regional Tidal Modeling:
A 2023 study by He, ] et al. integrated PINNs into regional flood and tidal models, accurately reconstructing spatio-
temporal wave and tidal fields from sparse observations, significantly reducing run-time [46]. Coastal Wave Prediction:
PINNs have been successfully used to infer wave dynamics from surface elevation alone, with strong accuracy in
irregular, nonlinear flows [47]. General PINN Reviews: Zhao, C et al. (2024) provide a comprehensive review, noting
that PINNs accelerate simulation speeds and improve generalization in turbulent, multiphase flows and environmental
forecasts. Despite potential, PINNs face practical challenges training inefficiencies, gradient pathologies, and scalability
issues. Advances like domain decomposition (XPINNs) and weight adaptive optimization are being explored to
overcome these [48]. Going further, spatio-temporal physics-coupled neural networks (ST-PCNNs) embed domain-
specific physical operators trained in tandem with data-driven neural architectures. Evaluated on ocean current
datasets, ST-PCNNs outperformed baseline PINNs and purely data-driven models, particularly in long-horizon
forecasting, demonstrating potential in complex tidal environments [49]. Recently, Temporal Convolutional Networks
(TCNs) have gained traction for their ability to model long-range temporal dependencies. Hybrid TCN + LSTM models
optimized via CMA-ES achieved strong performance in tidal level forecasts, while Physics-informed TCN-AR models for
wave height data are in development and show promise for transferability to tidal flow forecasting [50]. These
architectures underscore the increasing sophistication of temporal forecasting techniques in marine domains. The

156



World Journal of Advanced Engineering Technology and Sciences, 2025, 16(03), 153-175

evolution of tidal current forecasting over the past five years shows a clear trajectory: From harmonic/statistical
frameworks to advanced ML-based models. Deep learning (MLP, LSTM, CNN, ResNet) induced leap-forward
performance. Hybrid models (e.g., Wavelet + ML, HRA + ELM) successfully combine physics and data to offset each
other's weaknesses. Probabilistic modeling with GPR and Bayesian frameworks adds operational value. PINNs embed
physics to improve generalization under limited data. ST-PCNNs and physics-coupled models incorporate domain
operators. Temporal convolutional architectures broaden predictive horizons [51]. This sets the stage for Section 1.4,
where we will analyze how these forecasting advances directly enhance operational efficiency, control strategies, and
energy optimization within tidal and ocean current power systems.

1.3. Objectives and Scope of the Review

The overarching aim of this review is to present a comprehensive synthesis of how smart predictive models spanning
machine learning (ML), deep learning (DL), physics-informed neural networks (PINNs), and hybrid Al-physics
frameworks can enhance operational efficiency, energy output optimization, and system resilience in ocean and tidal
current power generation systems. The review intends to: Survey state-of-the-art predictive modeling techniques
applied to forecasting resource availability, operational faults, and energy yield within tidal and ocean energy contexts.
Analyze integration strategies of smart predictive systems with real-time sensors (including Subsea IoT architectures),
control loops, and maintenance regimes to improve efficiency and reduce downtime. Evaluate performance metrics
such as MAE, RMSE, MAPE, R?, prediction intervals, and uncertainty quantification to benchmark model accuracy and
reliability. Assess environmental, economic, and operational implications, including LCOE reduction, predictive
maintenance gains, grid integration benefits, and environmental sustainability. [dentify technological gaps, challenges,
and future directions, including data quality and availability, model interpretability, integration challenges in marine
environments, and regulatory and ethical considerations. By delineating both successes and ongoing limitations of
smart predictive systems in marine energy, this review seeks to chart a cohesive roadmap for advancing operational
performance in tidal and ocean current power generation.

2. Literature Review

2.1. Classical statistical and harmonic baselines

Harmonic analysis remains the canonical baseline for tidal constituents and first-order current prediction because it
encodes astronomical forcing with interpretable amplitudes and phases and admits rigorous uncertainty analysis under
linear superposition. However, its performance degrades when (i) short records limit robust constituent fitting, (ii) non-
astronomical drivers (wind surge, riverine discharge, mesoscale features) modulate the spectrum, and (iii) strong
wave-current interaction injects nonstationary variance into higher frequencies that harmonic terms do not capture.
Recent experimental work shows that even when mean loads or mean power appear unchanged by opposing waves,
load and torque fluctuations can increase dramatically and linearly with wave amplitude implying that deterministic
harmonic baselines underestimate fatigue-relevant extremes, a central concern for turbine design and O&M planning
[52]. In response, modern “baseline-plus-residual” strategies fuse a physical harmonic core with a stochastic residual
model (e.g., Gaussian processes, state-space ARIMA, kernel regressors), Although implementations vary, the common
thread is to preserve interpretability and extrapolability of tidal constituents, while gaining short-horizon accuracy and
calibrated confidence intervals for operations (e.g., maintenance windows, yaw/pitch planning). This philosophy is
echoed in recent tidal-resource and turbine-load studies that explicitly separate mean currents from turbulence and
wave-band fluctuations in order to estimate fatigue damage and extreme event exceedance [53].

