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Abstract 

This review adopts the use of artificial intelligence based prediction models in enhancing energy efficiency in marine 
energy generation using tidal power. Traditional forecasting techniques such as hydrodynamic simulation and 
statistical modeling fail to capture dynamic and non-linear dynamics of aquatic systems. Hence, efficacy of energy output 
is lost, and risk of operation failure is increased. Recent innovations in artificial intelligence such as machine learning 
and deep learning capabilities enhance power of modeling, forecasting, and optimization. Techniques such as long 
short-term memory (LSTM) networks, hybrid wavelet-convolutional neural networks (HW-CNNs), and physics-
informed neural networks (PINNs) have significantly increased forecasting precision and versatility compared to 
conventional techniques. Artificial Intelligence-based models are seen to lower mean absolute percentage error (MAPE) 
in forecasting of tides and marine power by up to 35% and prediction-based maintenance frameworks lower unplanned 
downtime by more than 30%. Besides, usage of digital twins which are computerized replicas of physical assets, real-
time assimilation of data have increased adaptive control ability by a significant percent, resulting in reduced structural 
fatigue and operating cost by 15 to 20%. Such contributions are not only technical but environmental and economical 
such as minimizing ecological disruptions and enhancing financial viability of projects. Overall, Artificial Intelligence-
based prediction models are a disruptive methodology of scalable, efficient, and sustainable implementation of marine 
energy technology using tidal power. 
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1. Introduction

The ocean not only harbors vast untapped energy but stands as one of the few renewable domains with immense scale 
and predictability. According to the International Energy Agency’s Ocean Energy Systems report, the theoretical global 
potential exceeds 80,000 TWh/year across all marine sources. Specifically, tidal energy alone accounts for more than 
300 TWh/year, while marine current power exceeds 800 TWh/year. To contextualize, global electricity consumption is 
roughly 25,000 TWh/year. The marine energy potential, therefore, is on the same order or even surpasses idealizing a 
transformative role in decarbonizing global grids, particularly in regions with strong tidal or current regimes [1, 2]. 
Despite colossal theoretical potential, practical deployment remains modest. As of 2023, installed ocean power capacity 
stood at approximately 513 MW, with just 2 MW added that year comprising both tidal stream and wave systems. The 
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lion’s share of existing capacity derives from two major tidal barrage installations:La Rance, France: 240 MW, Sihwa 
Lake, South Korea: 254 MW. These projects alone contribute over 490 MW, whereas tidal stream and wave contribute 
less and are still in pre-commercial phases.Yet, deployment is growing. Tidal stream installations have reached 41 MW 
since 2010, with cumulative generation exceeding 90 GWh by end-2023. Wave energy, less mature, has seen 27 MW 
deployed in the same period, with convergence towards utility-scale systems underway.The MeyGen project in Scotland 
underscores this progression: at present, it operates 6 MW, generating 10.2 GWh in 2023, with expansion plans up to 
400 MW [3, 4]. Market estimates project rapid growth despite current limitations. The global tidal power market was 
valued at approximately USD 123.6 million in 2023, with expectations to reach USD 501.4 million by 2031, a CAGR of 
19.4%. Another report cites a market size of USD 1.15 billion in 2024, rising at nearly 19.1% CAGR to USD 2.593 billion 
by 2032 [5] .Wave and tidal combined markets show parallel expansion. Installed capacity reportedly hit 600 MW for 
tidal and 400 MW for wave by 2023. In Europe, the ocean energy pipeline is ambitious: 100 MW deployments by 2027, 
scaling to 40 GW by 2050, potentially supplying 10% of the continent's power [6, 7]. The central barrier for tidal energy 
remains economic viability. Current levelized cost of energy (LCOE) for tidal stream ranges between $0.20–$0.50/kWh, 
vastly higher than offshore wind ($0.13–$0.30) and solar PV ($0.03–$0.10) [8]. The Atir floating tidal farm assessment 
(34.5 MW using 23 turbines) projects an LCOE of €0.125/kWh (~$0.13–$0.14), competitive with solar/land-based 
renewables, as well as CO₂ emissions of 42.11 g CO₂eq/kWh, a favorable environmental profile [9]. Looking outward, 
the ORE Catapult's cost reduction pathway suggests tidal stream LCOE could drop to £78/MWh (~€90/MWh) by 2035 
and even as low as £60/MWh (€70) by 2042, and £50/MWh (€57) by 2047, if economies of scale, foundation 
optimization, and standardization occur [10]. Notably, Minesto’s Dragon 12 tidal kite technology claims an exceptionally 
low LCOE of $54/MWh (~$0.054/kWh), outperforming offshore wind ($72), onshore wind ($24), geothermal ($61), 
and even coal/gas on some metrics [11]. Tidal power's historical and modern hallmarks manifest through iconic 
projects: La Rance (France) - Commissioned in 1966, 240 MW operational, ~500 GWh/year production (~24% capacity 
factor). Sihwa Lake (South Korea): 254 MW capacity, ~552 GWh/year output, built using existing seawall costing 
US$560 million. Jiangxia (China) - Smaller-scale (4.1 MW) tidal barrage producing ~6.5 GWh/year signifying regional 
engineering expansion. MeyGen (Scotland) - Largest tidal stream farm: 6 MW (2023), planning 400 MW eventual scale. 
Orbital Marine Power's O2: A floating twin-rotor (2 MW) turbine operating since 2021 in Orkney Islands, designed for 
tow-back servicing, hydrogen production coupling representing next-gen flexibility. HydroWing in Indonesia (2024) - 
A 10 MW tidal project agreement in East Nusa Tenggara leveraging Pacific–Indian Ocean currents. Minesto’s Dragon 12 
(Faroe Islands) - 1.2 MW tidal kite with LCOE = $54/MWh; recognizes tidal as non-intermittent renewable like 
geothermal [12, 13]. The strategic value of tidal energy resides in its predictability and dispatchability. Unlike solar and 
wind, which produce highly intermittent output even curtailed due to grid constraints, tidal energy offers regular, 
forecastable generation based on astronomical cycles. For instance, during an extended period of low sun and wind in 
the UK (“10 days of gloom”), solar production fell to just 5.1 kWh, leaving tidal and hydro as still underutilized baseload 
potentials. This highlighted the need for tidal inclusion in resilient energy portfolios [14]. Meanwhile, increasing grid 
curtailment of wind and solar in 2024 nearly 10% in Britain, 30% in Northern Ireland emphasizes the limitations of 
variable renewables and the value of predictable marine energy as a balancing resource [15, 16, 17]. Governmental 
policy interventions are pivotal for tidal sector growth: UK’s CfD (Contracts for Difference) provides revenue certainty, 
recently, tidal projects won bids at £240/MWh [18]. France's €30 million subsidy for Raz Blanchard project lowered 
project LCOE by 22%. Licensing reforms in Canada and South Korea have cut permitting windows substantially, 
reducing pre-development costs by millions per project. South Korea’s RPS (2.5% marine energy by 2026) spurred a 
37% increase in domestic tidal investments since 2020, with the Incheon Bay (1.4 GW) project starting in 2023 [19]. 
Unmatched theoretical potential (~13,500 TWh/year combined tidal and marine currents) vs. modest current 
deployment (~513 MW installed). Market growth is strong, with CAGRs ~19–20%, yet LCOE remains high, though 
promising pathways to reduction exist. Historical mega-projects prove technical feasibility; modern innovations (tidal 
kites, floating platforms) are stepping stones to scale. Predictability and seasonal stability offer grid synergy advantages 
absent in solar/wind, especially amid curtailment challenges. Effective policy frameworks, subsidies, favorable auctions, 
and streamlined regulation, are essential to catalyze further deployment [20]. 