2.2. Hybrid physics-ML surrogates

Hybridization couples hydrodynamic solvers (ROMS, Delft3D, TELEMAC, SHYFEM) with machine learning in two
principal ways: (i) physics-guided surrogates that learn closures or corrector maps for bias and subgrid physics, and
(ii) reduced-order emulators that replace expensive components of the PDE solver to enable high-frequency updates or
probabilistic ensembles. A representative example integrates ROMS outputs with deep networks to improve tidal
current predictions; in the Zhoushan region, coupling numerical fields with MLP/LSTM/attention-ResNet models raised
correlation from ~0.4 (ROMs alone) to >0.8, with ~33-42% RMSE reduction across current components performance
gains directly relevant to resource assessment and turbine siting [54]. At farm scale, embedding turbine momentum
sinks into shallow-water models can capture array-flow feedback and wake recovery while remaining computationally
tractable. A blade-element-momentum (BEM) representation within the 3-D shallow-water SHYFEM framework
parameterizes turbines as momentum sinks in the horizontal momentum equations, enabling layout-level studies that
co-evolve device performance and coastal circulation. Such physics-aware contexts are natural launchpads for learning-
based surrogates: e.g., training neural correctors on discrepancies between BEM-coupled shallow-water outputs and
ADCP measurements to de-bias arrays under real wave-current climates [55]. Hybrid decompositions also improve
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pure time-series forecasting. Variational mode decomposition (VMD) isolates narrow-band components that map more
linearly to dynamics; stacking VMD with LSTM (VMD-LSTM) has produced materially lower tide-level errors than
vanilla LSTM/SVM/BP networks, useful where high-order harmonics, meteorological surges, and bathymetric
idiosyncrasies co-mix [56]. Modern architectures target multi-periodicity, noise robustness, and spatiotemporal
generalization. Wavelet-enhanced convolutional networks (WCN) explicitly encode multi-scale periodicity by
projecting the 1-D series into a structured 2-D form and applying CNN kernels alongside time-frequency analysis; this
yields competitive accuracy on tidal current speed forecasting where canonical LSTMs under-resolve cross-scale
structure [57]. Attention mechanisms further help in regimes where exogenous forcings intermittently dominate. In
coastal prediction tasks, attention-augmented LSTMs and Transformer variants allocate capacity to transient drivers
and harmonics beyond the tidal band, improving event-onset timing and extreme tracking (e.g., attention-ResNet for
currents; [58]. Deep models have also been trained to forecast internal tide signatures traditionally viewed as
“unpredictable” by exploiting persistent spatiotemporal patterns in mooring and satellite records [59]. For extreme
water levels (EWLs), LSTMs trained across distributed gauges can extrapolate the evolution of EWLs beyond the
training stations, highlighting the value of multi-site context for spatial generalization [60]. A practical takeaway for
tidal energy is that mean performance may track with background tides, but fatigue and ultimate loads are controlled
by higher-frequency content and cross-driver coupling; architectures that directly ingest wave spectra, wind stress
proxies, and spatial context (reanalysis, altimetry, nearby ADCPs) outperform univariate models when forecasting
turbine-relevant kinematics [61].

2.3. Probabilistic forecasting and uncertainty quantification

Operations and maintenance (O&M) decisions hinge on calibrated predictive uncertainty: crew transfers, yaw/pitch
scheduling, and curtailment thresholds all require not just point forecasts but intervals with reliable coverage. Gaussian
process regression (GPR) remains attractive for short-horizon coastal prediction because it delivers coherent posterior
variances under kernel choices that reflect tidal bands and meteorological noise. In decomposition hybrids, a harmonic
or VMD core sets the mean structure and a GP models residuals, improving sharpness while maintaining coverage.
Beyond GPR, distributional deep learners (e.g., quantile regression LSTMs/Transformers) and conformal prediction
have become standard to wrap frequentist coverage guarantees around arbitrary forecasters. Conformal methods, now
widely applied in time-series energy forecasting, offer finite-sample, model-agnostic intervals and are particularly
compelling for deployment because they do not require probabilistic training pipelines and adapt online to local error
distributions [62]. For coastal extremes and sea-level evolution, multi-site deep learners that output quantiles or
ensembles better capture spatially correlated risk across gauges [63]. Critically, coverage under distribution shift
(storm regimes, seasonal bathymetric change, biofouling-induced sensor drift) requires adaptive calibration. Recent
domain generalization and unsupervised domain adaptation for time series suggest splitting representations into
transferable temporal and domain-specific frequency features; adversarial co-learning improves transfer while
preserving discriminability. These ideas translate directly to marine contexts when redeploying models across sites or
seasons while retaining calibrated intervals via conformal updates [64].

2.4. Digital twins, condition monitoring, and predictive maintenance (PdM)

Digital twins (DTs) integrate hydrodynamics, structural dynamics, control, and health data into continuously updated
surrogates for what-if analysis, anomaly detection, and remaining useful life (RUL) forecasting. Recent DT reviews for
renewable energy outline architectures that fuse physics models with learning-based observers and adaptive parameter
estimation for online prognosis and control [65]. For marine energy specifically, condition monitoring draws on
accelerometers, acoustic emission, strain gauges (including FBG), temperatures, and SCADA; systematic reviews of
vibration-based CM in rotating machinery and general heavy equipment map sensor suites and signal features to fault
classes and deployment constraints informative for sub-sea turbines where ingress, corrosion, and biofouling
complicate access [66]. Emerging work highlights FBG-based blade monitoring for continuous structural health state
estimation in tidal rotor blades [67]. Explainable AI (XAI) is increasingly required for PdM in safety-critical assets.
Recent surveys emphasize SHAP/LRP/Grad-CAM for diagnosing which spectral bands, harmonics, or operating regions
drive fault decisions, facilitating trust with operators and enabling alarm rationalization [68]. Tidal-specific programs
are starting to apply XAl for blade-damage and rotor health detection to support real-time decision-making in harsh
subsea environments [69].