1.1. Technical Characteristics of Tidal and Ocean Currents 

Tidal current energy stems from horizontal flows induced by oscillating tides, driven by gravitational interactions 
between the Earth, Moon, and Sun. These flows exhibit a combination of predictable periodicity (semi-diurnal, diurnal) 
and site-specific variability caused by coastal morphology, bathymetry, and seasonal climate patterns [21]. Seminal 
sinusoidal models can approximate this behavior, yet real-world applications require high-fidelity approaches to 
account for nonlinearity, stratification, and turbulence. Numerical hydrodynamic models such as the Finite Volume 
Community Ocean Model (FVCOM) are routinely employed for simulating local tidal regimes, capturing spring-neap 
amplitude variations (order of 10–15%) and spatial heterogeneity at the 100–200 m scale. For instance, FVCOM analysis 
in the Zhoushan Archipelago revealed peak spring-tide power densities of ~3.6 kW/m² in high-shear channels, with 
corresponding estimated annual mean energy availability around 2.6 MW from a 12 MW array. These fluctuations 
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induce velocity reduction zones downstream up to 8 cm/s with downstream hydrodynamic influences spanning several 
square kilometers [22]. 

1.1.1. Hydrodynamic Power Capture Principles 

The extractable power PPP from a tidal turbine follows: 

P =  (1/2)  ∗  ρ ∗  A ∗  Cp ∗  U^3  ---Eq 1 [23] 

Where;  

ρ represents sea water density (~1025 kg/m³),  
A is the rotor swept area,  
Cp is the turbine power coefficient,  
U is the undisturbed flow speed. 

Optimal performance typically occurs at Tip-Speed Ratios (TSR) between 2–4. Hydraulic investigations of a hollow 
adaptive variable-pitch turbine highlight a peak Cp of 0.368 at TSR ≈3 under optimized pitching, ~15–20% higher than 
symmetric rigid-rotor benchmarks [24]. Adaptive pitching thus remains a promising efficiency-enhancement strategy. 
Open-Rotor Turbines also known as Horizontal-axis tidal turbines (HATTs) closely mirror wind turbines but contend 
with significantly higher fluid density and fluctuating wake loading. CFD studies of full-scale ducted HATTs under yaw 
angles (up to 45°) reveal that duct presence sustains axial flow velocities under yaw, yielding up to 3.4% rotor power 
coefficient improvements, maintaining Cp ≈ 0.35 at TSR = 2.0 [25]. Unsteady RANS CFD validated at SINTEF showed 
full-scale HATT model achieving Cp ≈ 0.435 at optimal pitch closely matching towing tank experiments [26]. These 
metrics set benchmarks for performance and underlie guidelines for blade design and control algorithms. Ducted 
turbine systems or diffusers employ a Venturi effect to accelerate upstream flow, elevating axial velocity into the rotor. 
Park, J et al. (2023) used adjoint-based CFD optimization to design a ducted turbine achieving ~54% efficiency across 
conditions, outperforming the 46% of conventional Bahaj rotors [27]. Further, Park, J et al. (2024) showed a 5 kW 
optimized ducted turbine reaching 50% efficiency despite practical geometric constraints, compared with a non-ducted 
turbine at 45%. Ducted configurations also mitigate yaw sensitivity [28]. Borg, M. G et al. (2022) documented an ability 
to maintain aerodynamic performance in yawed scenarios, suggesting reduced need for active yaw control systems that 
add mechanical complexity.Wake interactions play a critical role in farm layout design. CFD and flume experiments in 
Zhejiang University indicate that in tightly spaced arrays, wake turbulence competes with mean flow, affecting 
downstream turbine yields. Preliminary 3D CFD arrays show coherent wake-developing turbulence, necessitating 
spacing >5–7 rotor diameters to recover 90% of single-turbine flow [29]. At the channel scale, momentum sink modeling 
using depth-averaged 3D or 2D models estimates that turbines cause velocity reductions of ~5–15% over 0.5 km [21]. 
These results highlight the need for strategic phase-offset deployment in spatially coherent channels to maximize 
aggregate yield. Ocean currents are often accompanied by surface waves, leading to complex vertical velocity shears 
and oscillations. Experimental tests by Xu, K et al. (2023) and numerical studies carried out by Barltrop, N et al (2006) 
indicate that wave current interactions modulate turbine thrust and torque fluctuating loads periodically, increasing 
fatigue risk, and reducing power output by 8–12% [30, 31]. Accordingly, horizontal-axis turbines must withstand 
transient loads and damper-induced vibrations. Dynamic control regimes pitch control and speed modulation are 
critical for fatigue mitigation in wave-driven loading contexts. Floating tidal devices combat multi-degree-of-freedom 
motions pitch, surge, heave. CFD modeling of pitched HATTs on floating carriers shows substantial performance 
deviations due to body motion in some cases reducing power by 5–10%. Surge-motion experiments he did 
demonstrated that surge frequencies matched energy utilization coefficient oscillations, necessitating real-time reactive 
control loops to optimize phase and power. Integrated dynamic mooring and semi-submergence design must balance 
hydrodynamic losses with installation cost, especially for deep-water offshore configurations. Energy extraction alters 
local hydrodynamics, potentially affecting sediment transport, nutrient flows, and ecosystem integrity. Wu, H et al 
(2021) indicated that installing a 12 MW array in Zhoushan reduced downstream velocity by 8 cm/s a minor change for 
larger ecosystems, though cumulative effects on sediment transport warrant longer-term monitoring [22]. Physical 
ecosystem interactions are increasingly included in hydro-environmental networks, with coupled fluid–sediment–
ecological models tracking turbidity, resuspension, and pollutant pathways. These models impose real constraints on 
allowable turbine wake models and farm placement to ensure sustainability. Tidal currents offer high-density, periodic 
power potential; resource modeling relies on advanced numerical tools like FVCOM. Turbine efficiency depends on 
optimal TSR, duct geometry, yaw adaptation, and adaptive pitch; Cp of 0.36–0.54 demonstrated in recent CFD studies. 
Wake dynamics and array interaction modeling emphasize minimum spacing and phase-offset to sustain output. 
Complex wave current and floating-body interactions introduce dynamic fatigue, requiring real-time control algorithms. 
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Environmental hydrodynamic changes are substantial but currently within acceptable ecological tolerances, pending 
long-term monitoring. 

1.2. Evolution of Forecasting Approaches 

Harmonic analysis has long been the backbone of tidal prediction, modeling tidal currents as the summation of 
sinusoidal components with known frequencies tied to astronomical cycles [32]. Techniques such as least-squares 
harmonic regression and their extensions (e.g., 1D-LSHM) continue to provide a baseline for prediction accuracy. 
However, these methods inherently assume linear, stationary behavior and fail to capture the non-stationary, transient 
anomalies (e.g., weather-driven surges, micro-turbulence) present in real-world marine environments [33]. Advanced 
model-fitting strategies, including spectral decomposition, autoregressive models (AR), and autoregressive integrated 
moving average (ARIMA) are sometimes layered onto harmonic frameworks to partially account for variability. Yet, 
their efficacy drops significantly under conditions of high noise or nonlinearity, typical of coastal tidal systems [34]. The 
limitations of purely statistical approaches have prompted the adoption of machine learning (ML) over the past decade. 
Early exploratory models focused on multilayer perceptron (MLP) neural nets and support vector machines (SVM) 
trained on historical tidal data to capture nonlinear patterns [35]. These remained largely research-focused with limited 
scale. A notable breakthrough came, when Zhang, K et al. (2023) compared MLP, Long-Short-Term Memory (LSTM), 
and attention-augmented ResNet models trained on ROMS-generated features in China’s Zhoushan region. All deep 
learning models dramatically improved forecasting: correlation coefficients exceeded 0.8, and RMSE decreased by 
32.9% (MLP), 34.4% (LSTM), and 42.0% (AR-ANN) over standard numerical models. Pure deep learning models, though 
powerful, are constrained by their data-intensive and opaque nature. This has led researchers to explore hybrid 
architectures that merge physical insight with ML flexibility [36]. Hierarchical ELM + LSTM: Saatloo, A. M (2021) 
proposed a hybrid Hierarchical Extreme Learning Machine (H-ELM) and LSTM structure to model multi-depth current 
layers [37]. H-ELM handled high-frequency turbulent components, while LSTM captured longer-term cycles, yielding 
superior accuracy over standalone models [38]. Wavelet-enhanced Convolutional Network (WCN): Liu, J. W et al. (2021) 
developed WCN to distinguish intra- and inter-periodicities via time-frequency tensor representations. This model 
achieved unprecedented accuracy, cutting MAE and MSE by up to 90.4% and 97.6% respectively in 10-step forecasts 
[39]. Swarm-Decomposition + Multi-layer Kernel Meta-ELM: A hybrid using swarm-decomposition to isolate oscillatory 
features and a kernel ELM architecture yielded R² = 0.9933 in predicting Gulf of Mexico currents, markedly 
outperforming typical LSTM models [40]. Harmonic Residual Analysis (HRA) + Online ELM: Monahan, T et al. (2023) 
fused residuals from harmonic predictors with online Extreme Learning Machines for near-real-time forecasting, 
achieving positive results in shifting tidal regimes. These hybrid systems demonstrate the efficacy of combining domain 
theory and ML, particularly for combatting issues like overfitting and seasonal parameter drift. Many tidal forecasts 
today remain deterministic, but marine energy systems benefit from uncertainty quantification to optimize dispatch 
and grid integration [41]. Approaches like Gaussian Process Regression (GPR) yield predictive distributions that are 
valuable in stochastic planning. Butler, K et al. (2024) coupled GPR with harmonic constituents (1D-LSHM), effectively 
modeling non-linear residuals and generating usable uncertainty bounds [42]. Similarly, Paolucci, I et al. (2023) 
introduced a non-parametric interval model using Bayesian-optimized ELM to generate prediction intervals, thus 
incorporating essential uncertainty metrics. To address the "black-box" nature of ML and the data scarcity in oceanic 
settings, Physics-Informed Neural Networks (PINNs) have surged as a potent solution [43]. PINNs embed the governing 
partial differential equations (PDEs), such as Navier–Stokes and continuity conditions, into network training as soft 
constraints [44]. Applications in marine contexts are now emerging: English Channel Surrogate Modeling: Donnelly, J et 
al. (2023) implemented a PINN surrogate for a 2D Navier–Stokes flood model, embedding mass conservation via 
additional loss terms. The model outperformed data-only CNN alternatives by 10–20% [45]. Regional Tidal Modeling: 
A 2023 study by He, J et al. integrated PINNs into regional flood and tidal models, accurately reconstructing spatio-
temporal wave and tidal fields from sparse observations, significantly reducing run-time [46]. Coastal Wave Prediction: 
PINNs have been successfully used to infer wave dynamics from surface elevation alone, with strong accuracy in 
irregular, nonlinear flows [47]. General PINN Reviews: Zhao, C et al. (2024) provide a comprehensive review, noting 
that PINNs accelerate simulation speeds and improve generalization in turbulent, multiphase flows and environmental 
forecasts. Despite potential, PINNs face practical challenges training inefficiencies, gradient pathologies, and scalability 
issues. Advances like domain decomposition (XPINNs) and weight adaptive optimization are being explored to 
overcome these [48]. Going further, spatio-temporal physics-coupled neural networks (ST-PCNNs) embed domain-
specific physical operators trained in tandem with data-driven neural architectures. Evaluated on ocean current 
datasets, ST-PCNNs outperformed baseline PINNs and purely data-driven models, particularly in long-horizon 
forecasting, demonstrating potential in complex tidal environments [49]. Recently, Temporal Convolutional Networks 
(TCNs) have gained traction for their ability to model long-range temporal dependencies. Hybrid TCN + LSTM models 
optimized via CMA-ES achieved strong performance in tidal level forecasts, while Physics-informed TCN-AR models for 
wave height data are in development and show promise for transferability to tidal flow forecasting [50]. These 
architectures underscore the increasing sophistication of temporal forecasting techniques in marine domains. The 
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evolution of tidal current forecasting over the past five years shows a clear trajectory: From harmonic/statistical 
frameworks to advanced ML-based models. Deep learning (MLP, LSTM, CNN, ResNet) induced leap-forward 
performance. Hybrid models (e.g., Wavelet + ML, HRA + ELM) successfully combine physics and data to offset each 
other's weaknesses. Probabilistic modeling with GPR and Bayesian frameworks adds operational value. PINNs embed 
physics to improve generalization under limited data. ST-PCNNs and physics-coupled models incorporate domain 
operators. Temporal convolutional architectures broaden predictive horizons [51]. This sets the stage for Section 1.4, 
where we will analyze how these forecasting advances directly enhance operational efficiency, control strategies, and 
energy optimization within tidal and ocean current power systems. 