2.5. Control-aware forecasting and optimization

Forecasts accrue value when wired into control: pitch/yaw/MPPT, supervisory curtailment, and active load
management. Model predictive control (MPC) and robust sliding-mode variants have been adapted for tidal turbines
under uncertain inflow; fault-tolerant controllers (e.g., adaptive non-singular fast terminal sliding mode with robust
compensation) simultaneously track MPPT while rejecting faults/perturbations an appealing substrate for forecast-in-
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the-loop optimization [70]. In practice, short-horizon probabilistic inflow forecasts can parameterize constraint-
tightening in MPC or set risk-aware reserve/pitch profiles to trade energy capture for fatigue life. Wave-current co-
loading is pivotal: recent experiments show that irregular opposing waves raise the standard deviation of rotor torque
and loads by factors up to ~1.5-2x relative to no-wave conditions, while extremes grow by 60-100% even when mean
power barely shifts. Control laws that are oblivious to this variance amplification leave fatigue on the table; coupling
forecasts of wave spectra (or significant steepness) with MPPT/pitch limits can measurably reduce damage
accumulation at small energy cost [71].

2.6. Data assimilation and hybrid nowcasting

For situational awareness, operators need nowcasts that reconcile models and sensors. Ensemble Kalman filters (EnKF)
and 4D-Var remain workhorses in coastal hydrodynamics; recent work in water-network and coastal settings shows
that assimilating stage sensors, ADCPs, and ancillary drivers can materially reduce nearshore water-level errors, exactly
the regime controlling access windows and fatigue events [72]. Machine-learning correctors can be attached to DA
systems to post-process residual patterns (e.g., tide-gauge biases, persistent meteorological drifts) while DA maintains
dynamical consistency. Hybrid ML-DA frameworks are particularly effective in estuarine zones where bathymetry and
river discharge perturb canonical tidal propagation [73]. An important operational nuance is latency and comms. Subsea
acoustic telemetry supports only kilobit-scale links; hence on-edge compression and on-device filtering of raw
streams are essential before assimilation. Industry guidance from subsea network providers documents practical
acoustic/optical tradeoffs (9 kbps acoustics vs. up to ~100 Mb/s short-range optical) that directly shape DA update
frequency and payload design for offshore assets [74].

2.7. Datasets, benchmarks, and open test sites

Progress depends on public datasets with well-documented sensors and metadata. EMEC’s Fall of Warness test site and
the broader Tethys Engineering (PNNL) portal host open ADCP and site-characterization data streams that underpin
benchmarking of forecast and load models (PNNL/Tethys, n.d.). Such datasets enable cross-site evaluations training on
one energetic channel (e.g., Scotland) and testing on another with different bathymetry and wave climates to quantify
true generalization and guide domain adaptation choices [75]. On the literature side, the JMSE special issue on Tidal &
Wave Energy aggregates multiple methodological baselines, including deep learning for tidal currents (Zhoushan) and
BEM-coupled shallow-water turbine modeling useful anchors for reproducing results and standardizing metrics [76].
The community would benefit from consolidated leaderboards that score mean error, extremal metrics (P95/P99),
calibration (CRPS/coverage), and control impact (energy-fatigue Pareto) under common splits (chronological, cross-
site).

2.8. Edge deployment, SIoT communications, and TinyML

Marine environments impose severe constraints: limited power budgets, intermittent links, and high latency under
water. The Subsea/Underwater Internet of Things (SIoT/IoUT) literature surveys acoustic channel limits, routing, and
reliability, emphasizing that bandwidth-constrained, delay-tolerant operation is the norm rather than the exception
[77]. Industry white papers quantify practical rates (~9 kbps acoustics; up to ~100 Mb/s optical at short ranges) and
recommend on-node processing with only salient summaries transmitted to the surface an architecture perfectly
aligned with predictive maintenance and event-triggered forecasting [78]. These constraints catalyze TinyML adoption.
Multiple 2024-2025 surveys demonstrate that on-device inference (quantization, pruning, NAS for MCUs) can deliver
real-time anomaly detection and spectral feature extraction within milliwatt envelopes, reducing backhaul while
improving resilience. Case studies show vibration-fault TinyML detectors on low-power hardware achieving high
accuracy, and robotics applications demonstrate feasibility in field-constrained settings the same design space as
nacelle-embedded or nacelle-adjacent turbine monitors [79]. For tidal blades and drivetrains, a pragmatic stack is: on-
sensor DSP features (e.g., band energies around blade-passing and harmonics) — tiny classifier (or one-class detector)
— event-triggered upload — cloud/DT retraining [80].

2.8.1. Supplemental Technical Enhancements

Key Equations & Algorithmic Elements
(a) Hybrid Residual Learning (e.g., 1D-LSHM + GPR)

Predicted value:

P=1/2)«p A xCp x U"3....Eqn2[81].
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Where:
yharmonic(t)— the harmonic baseline (e.g., sinusoidal trend capturing periodicity).
€”(t) — the GPR-predicted residual, accounting for variations not explained by the baseline.
GPR residual model:

y(®) = y_harmonic(t) + €"(t) ... Eqn 3 [82]
where the residual term £”(t)\hat{\varepsilon}(t)e”(t) is modeled as a Gaussian Process:

eMN(t) ~ GP(0,k(t, t) + 672 8(t t))
with covariance kernel:
k(t,t) = exp(—(t — th)"2/(2£"2))

Parameters:
£\ell# — length-scale parameter, controls how fast correlations decay in time.
o2\sigma”202 — noise variance, accounts for observational noise.
S(t,t)\delta(t,t)8(t,t") — Kronecker delta (ensures noise is only added to the diagonal of covariance).
Predictive variance:

Var[e*(t ) | data] = k(t*t*) — k_ *"T (K + "2 D"*{—-1}k_* ... Eqn 4 [83]
(b) Conformal Prediction for Time Series