1.3. Objectives and Scope of the Review 

The overarching aim of this review is to present a comprehensive synthesis of how smart predictive models spanning 
machine learning (ML), deep learning (DL), physics-informed neural networks (PINNs), and hybrid AI–physics 
frameworks can enhance operational efficiency, energy output optimization, and system resilience in ocean and tidal 
current power generation systems. The review intends to: Survey state-of-the-art predictive modeling techniques 
applied to forecasting resource availability, operational faults, and energy yield within tidal and ocean energy contexts. 
Analyze integration strategies of smart predictive systems with real-time sensors (including Subsea IoT architectures), 
control loops, and maintenance regimes to improve efficiency and reduce downtime. Evaluate performance metrics 
such as MAE, RMSE, MAPE, R², prediction intervals, and uncertainty quantification to benchmark model accuracy and 
reliability. Assess environmental, economic, and operational implications, including LCOE reduction, predictive 
maintenance gains, grid integration benefits, and environmental sustainability. Identify technological gaps, challenges, 
and future directions, including data quality and availability, model interpretability, integration challenges in marine 
environments, and regulatory and ethical considerations. By delineating both successes and ongoing limitations of 
smart predictive systems in marine energy, this review seeks to chart a cohesive roadmap for advancing operational 
performance in tidal and ocean current power generation.  

2. Literature Review 

2.1.  Classical statistical and harmonic baselines 

Harmonic analysis remains the canonical baseline for tidal constituents and first-order current prediction because it 
encodes astronomical forcing with interpretable amplitudes and phases and admits rigorous uncertainty analysis under 
linear superposition. However, its performance degrades when (i) short records limit robust constituent fitting, (ii) non-
astronomical drivers (wind surge, riverine discharge, mesoscale features) modulate the spectrum, and (iii) strong 
wave–current interaction injects nonstationary variance into higher frequencies that harmonic terms do not capture. 
Recent experimental work shows that even when mean loads or mean power appear unchanged by opposing waves, 
load and torque fluctuations can increase dramatically and linearly with wave amplitude implying that deterministic 
harmonic baselines underestimate fatigue-relevant extremes, a central concern for turbine design and O&M planning 
[52]. In response, modern “baseline-plus-residual” strategies fuse a physical harmonic core with a stochastic residual 
model (e.g., Gaussian processes, state-space ARIMA, kernel regressors), Although implementations vary, the common 
thread is to preserve interpretability and extrapolability of tidal constituents, while gaining short-horizon accuracy and 
calibrated confidence intervals for operations (e.g., maintenance windows, yaw/pitch planning). This philosophy is 
echoed in recent tidal-resource and turbine-load studies that explicitly separate mean currents from turbulence and 
wave-band fluctuations in order to estimate fatigue damage and extreme event exceedance [53]. 

2.2. Hybrid physics–ML surrogates 

Hybridization couples hydrodynamic solvers (ROMS, Delft3D, TELEMAC, SHYFEM) with machine learning in two 
principal ways: (i) physics-guided surrogates that learn closures or corrector maps for bias and subgrid physics, and 
(ii) reduced-order emulators that replace expensive components of the PDE solver to enable high-frequency updates or 
probabilistic ensembles. A representative example integrates ROMS outputs with deep networks to improve tidal 
current predictions; in the Zhoushan region, coupling numerical fields with MLP/LSTM/attention-ResNet models raised 
correlation from ~0.4 (ROMs alone) to >0.8, with ~33–42% RMSE reduction across current components performance 
gains directly relevant to resource assessment and turbine siting [54]. At farm scale, embedding turbine momentum 
sinks into shallow-water models can capture array–flow feedback and wake recovery while remaining computationally 
tractable. A blade-element–momentum (BEM) representation within the 3-D shallow-water SHYFEM framework 
parameterizes turbines as momentum sinks in the horizontal momentum equations, enabling layout-level studies that 
co-evolve device performance and coastal circulation. Such physics-aware contexts are natural launchpads for learning-
based surrogates: e.g., training neural correctors on discrepancies between BEM-coupled shallow-water outputs and 
ADCP measurements to de-bias arrays under real wave–current climates [55]. Hybrid decompositions also improve 
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pure time-series forecasting. Variational mode decomposition (VMD) isolates narrow-band components that map more 
linearly to dynamics; stacking VMD with LSTM (VMD-LSTM) has produced materially lower tide-level errors than 
vanilla LSTM/SVM/BP networks, useful where high-order harmonics, meteorological surges, and bathymetric 
idiosyncrasies co-mix [56]. Modern architectures target multi-periodicity, noise robustness, and spatiotemporal 
generalization. Wavelet-enhanced convolutional networks (WCN) explicitly encode multi-scale periodicity by 
projecting the 1-D series into a structured 2-D form and applying CNN kernels alongside time–frequency analysis; this 
yields competitive accuracy on tidal current speed forecasting where canonical LSTMs under-resolve cross-scale 
structure [57]. Attention mechanisms further help in regimes where exogenous forcings intermittently dominate. In 
coastal prediction tasks, attention-augmented LSTMs and Transformer variants allocate capacity to transient drivers 
and harmonics beyond the tidal band, improving event-onset timing and extreme tracking (e.g., attention-ResNet for 
currents; [58]. Deep models have also been trained to forecast internal tide signatures traditionally viewed as 
“unpredictable” by exploiting persistent spatiotemporal patterns in mooring and satellite records [59]. For extreme 
water levels (EWLs), LSTMs trained across distributed gauges can extrapolate the evolution of EWLs beyond the 
training stations, highlighting the value of multi-site context for spatial generalization [60]. A practical takeaway for 
tidal energy is that mean performance may track with background tides, but fatigue and ultimate loads are controlled 
by higher-frequency content and cross-driver coupling; architectures that directly ingest wave spectra, wind stress 
proxies, and spatial context (reanalysis, altimetry, nearby ADCPs) outperform univariate models when forecasting 
turbine-relevant kinematics [61]. 