Given a point-forecast model and a sequence of historical errors {ei}\{e_i\}{ei}, a level-(1-a)(1 - \alpha)(1-a)
conformal prediction interval for new forecast y*n+1 is:

[y"n+1-ql-a(leil), y*n+1+ql-a(leil)] ...... Eqn 5 [84]
where

Vn+1y = predicted value at step n+1

dci-o(]ei]) = the (1-a)-quantile of the absolute residuals
(c) Loss for PINNs;

L=(1/N_0)*sum_(i=1)"(N_0) || u(x_i, t_i) - w.i [[*2 + Af* (1 / N_f) * sum_(j=1)A(N_f) || N[u*(xj, t ) 1]]*2  (Eqn
6 [85])

where:

u”(xi,ti)— predicted solution at input (xi,ti)

ui — observed/measured data

N[:]— PDE operator (e.g., Navier-Stokes equations, shallow-water momentum equation, diffusion equation, etc.)

No — number of observation (data) points
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Nf — number of collocation points (where PDE residual is enforced)

AMf — weighting factor that balances data fidelity and physical consistency
Large Af — more emphasis on PDE satisfaction

Small Af - more emphasis on fitting observed data

Table 1 Comparison of Statistical, Machine Learning, and Hybrid Approaches for Tidal Forecasting and Monitoring [86].

Method & | Input Data Horizon Predictive Strengths Computational Cost [/
Approach Deployment Maturity
Harmonic + | Historical tidal | Short- Transparent; good baseline; fails | Low compute; high maturity
ARIMA/Stat datasets medium in nonstationary regimes
Models
1D-LSHM + GPR | Tidal data + | Short- Adds uncertainty quantification; | Moderate compute;
(Hybrid) harmonics medium handles residuals prototype maturity
VMD-LSTM Decomposed Short- Better handling of mixed | Medium compute; early
(Hybrid) IMFs from tide | medium frequencies; robust forecasts adoption
data
WCN (Wavelet | Time- Short Captures multi-periodicity; | High compute; pre-
CNN) frequency accurate multi-step forecasts deployment
tensors of time
series
Attention- Tidal + | Short- Adapts to dynamic drivers; strong | High compute; experimental
ResNet / | exogenous medium generalization
Transformer features
PINNs (Physics- | Sparse sensors | Medium Physically coherent; generalizes | High compute; emerging
Informed) + PDE under sparse data implementation
constraints
Digital Twin + | Sensor/SCADA | Real-time | Supports control, diagnostics, | Very high compute; early
MPC Integration | streams + optimization stages in marine energy
hydrodynamics
GPR / Quantile | Residual errors | Short- Provides calibrated uncertainty | Moderate compute; growing
DL + Conformal | + model | medium intervals use in forecasting tools
forecasts
TinyML (Edge | Sensor Real-time | Enables real-time anomaly | Low compute; nascent
PdM) summaries on- detection; efficient for edge deployment
node

3. Results and discussion

3.1. Advanced Applications: Smart Predictive Systems for Real-Time Control, Maintenance, and Grid
Integration

or personal relationships that could have appeared to influence the work reported in this paper. Modern tidal and ocean
current systems rely on smart predictive models to optimize power capture, reduce mechanical stress, and extend
device lifespan. At the heart of these systems is a Model Predictive Control (MPC) framework that incorporates short-
term forecasts of tidal current speed U(t) and infers optimal control actions, such as pitch angle 6\theta® or torque
setpoints. The MPC cost function can be formally written as:

J=Yk=0N[o(Pmax(Uk)-Ppred(6k,Uk))2+B1A6KkI2]] = \sum_{k=0}"{N} \left[ \alpha (P_{\text{max}}(U_{k}) -
P_{\text{pred}}(\theta_{k}, U_{k}))"*2 + \beta \left|\Delta \theta_{k}\right|*2 \right]J=k=0YN[a(Pmax(Uk)-Ppred(6k
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,UK))2+B1ABKI2] ... Egqn 7 [87] where PmaxP_{\text{max}}Pmax is the theoretical maximum power,
PpredP_{\text{pred}}Ppred comes from a data-driven predictive model (e.g., GPR or an ensemble surrogate such as
RegStack), and a,B\alpha, \betaq,3 are tuning weights that balance energy capture vs. control activity. This approach
enables real-time adjustment of device parameters, improving energy yield and mitigating structural fatigue
particularly relevant in wave-current interaction scenarios where high-frequency load fluctuations can amplify rotor
stress [88]. Furthermore, for floating tidal systems (e.g., tethered undersea kites or buoyed designs like Evopod),
diagnostic digital twins mirror real operations and detect anomalies [89]. These digital twins fuse asynchronous real-
time streams (rotor RPM, strain, pitch/yaw angles) with a hybrid model of hydrodynamics and device mechanics,
enabling early detection of failures up to hours before occurrence.

3.2. Predictive Maintenance (PdM) and Structural Health Monitoring (SHM)

In the harsh marine environment, predictive maintenance is crucial, minimizing unscheduled downtime and costly
repairs. Deep learning architectures, particularly CNNs and RNNs, paired with 10T sensor networks (vibration,
temperature, acoustic emissions), provide robust frameworks for early anomaly detection [90]. A general PdM
workflow involves Edge Feature Extraction: On-device DSP transforms raw sensor inputs into domain-relevant features
(e.g., blow counts around blade-pass frequency). TinyML Classifier: A lightweight anomaly detector (e.g., decision tree
or one-class CNN) flags deviations in real-time. Trigger and Upload: Only anomalous batches are transmitted,
conserving bandwidth in subsea systems constrained by acoustic telemetry (~9 kbps) [91]. Cloud or Digital Twin
Retraining: Anomaly records feed into digital twin backends for model re-training or RUL updates. Explainable Al (XAI)
techniques like SHAP or saliency mapping help operators understand which features (harmonic distortion, sudden
vibration spikes) triggered alerts critical for trust and operational adoption.

3.3. Grid Integration and Forecast-Based Dispatch

Reliable integration of tidal and ocean current energy into the grid relies on accurate short-term power forecasts. Recent
hybrid models significantly improve accuracy: A Wavelet-Enhanced Convolutional Network (WCN) reduces MAE and
MSE by up to 90% and 97% respectively over benchmarks in 10-step forecasting [92]. A Swarm-Decomposition + Meta-
Kernel ELM model achieves R2=0.9933R"2 = 0.9933R2=0.9933 in Gulf of Mexico tidal-to-power prediction [93]. A
hybrid ANFIS-Kalman filter-Wavelet NN (WNN) model shows superior performance in current and power forecasting
[94]. These forecasts inform dispatch strategies, enabling tidal farms to bid into electricity markets or coordinate with
energy storage systems dynamically. Conformal prediction layers provide reliable uncertainty bounds for these
forecasts:

[y.(n+1) + g —a)(edi])] - Eqn 8 [95]

where;

- y*n+1 = point forecast

- ql-a(leil) = (1 - a)-quantile of past absolute residuals

- Interval = symmetric prediction band around the forecast

Thereby allowing operators to assess scheduling risk under nonstationary tidal regimes

3.4. Data Assimilation, Digital Twins, and Edge-loT Integration

For real-time operational decision-making, data assimilation (DA) techniques fuse sensor observations with numerical
models. An extended DA architecture involves: Ensemble Kalman filter (EnKF) merging ADCP or tidal gauge data into
ROMS/FVCOM forecasts, reducing nearshore level errors [96]. An ML corrector (e.g., GPR or residual DNN) corrects
model outputs for systematic biases. A digital twin backend integrates DA-corrected flow states with turbine asset
digital models, enabling optimization loop with MPC, anomaly detection, and maintenance planning in near real-time.
The SloT layer ensures low-bandwidth condition-based signaling to the twin when anomalies arise [97].

3.5. Market Trends & Economic Impact

According to [98], the global Al-enabled tidal energy market was USD 8.9 billion in 2023 and is forecasted to reach USD
18.5 billion by 2030, growing at CAGR ~11%. Al integration is projected to: Increase turbine performance by ~15%,
Reduce lifetime operation costs by ~17-20%, Cut O&M expenses by up to ~30% through predictive maintenance.
Market adoption is driven by: Need for reliable dispatchable renewables, Falling costs of Al hardware and IoT
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infrastructure, Better financial ROI from improved efficiency and reduced downtime. Control Optimization: MPC
informed by predictive models enhances energy capture and lifetime. PAM: Deep learning combined with compact IoT
and XAl enables efficient anomaly detection. Forecasting & Dispatch: Hybrid ML models with uncertainty quantification
support grid integration. DA & Digital Twins: Real-time assimilation of sensor data into operational twins enables
optimization. Economic Outlook: Al-driven tidal energy systems are catalyzing market growth with performance and
cost benefits.

3.6. Application of Smart Predictive Models in Different Marine Environments

The application of smart predictive models in ocean and tidal current power generation varies significantly across
different marine environments due to the diversity in hydrodynamic conditions, seabed morphology, ecological
sensitivity, and infrastructure availability. These models, often built upon artificial intelligence (Al), machine learning
(ML), and advanced data analytics, allow for precise adaptation to the unique operational challenges of each site. By
tailoring predictive algorithms to local conditions, operators can optimize turbine placement, improve energy capture
efficiency, and reduce maintenance costs while ensuring environmental compliance. This section examines their
application in coastal waters, deep-sea environments, estuarine systems, and island-based microgrids, highlighting the
specific benefits and constraints in each context.

3.6.1. Coastal Waters

Coastal waters offer relatively accessible sites for ocean and tidal current energy projects due to proximity to shore,
existing port facilities, and shorter transmission distances; however, they also feature fluctuating tidal amplitudes,
sediment transport, and strong seasonal wave variability. Smart predictive models in these regions increasingly fuse
high-resolution hydrodynamic models with real-time observations to forecast power and loads, using machine-learning
surrogates to accelerate physics (e.g., Fourier neural operators) and formal data-assimilation schemes to correct states
and reduce forecast error [99, 100, 101]. For tidal arrays, active array-level control has been shown via detailed
simulations to balance power capture against fatigue loading by allocating turbine set-points based on the local inflow,
thereby improving load sharing and mitigating wake-induced stress [102]. At the dispatch level, optimization studies
show that exploiting predictable tidal phases and analytically scheduling generation can smooth output and support
coastal grid integration, with regional phase-diversity analyses outlining both the opportunities and practical limits
[103, 104].

3.6.2. Deep-Sea Environments

Deep-sea deployments typically target strong and consistent current flows such as those in the Gulf Stream or Kuroshio
Current, offering high-capacity factors for energy generation. However, the extreme depth, high pressures, and
challenging maintenance conditions necessitate robust predictive tools for operational planning. Smart predictive
models in deep-sea contexts integrate remote sensing, computational fluid dynamics (CFD), and autonomous
underwater vehicle (AUV) surveys to forecast long-term current variability [105]. Predictive maintenance algorithms
also play a critical role, as physical intervention is costly and infrequent. An example is the application of deep learning-
based anomaly detection systems in Japan’s Kuroshio Current Pilot Project, which can detect early signs of gearbox wear
in subsea turbines weeks before mechanical failure, reducing unplanned downtime by over 30% [106]. Moreover, these
models enable scenario simulations for extreme weather events, helping design storm-resilient mooring systems and
reducing structural fatigue.