2.3. Probabilistic forecasting and uncertainty quantification 

Operations and maintenance (O&M) decisions hinge on calibrated predictive uncertainty: crew transfers, yaw/pitch 
scheduling, and curtailment thresholds all require not just point forecasts but intervals with reliable coverage. Gaussian 
process regression (GPR) remains attractive for short-horizon coastal prediction because it delivers coherent posterior 
variances under kernel choices that reflect tidal bands and meteorological noise. In decomposition hybrids, a harmonic 
or VMD core sets the mean structure and a GP models residuals, improving sharpness while maintaining coverage. 
Beyond GPR, distributional deep learners (e.g., quantile regression LSTMs/Transformers) and conformal prediction 
have become standard to wrap frequentist coverage guarantees around arbitrary forecasters. Conformal methods, now 
widely applied in time-series energy forecasting, offer finite-sample, model-agnostic intervals and are particularly 
compelling for deployment because they do not require probabilistic training pipelines and adapt online to local error 
distributions [62]. For coastal extremes and sea-level evolution, multi-site deep learners that output quantiles or 
ensembles better capture spatially correlated risk across gauges [63]. Critically, coverage under distribution shift 
(storm regimes, seasonal bathymetric change, biofouling-induced sensor drift) requires adaptive calibration. Recent 
domain generalization and unsupervised domain adaptation for time series suggest splitting representations into 
transferable temporal and domain-specific frequency features; adversarial co-learning improves transfer while 
preserving discriminability. These ideas translate directly to marine contexts when redeploying models across sites or 
seasons while retaining calibrated intervals via conformal updates [64]. 

2.4. Digital twins, condition monitoring, and predictive maintenance (PdM) 

Digital twins (DTs) integrate hydrodynamics, structural dynamics, control, and health data into continuously updated 
surrogates for what-if analysis, anomaly detection, and remaining useful life (RUL) forecasting. Recent DT reviews for 
renewable energy outline architectures that fuse physics models with learning-based observers and adaptive parameter 
estimation for online prognosis and control [65]. For marine energy specifically, condition monitoring draws on 
accelerometers, acoustic emission, strain gauges (including FBG), temperatures, and SCADA; systematic reviews of 
vibration-based CM in rotating machinery and general heavy equipment map sensor suites and signal features to fault 
classes and deployment constraints informative for sub-sea turbines where ingress, corrosion, and biofouling 
complicate access [66]. Emerging work highlights FBG-based blade monitoring for continuous structural health state 
estimation in tidal rotor blades [67]. Explainable AI (XAI) is increasingly required for PdM in safety-critical assets. 
Recent surveys emphasize SHAP/LRP/Grad-CAM for diagnosing which spectral bands, harmonics, or operating regions 
drive fault decisions, facilitating trust with operators and enabling alarm rationalization [68]. Tidal-specific programs 
are starting to apply XAI for blade-damage and rotor health detection to support real-time decision-making in harsh 
subsea environments [69]. 

2.5. Control-aware forecasting and optimization 

Forecasts accrue value when wired into control: pitch/yaw/MPPT, supervisory curtailment, and active load 
management. Model predictive control (MPC) and robust sliding-mode variants have been adapted for tidal turbines 
under uncertain inflow; fault-tolerant controllers (e.g., adaptive non-singular fast terminal sliding mode with robust 
compensation) simultaneously track MPPT while rejecting faults/perturbations an appealing substrate for forecast-in-
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the-loop optimization [70]. In practice, short-horizon probabilistic inflow forecasts can parameterize constraint-
tightening in MPC or set risk-aware reserve/pitch profiles to trade energy capture for fatigue life. Wave–current co-
loading is pivotal: recent experiments show that irregular opposing waves raise the standard deviation of rotor torque 
and loads by factors up to ~1.5–2× relative to no-wave conditions, while extremes grow by 60–100% even when mean 
power barely shifts. Control laws that are oblivious to this variance amplification leave fatigue on the table; coupling 
forecasts of wave spectra (or significant steepness) with MPPT/pitch limits can measurably reduce damage 
accumulation at small energy cost [71].  

2.6. Data assimilation and hybrid nowcasting 

For situational awareness, operators need nowcasts that reconcile models and sensors. Ensemble Kalman filters (EnKF) 
and 4D-Var remain workhorses in coastal hydrodynamics; recent work in water-network and coastal settings shows 
that assimilating stage sensors, ADCPs, and ancillary drivers can materially reduce nearshore water-level errors, exactly 
the regime controlling access windows and fatigue events [72]. Machine-learning correctors can be attached to DA 
systems to post-process residual patterns (e.g., tide-gauge biases, persistent meteorological drifts) while DA maintains 
dynamical consistency. Hybrid ML–DA frameworks are particularly effective in estuarine zones where bathymetry and 
river discharge perturb canonical tidal propagation [73]. An important operational nuance is latency and comms. Subsea 
acoustic telemetry supports only kilobit-scale links;  hence on-edge compression and on-device filtering of raw 
streams are essential before assimilation. Industry guidance from subsea network providers documents practical 
acoustic/optical tradeoffs (9 kbps acoustics vs. up to ~100 Mb/s short-range optical) that directly shape DA update 
frequency and payload design for offshore assets [74]. 