3.6.3. Estuarine Systems

Estuaries provide high tidal ranges and predictable flow patterns, making them attractive for tidal barrage and tidal
stream installations. Yet, these environments are ecologically sensitive, often supporting critical habitats and fisheries.
Smart predictive models in estuarine projects focus heavily on balancing energy extraction with ecosystem protection.
Hybrid modelling approaches combine hydrodynamic forecasts with ecological impact simulations to predict how
changes in flow velocity might affect sediment transport, water quality, and species distribution [107]. The Swansea
Bay Tidal Lagoon in Wales, for instance, has employed Al-driven sediment transport models that help schedule turbine
operations to avoid peak fish migration periods and minimize silt resuspension [108]. This integration of environmental
and operational data supports both regulatory compliance and public acceptance.

3.6.4. Island-Based Microgrids

For island communities, tidal and ocean current power can offer a sustainable alternative to expensive and polluting
diesel generation. The limited scale of such projects requires predictive models that can optimize performance under
variable demand and seasonal oceanographic shifts. Here, smart predictive models often integrate renewable
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generation forecasting with microgrid management systems to ensure stable supply. Machine learning algorithms can
predict daily tidal generation profiles and dynamically schedule battery charging to minimize curtailment and blackouts
[109]. A notable example is the Orkney Islands project in Scotland, where predictive models forecast tidal energy
availability alongside wind and solar outputs, enabling a hybrid renewable system that has cut diesel dependency by
over 60% [110]. In addition, fault detection models have been deployed to ensure rapid isolation of malfunctioning
turbines, preventing cascading failures in isolated grids. Smart predictive models enhance the viability of ocean and
tidal current power projects across diverse marine environments by tailoring operational strategies to local conditions.
Whether in coastal waters, deep-sea deployments, estuarine ecosystems, or island microgrids, these models enable
higher efficiency, lower costs, and more sustainable integration of marine renewables into energy systems.
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Figure 1 Conceptual diagram of recent advances in ocean wave energy harvesting [111]

3.7. Comparative Analysis of Smart Predictive Models for Energy Efficiency in Ocean and Tidal Current Power
Generation

Smart predictive models have emerged as transformative tools in optimizing energy efficiency within ocean and tidal
current power generation systems. This comparative analysis examines their effectiveness relative to traditional

predictive and control approaches, focusing on their accuracy, adaptability, computational cost, and scalability in real-
world deployment.

3.7.1. Effectiveness and Efficiency

Traditional methods for predicting ocean and tidal current outputs often rely on empirical correlations, deterministic
hydrodynamic models, or simplified linear forecasting techniques. Although these models are interpretable, they
struggle with the highly non-linear and dynamic behavior of tidal flows influenced by seasonal variability, turbulence,
and climate-driven changes [112]. Smart predictive models, particularly those built on machine learning (ML) and deep
learning (DL) architectures, have demonstrated superior forecasting performance for both short- and long-term energy
yield. For instance, hybrid approaches that integrate Long Short-Term Memory (LSTM) networks with physics-
informed constraints achieve up to a 35% reduction in Mean Absolute Percentage Error (MAPE) compared to
conventional hydrodynamic simulations [113]. Furthermore, predictive control algorithms utilizing real-time sensor

data can dynamically optimize turbine blade pitch and yaw, improving net energy capture by as much as 18% without
significantly increasing mechanical stress [114].

3.7.2. Economic Considerations

Economically, the adoption of smart predictive models offers considerable potential to reduce operational and
maintenance (0&M) costs. ML-powered condition-based maintenance strategies can minimize unnecessary inspections
while preventing catastrophic equipment failures, saving medium-sized tidal farms an estimated $0.5-1.2 million
annually [115]. However, high upfront investment in sensing infrastructure and computational platforms remains a
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major barrier, particularly in resource-constrained regions. The balance between capital expenditure (CAPEX) and long-
term cost savings is strongly site-specific: projects in regions with highly variable tidal resources derive greater
economic benefit from predictive optimization, whereas those in stable flow regimes may experience reduced returns
on investment.

3.7.3. Environmental Impact

A significant comparative advantage of smart predictive systems lies in their potential to minimize ecological
disturbances. By accurately forecasting peak flow periods and adjusting turbine operations dynamically, these systems
can reduce collision risks for marine organisms and limit hydrodynamic disruptions that affect sediment transport and
fish migration [116]. In contrast, conventional control systems often operate at fixed settings, inadvertently heightening
environmental impacts. Moreover, Al-driven eco-optimization algorithms can balance energy harvesting objectives
with biodiversity conservation, thereby supporting both SDG 7 (Affordable and Clean Energy) and SDG 14 (Life Below
Water).

3.7.4. Scalability and Integration

Scalability presents a mixed outcome when comparing Al-based systems with traditional approaches. On the one hand,
smart predictive models excel in handling multi-turbine arrays and integrating heterogeneous data streams such as
satellite altimetry, sonar mapping, and meteorological forecasts. On the other hand, their effectiveness depends heavily
on continuous data availability and robust computational resources [117]. While interoperability with Supervisory
Control and Data Acquisition (SCADA) platforms is steadily improving, the lack of standardization across turbine
manufacturers and project operators remains a critical challenge to large-scale adoption.