2.7. Datasets, benchmarks, and open test sites 

Progress depends on public datasets with well-documented sensors and metadata. EMEC’s Fall of Warness test site and 
the broader Tethys Engineering (PNNL) portal host open ADCP and site-characterization data streams that underpin 
benchmarking of forecast and load models (PNNL/Tethys, n.d.). Such datasets enable cross-site evaluations training on 
one energetic channel (e.g., Scotland) and testing on another with different bathymetry and wave climates to quantify 
true generalization and guide domain adaptation choices [75]. On the literature side, the JMSE special issue on Tidal & 
Wave Energy aggregates multiple methodological baselines, including deep learning for tidal currents (Zhoushan) and 
BEM-coupled shallow-water turbine modeling useful anchors for reproducing results and standardizing metrics [76]. 
The community would benefit from consolidated leaderboards that score mean error, extremal metrics (P95/P99), 
calibration (CRPS/coverage), and control impact (energy-fatigue Pareto) under common splits (chronological, cross-
site).  

2.8. Edge deployment, SIoT communications, and TinyML 

Marine environments impose severe constraints: limited power budgets, intermittent links, and high latency under 
water. The Subsea/Underwater Internet of Things (SIoT/IoUT) literature surveys acoustic channel limits, routing, and 
reliability, emphasizing that bandwidth-constrained, delay-tolerant operation is the norm rather than the exception 
[77]. Industry white papers quantify practical rates (∼9 kbps acoustics; up to ~100 Mb/s optical at short ranges) and 
recommend on-node processing with only salient summaries transmitted to the surface an architecture perfectly 
aligned with predictive maintenance and event-triggered forecasting [78]. These constraints catalyze TinyML adoption. 
Multiple 2024–2025 surveys demonstrate that on-device inference (quantization, pruning, NAS for MCUs) can deliver 
real-time anomaly detection and spectral feature extraction within milliwatt envelopes, reducing backhaul while 
improving resilience. Case studies show vibration-fault TinyML detectors on low-power hardware achieving high 
accuracy, and robotics applications demonstrate feasibility in field-constrained settings the same design space as 
nacelle-embedded or nacelle-adjacent turbine monitors [79]. For tidal blades and drivetrains, a pragmatic stack is: on-
sensor DSP features (e.g., band energies around blade-passing and harmonics) → tiny classifier (or one-class detector) 
→ event-triggered upload → cloud/DT retraining [80]. 

2.8.1. Supplemental Technical Enhancements 

Key Equations & Algorithmic Elements 

(a) Hybrid Residual Learning (e.g., 1D-LSHM + GPR) 

Predicted value: 

 𝐏 =  (𝟏/𝟐)  ∗  𝛒 ∗  𝐀 ∗  𝐂𝐩 ∗  𝐔^𝟑 …….Eqn 2 [81]. 
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Where: 

yharmonic(t)→ the harmonic baseline (e.g., sinusoidal trend capturing periodicity). 

ε^(t) → the GPR-predicted residual, accounting for variations not explained by the baseline. 

GPR residual model: 

 ŷ(𝐭)  =  𝐲_𝐡𝐚𝐫𝐦𝐨𝐧𝐢𝐜(𝐭)  +  𝛆^(𝐭) … Eqn 3 [82] 

where the residual term ε^(t)\hat{\varepsilon}(t)ε^(t) is modeled as a Gaussian Process: 

𝛆^(𝐭) ~ 𝐆𝐏(𝟎, 𝐤(𝐭, 𝐭′)  +  𝛔^𝟐 𝛅(𝐭, 𝐭′)) 

with covariance kernel: 

𝐤(𝐭, 𝐭′)  =  𝐞𝐱𝐩(−(𝐭 −  𝐭′)^𝟐 / (𝟐𝓵^𝟐)) 

Parameters: 

ℓ\ellℓ → length-scale parameter, controls how fast correlations decay in time. 

σ2\sigma^2σ2 → noise variance, accounts for observational noise. 

δ(t,t′)\delta(t,t')δ(t,t′) → Kronecker delta (ensures noise is only added to the diagonal of covariance). 

Predictive variance: 

  𝐕𝐚𝐫[𝛆^(𝐭 ∗) | 𝐝𝐚𝐭𝐚]  =  𝐤(𝐭 ∗, 𝐭 ∗)  −  𝐤_ ∗ ^𝐓 (𝐊 +  𝛔^𝟐 𝐈)^{−𝟏} 𝐤_ ∗ … Eqn 4 [83] 

(b) Conformal Prediction for Time Series 

Given a point-forecast model and a sequence of historical errors {ei}\{e_i\}{ei}, a level-(1−α)(1 - \alpha)(1−α) 
conformal prediction interval for new forecast y^n+1 is: 

[y^n+1−q1−α(∣ei∣), y^n+1+q1−α(∣ei∣)] …… Eqn 5 [84] 

where 

ŷ₍ₙ₊₁₎ = predicted value at step n+1 

q₍₁₋α₎(|eᵢ|) = the (1−α)-quantile of the absolute residuals 

(c ) Loss for PINNs; 

L = (1 / N_o) * sum_(i=1)^(N_o) || u^(x_i, t_i) - u_i ||^2 + λ_f * (1 / N_f) * sum_(j=1)^(N_f) || N[ u^(x_j, t_j) ] ||^2    (Eqn 
6 [85]) 

where: 

u^(xi,ti)→ predicted solution at input (xi,ti) 

ui → observed/measured data 

N[⋅]→ PDE operator (e.g., Navier–Stokes equations, shallow-water momentum equation, diffusion equation, etc.) 

No → number of observation (data) points 
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Nf → number of collocation points (where PDE residual is enforced) 

λf → weighting factor that balances data fidelity and physical consistency 

Large λf → more emphasis on PDE satisfaction 

Small λf → more emphasis on fitting observed data 

Table 1 Comparison of Statistical, Machine Learning, and Hybrid Approaches for Tidal Forecasting and Monitoring [86]. 

Method & 
Approach 

Input Data Horizon Predictive Strengths Computational Cost / 
Deployment Maturity 

Harmonic + 
ARIMA/Stat 
Models 

Historical tidal 
datasets 

Short–
medium 

Transparent; good baseline; fails 
in nonstationary regimes 

Low compute; high maturity 

1D-LSHM + GPR 
(Hybrid) 

Tidal data + 
harmonics 

Short–
medium 

Adds uncertainty quantification; 
handles residuals 

Moderate compute; 
prototype maturity 

VMD-LSTM 
(Hybrid) 

Decomposed 
IMFs from tide 
data 

Short–
medium 

Better handling of mixed 
frequencies; robust forecasts 

Medium compute; early 
adoption 

WCN (Wavelet 
CNN) 

Time-
frequency 
tensors of time 
series 

Short Captures multi-periodicity; 
accurate multi-step forecasts 

High compute; pre-
deployment 

Attention-
ResNet / 
Transformer 

Tidal + 
exogenous 
features 

Short–
medium 

Adapts to dynamic drivers; strong 
generalization 

High compute; experimental 

PINNs (Physics-
Informed) 

Sparse sensors 
+ PDE 
constraints 

Medium Physically coherent; generalizes 
under sparse data 

High compute; emerging 
implementation 

Digital Twin + 
MPC Integration 

Sensor/SCADA 
streams + 
hydrodynamics 

Real-time Supports control, diagnostics, 
optimization 

Very high compute; early 
stages in marine energy 

GPR / Quantile 
DL + Conformal 

Residual errors 
+ model 
forecasts 

Short–
medium 

Provides calibrated uncertainty 
intervals 

Moderate compute; growing 
use in forecasting tools 

TinyML (Edge 
PdM) 

Sensor 
summaries on-
node 

Real-time Enables real-time anomaly 
detection; efficient for edge 

Low compute; nascent 
deployment 

3. Results and discussion 

3.1. Advanced Applications: Smart Predictive Systems for Real-Time Control, Maintenance, and Grid 
Integration 

or personal relationships that could have appeared to influence the work reported in this paper. Modern tidal and ocean 
current systems rely on smart predictive models to optimize power capture, reduce mechanical stress, and extend 
device lifespan. At the heart of these systems is a Model Predictive Control (MPC) framework that incorporates short-
term forecasts of tidal current speed U(t) and infers optimal control actions, such as pitch angle θ\thetaθ or torque 
setpoints. The MPC cost function can be formally written as: 

J=∑k=0N[α(Pmax(Uk)−Ppred(θk,Uk))2+β∣Δθk∣2]J = \sum_{k=0}^{N} \left[ \alpha (P_{\text{max}}(U_{k}) - 
P_{\text{pred}}(\theta_{k}, U_{k}))^2 + \beta \left|\Delta \theta_{k}\right|^2 \right]J=k=0∑N[α(Pmax(Uk)−Ppred(θk
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,Uk))2+β∣Δθk∣2] … Eqn 7 [87] where PmaxP_{\text{max}}Pmax is the theoretical maximum power, 
PpredP_{\text{pred}}Ppred comes from a data-driven predictive model (e.g., GPR or an ensemble surrogate such as 
RegStack), and α,β\alpha, \betaα,β are tuning weights that balance energy capture vs. control activity. This approach 
enables real-time adjustment of device parameters, improving energy yield and mitigating structural fatigue 
particularly relevant in wave–current interaction scenarios where high-frequency load fluctuations can amplify rotor 
stress [88]. Furthermore, for floating tidal systems (e.g., tethered undersea kites or buoyed designs like Evopod), 
diagnostic digital twins mirror real operations and detect anomalies [89]. These digital twins fuse asynchronous real-
time streams (rotor RPM, strain, pitch/yaw angles) with a hybrid model of hydrodynamics and device mechanics, 
enabling early detection of failures up to hours before occurrence. 

3.2. Predictive Maintenance (PdM) and Structural Health Monitoring (SHM) 

In the harsh marine environment, predictive maintenance is crucial, minimizing unscheduled downtime and costly 
repairs. Deep learning architectures, particularly CNNs and RNNs, paired with IoT sensor networks (vibration, 
temperature, acoustic emissions), provide robust frameworks for early anomaly detection [90]. A general PdM 
workflow involves Edge Feature Extraction: On-device DSP transforms raw sensor inputs into domain-relevant features 
(e.g., blow counts around blade-pass frequency). TinyML Classifier: A lightweight anomaly detector (e.g., decision tree 
or one-class CNN) flags deviations in real-time. Trigger and Upload: Only anomalous batches are transmitted, 
conserving bandwidth in subsea systems constrained by acoustic telemetry (~9 kbps) [91]. Cloud or Digital Twin 
Retraining: Anomaly records feed into digital twin backends for model re-training or RUL updates. Explainable AI (XAI) 
techniques like SHAP or saliency mapping help operators understand which features (harmonic distortion, sudden 
vibration spikes) triggered alerts critical for trust and operational adoption. 

3.3. Grid Integration and Forecast-Based Dispatch 

Reliable integration of tidal and ocean current energy into the grid relies on accurate short-term power forecasts. Recent 
hybrid models significantly improve accuracy: A Wavelet-Enhanced Convolutional Network (WCN) reduces MAE and 
MSE by up to 90% and 97% respectively over benchmarks in 10-step forecasting [92]. A Swarm-Decomposition + Meta-
Kernel ELM model achieves R2=0.9933R^2 = 0.9933R2=0.9933 in Gulf of Mexico tidal-to-power prediction [93]. A 
hybrid ANFIS–Kalman filter–Wavelet NN (WNN) model shows superior performance in current and power forecasting 
[94]. These forecasts inform dispatch strategies, enabling tidal farms to bid into electricity markets or coordinate with 
energy storage systems dynamically. Conformal prediction layers provide reliable uncertainty bounds for these 
forecasts:  

[ ŷ_(n + 1)  ±  q_(1 − α)(|e_i|) ] …… Eqn 8 [95] 

where; 

· y^n+1 = point forecast 

· q1−α(∣ei∣) = (1 − α)-quantile of past absolute residuals 

· Interval = symmetric prediction band around the forecast 

Thereby allowing operators to assess scheduling risk under nonstationary tidal regimes 

3.4. Data Assimilation, Digital Twins, and Edge-IoT Integration 

For real-time operational decision-making, data assimilation (DA) techniques fuse sensor observations with numerical 
models. An extended DA architecture involves: Ensemble Kalman filter (EnKF) merging ADCP or tidal gauge data into 
ROMS/FVCOM forecasts, reducing nearshore level errors [96]. An ML corrector (e.g., GPR or residual DNN) corrects 
model outputs for systematic biases. A digital twin backend integrates DA-corrected flow states with turbine asset 
digital models, enabling optimization loop with MPC, anomaly detection, and maintenance planning in near real-time. 
The SIoT layer ensures low-bandwidth condition-based signaling to the twin when anomalies arise [97]. 