3.7.5. Synthesis of Comparative Findings

Table 2 Comparative strengths and weaknesses of smart predictive models versus traditional approaches in the context
of ocean and tidal current power generation.

Criteria Traditional Models | Smart Predictive Models

Forecast Accuracy Moderate High (up to 35% MAPE reduction)
Adaptability Low High (real-time adaptation)

0&M Cost Reduction Limited Significant (up to $1.2M/year)
Environmental Impact | Often neglected Actively minimized

CAPEX Requirements | Low to Moderate High initial investment

Scalability Moderate High with data and infrastructure availability

While traditional models retain some advantages in simplicity, low capital requirements, and ease of interpretation,
smart predictive models offer transformative improvements in accuracy, adaptability, and sustainability. Future
advancements in low-cost sensor networks, edge computing, and standardized data exchange protocols are likely to
reduce the current adoption barriers, paving the way for their widespread application in ocean and tidal current energy
systems.
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Table 3 Comparism of Relevant Literatures.

Paper Title Paper Objectives Methods Used Results Practical
Reference Implications
Featuring Wave and | [118] Incorporate Al and | Al, ML | Enhanced wave | Supports
Tidal Energy ML in wave energy | techniques energy sustainable
Conversion With Al conversion; conversion urban living;
and ML support clean efficiency improves energy
energy in cities systems
Abundance Ocean | [119] Explore Al and IoT | Al IoT solutions | Improved Supports clean
Wave Energy to in wave energy efficiency and | energy in smart
Electricity With Al conversion sustainability cities
and IoT
Integrated DL | [120] Predict power from | LSTM + PCA, | Outperformed Improved
Model for wave energy | SVM, RT, GPR,ET | LSTM alone; | electricity
Predicting Power converters reduced management,
from WEC operational costs | reduced
uncertainty
Al Nonlinear Auto- | [121] Model/design sea | NARX-NN, two- | Efficient tracking | Enables ships to
Regressive NN wave generator layer NN of generator | be powered by
Modeling of Sea output with low | sea wave
Wave Generator error generators
Al-powered Digital | [122] Real-time wave | LSTM, deep | R*> > 0.9, 50% | Improves WEC
Twin of the Ocean height prediction ensemble, better availability,
calibration uncertainty stability
quality
Swarm [123] Forecast tidal | Swarm MSE reduced 5x, | Optimizes power
Intelligence-based current-to-power Decomposition, | R*=0.9933 management,
Multi-Layer Kernel Meta ELM grid stability
Meta ELM for Tidal
Power Prediction
Multi-Layer [124] Improve tidal | ANN, MPPT, | Smoothed power | Better
Artificial Neural power quality pitch control output in swell integration of
Networks Based tidal power
MPPT-Pitch Angle
Control of a Tidal
Stream Generator
Machine Learning | [125] Examine ML | DL, ensemble, | Hybrid models | Enhanced
Applications in methods for wave | hybrid models improved forecasting  for
Wave Energy energy accuracy grid integration
Forecasting.
Al in Renewable | [126] Estimate  energy | Al, ANN Accurate Improves
Energy and potential, optimize estimation and | renewable
Efficiency ops optimization energy
performance
Novel Wave Height | [127] Evaluate SMB, EANN, | EANN best for | Optimizes
& Energy Spectrum forecasting models | WANN hourly, offshore energy,
Forecasting WANN/SMB for | shipping

daily
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3.8. Challenges and Limitations

The integration of smart predictive models for enhancing energy efficiency in ocean and tidal current power generation
offers promising opportunities; however, it is not without its challenges and limitations. These barriers span technical,
environmental, economic, and regulatory dimensions, often requiring holistic approaches to overcome.

3.8.1. Technical Challenges

One of the most significant technical hurdles is the high variability and unpredictability of ocean and tidal currents.
While machine learning (ML) and artificial intelligence (AI) models are designed to handle complex data patterns, their
predictive accuracy is contingent on the quality, resolution, and availability of historical and real-time data. In many
regions, comprehensive datasets on oceanographic conditions are sparse, outdated, or inconsistent, leading to model
overfitting or underperformance when applied to real-world conditions [128]. Additionally, deploying sensors and
monitoring systems in harsh marine environments subjects hardware to corrosion, biofouling, and extreme mechanical
stress. This affects data continuity, which is crucial for training and updating predictive algorithms. Furthermore,
computational requirements for advanced models such as deep neural networks can be prohibitive in offshore
operations, necessitating edge-computing solutions or hybrid cloud architectures that can withstand latency and
connectivity issues [129].

3.8.2. Environmental and Ecological Concerns

While predictive models can optimize turbine performance, the algorithms themselves do not eliminate environmental
risks. Ocean and tidal energy devices can disrupt marine habitats, migratory patterns, and sediment transport.
Predictive control strategies may inadvertently increase operational loads on equipment during sensitive periods,
unless explicitly trained with ecological impact constraints. Integrating biodiversity-aware Al models remains an
underexplored area that could ensure efficiency improvements do not come at the expense of ecosystem stability [130].

3.8.3. Economic and Infrastructural Barriers

The cost of implementing Al-driven predictive systems remains high, particularly for small-scale or pilot ocean energy
projects in developing economies. Expenses include high-precision sensors, subsea communication systems,
computational infrastructure, and skilled personnel for data science and marine engineering. Without long-term
financing mechanisms or policy incentives, commercial-scale adoption may be restricted to well-funded projects in
developed nations. Moreover, the lack of standardization in data formats and interoperability between predictive
models and existing SCADA (Supervisory Control and Data Acquisition) systems can hinder seamless integration.

3.8.4. Regulatory and Policy Limitations

Regulatory frameworks for marine energy are still nascent in many jurisdictions. Many ocean energy projects undergo
lengthy permitting processes due to marine spatial planning requirements, environmental impact assessments, and
stakeholder consultations. Predictive models can help in risk-based decision-making, but unclear or fragmented policy
environments may discourage investment in intelligent optimization systems [131]. In addition, data privacy and
cybersecurity concerns arise when cloud-based Al systems handle sensitive operational and environmental datasets.

3.8.5. Research Gaps

While the literature demonstrates the potential of predictive Al in improving tidal and ocean current energy conversion
efficiency, limited field validation remains a key bottleneck. Most models are trained and tested in simulated
environments or short-term pilot studies, which may not capture long-term degradation effects, extreme weather
events, or seasonal variability. Future work should focus on multi-year validation studies and cross-site transferability
of models to enhance generalizability. Overcoming these challenges will require multidisciplinary collaboration
between ocean engineers, Al developers, ecologists, and policymakers. Addressing these limitations can pave the way
for reliable, efficient, and environmentally sustainable ocean and tidal current power generation systems powered by
smart predictive models.

3.9. Future Directions and Recommendations

The integration of smart predictive models in ocean and tidal current power generation is still in its early stages, leaving
significant room for technological, operational, and economic advancements. Future research should focus on
enhancing model accuracy, scalability, and adaptability to diverse marine environments. Emerging technologies such
as Explainable Al (XAI) can be deployed to increase transparency in decision-making, enabling operators and
stakeholders to trust model outputs, especially in high-stakes energy projects. Furthermore, hybrid predictive
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frameworks that combine physics-based hydrodynamic models with data-driven Al algorithms can overcome
limitations of purely statistical or empirical approaches, ensuring both accuracy and interpretability. Advancements in
edge computing and loT-enabled sensor networks will play a critical role in reducing latency and improving real-time
energy optimization. Future systems could incorporate self-learning algorithms that adapt to seasonal hydrodynamic
variations, marine ecosystem changes, and unforeseen operational disruptions without requiring frequent human
intervention. These adaptive capabilities will be particularly valuable in regions with complex tidal cycles or
unpredictable weather patterns. On the economic front, predictive models must be optimized not just for energy yield,
but also for cost-effectiveness and lifecycle sustainability. Future research should investigate how multi-objective
optimization techniques can balance competing priorities such as maximum energy capture, minimal maintenance
costs, and reduced ecological impact. Additionally, digital twin technology can be leveraged to create virtual replicas of
tidal farms, enabling scenario testing and predictive maintenance planning without risking real-world downtime. From
a policy and regulatory standpoint, future efforts should focus on standardizing data collection protocols across
different tidal energy projects to ensure interoperability and model portability. International collaboration could
facilitate the creation of open-access marine energy datasets, reducing the time and cost of model training. The
integration of climate change projections into predictive frameworks will also be essential, as rising sea levels,
temperature shifts, and altered ocean currents may impact tidal energy patterns over the coming decades. There is a
need to explore community-driven participatory modeling, where local knowledge of marine conditions complements
sensor-based datasets. This collaborative approach could improve predictive accuracy in under-monitored regions and
foster public acceptance of tidal energy projects. If these directions are pursued, smart predictive models have the
potential to become a cornerstone technology in making ocean and tidal current power generation more efficient,
sustainable, and resilient.

4. Conclusion

The integration of smart predictive models into ocean and tidal current power generation represents a transformative
step toward achieving optimal energy efficiency, reliability, and sustainability in marine renewable energy systems.
Unlike conventional reactive approaches, these models leverage artificial intelligence, machine learning, and data-
driven analytics to forecast energy production, optimize operational parameters, and predict potential maintenance
needs. This enables a proactive, adaptive management strategy that reduces energy losses, minimizes downtime, and
ensures consistent power output despite the inherent variability of marine environments. The adoption of predictive
modeling in this domain is particularly critical because ocean and tidal current energy systems operate under dynamic
and often harsh environmental conditions. Predictive models help operators anticipate fluctuations in current velocity,
water temperature, turbulence, and biofouling effects, which traditionally hinder consistent performance. By
integrating real-time sensor data with historical patterns, these models can dynamically adjust turbine pitch, generator
load, and energy storage utilization, ultimately enhancing the net energy yield. From a sustainability perspective, smart
predictive models play a pivotal role in aligning marine renewable energy systems with global clean energy targets,
particularly Sustainable Development Goal 7 (Affordable and Clean Energy). By optimizing performance and extending
equipment lifespan, they contribute to reducing the overall levelized cost of energy (LCOE), making ocean and tidal
current power more economically competitive with fossil fuel-based generation. Moreover, their ability to reduce
unnecessary maintenance interventions and vessel trips also minimizes the carbon footprint of marine energy
operations. However, the full potential of these technologies can only be realized through overcoming key challenges
such as high computational requirements, the need for robust offshore communication infrastructure, and the scarcity
of large-scale, high-quality marine datasets for model training. Collaborative efforts between academia, industry
stakeholders, and policymakers will be essential to establish standardized data-sharing protocols, incentivize
innovation, and foster investment in marine digitalization. In conclusion, smart predictive models are not merely an
operational enhancement but a strategic enabler of the future marine energy landscape. They hold the capacity to turn
the unpredictability of ocean and tidal resources into a manageable and optimizable asset, unlocking higher efficiency,
lower costs, and a cleaner energy future. As research and deployment efforts continue to mature, these technologies
will play an indispensable role in scaling up ocean and tidal current energy, ensuring it becomes a reliable cornerstone
of the global renewable energy mix.
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