3.5. Market Trends & Economic Impact 

According to [98], the global AI-enabled tidal energy market was USD 8.9 billion in 2023 and is forecasted to reach USD 
18.5 billion by 2030, growing at CAGR ~11%. AI integration is projected to: Increase turbine performance by ~15%, 
Reduce lifetime operation costs by ~17–20%, Cut O&M expenses by up to ~30% through predictive maintenance. 
Market adoption is driven by: Need for reliable dispatchable renewables, Falling costs of AI hardware and IoT 
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infrastructure, Better financial ROI from improved efficiency and reduced downtime. Control Optimization: MPC 
informed by predictive models enhances energy capture and lifetime. PdM: Deep learning combined with compact IoT 
and XAI enables efficient anomaly detection. Forecasting & Dispatch: Hybrid ML models with uncertainty quantification 
support grid integration. DA & Digital Twins: Real-time assimilation of sensor data into operational twins enables 
optimization. Economic Outlook: AI-driven tidal energy systems are catalyzing market growth with performance and 
cost benefits. 

3.6. Application of Smart Predictive Models in Different Marine Environments 

The application of smart predictive models in ocean and tidal current power generation varies significantly across 
different marine environments due to the diversity in hydrodynamic conditions, seabed morphology, ecological 
sensitivity, and infrastructure availability. These models, often built upon artificial intelligence (AI), machine learning 
(ML), and advanced data analytics, allow for precise adaptation to the unique operational challenges of each site. By 
tailoring predictive algorithms to local conditions, operators can optimize turbine placement, improve energy capture 
efficiency, and reduce maintenance costs while ensuring environmental compliance. This section examines their 
application in coastal waters, deep-sea environments, estuarine systems, and island-based microgrids, highlighting the 
specific benefits and constraints in each context. 

3.6.1. Coastal Waters 

Coastal waters offer relatively accessible sites for ocean and tidal current energy projects due to proximity to shore, 
existing port facilities, and shorter transmission distances; however, they also feature fluctuating tidal amplitudes, 
sediment transport, and strong seasonal wave variability. Smart predictive models in these regions increasingly fuse 
high-resolution hydrodynamic models with real-time observations to forecast power and loads, using machine-learning 
surrogates to accelerate physics (e.g., Fourier neural operators) and formal data-assimilation schemes to correct states 
and reduce forecast error [99, 100, 101]. For tidal arrays, active array-level control has been shown via detailed 
simulations to balance power capture against fatigue loading by allocating turbine set-points based on the local inflow, 
thereby improving load sharing and mitigating wake-induced stress [102]. At the dispatch level, optimization studies 
show that exploiting predictable tidal phases and analytically scheduling generation can smooth output and support 
coastal grid integration, with regional phase-diversity analyses outlining both the opportunities and practical limits 
[103, 104]. 

3.6.2. Deep-Sea Environments 

Deep-sea deployments typically target strong and consistent current flows such as those in the Gulf Stream or Kuroshio 
Current, offering high-capacity factors for energy generation. However, the extreme depth, high pressures, and 
challenging maintenance conditions necessitate robust predictive tools for operational planning. Smart predictive 
models in deep-sea contexts integrate remote sensing, computational fluid dynamics (CFD), and autonomous 
underwater vehicle (AUV) surveys to forecast long-term current variability [105]. Predictive maintenance algorithms 
also play a critical role, as physical intervention is costly and infrequent. An example is the application of deep learning-
based anomaly detection systems in Japan’s Kuroshio Current Pilot Project, which can detect early signs of gearbox wear 
in subsea turbines weeks before mechanical failure, reducing unplanned downtime by over 30% [106]. Moreover, these 
models enable scenario simulations for extreme weather events, helping design storm-resilient mooring systems and 
reducing structural fatigue. 

3.6.3. Estuarine Systems 

Estuaries provide high tidal ranges and predictable flow patterns, making them attractive for tidal barrage and tidal 
stream installations. Yet, these environments are ecologically sensitive, often supporting critical habitats and fisheries. 
Smart predictive models in estuarine projects focus heavily on balancing energy extraction with ecosystem protection. 
Hybrid modelling approaches combine hydrodynamic forecasts with ecological impact simulations to predict how 
changes in flow velocity might affect sediment transport, water quality, and species distribution [107]. The Swansea 
Bay Tidal Lagoon in Wales, for instance, has employed AI-driven sediment transport models that help schedule turbine 
operations to avoid peak fish migration periods and minimize silt resuspension [108]. This integration of environmental 
and operational data supports both regulatory compliance and public acceptance. 

3.6.4. Island-Based Microgrids 

For island communities, tidal and ocean current power can offer a sustainable alternative to expensive and polluting 
diesel generation. The limited scale of such projects requires predictive models that can optimize performance under 
variable demand and seasonal oceanographic shifts. Here, smart predictive models often integrate renewable 
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generation forecasting with microgrid management systems to ensure stable supply. Machine learning algorithms can 
predict daily tidal generation profiles and dynamically schedule battery charging to minimize curtailment and blackouts 
[109]. A notable example is the Orkney Islands project in Scotland, where predictive models forecast tidal energy 
availability alongside wind and solar outputs, enabling a hybrid renewable system that has cut diesel dependency by 
over 60% [110]. In addition, fault detection models have been deployed to ensure rapid isolation of malfunctioning 
turbines, preventing cascading failures in isolated grids. Smart predictive models enhance the viability of ocean and 
tidal current power projects across diverse marine environments by tailoring operational strategies to local conditions. 
Whether in coastal waters, deep-sea deployments, estuarine ecosystems, or island microgrids, these models enable 
higher efficiency, lower costs, and more sustainable integration of marine renewables into energy systems. 

 

Figure 1 Conceptual diagram of recent advances in ocean wave energy harvesting [111] 

3.7. Comparative Analysis of Smart Predictive Models for Energy Efficiency in Ocean and Tidal Current Power 
Generation 

Smart predictive models have emerged as transformative tools in optimizing energy efficiency within ocean and tidal 
current power generation systems. This comparative analysis examines their effectiveness relative to traditional 
predictive and control approaches, focusing on their accuracy, adaptability, computational cost, and scalability in real-
world deployment. 

3.7.1. Effectiveness and Efficiency 

Traditional methods for predicting ocean and tidal current outputs often rely on empirical correlations, deterministic 
hydrodynamic models, or simplified linear forecasting techniques. Although these models are interpretable, they 
struggle with the highly non-linear and dynamic behavior of tidal flows influenced by seasonal variability, turbulence, 
and climate-driven changes [112]. Smart predictive models, particularly those built on machine learning (ML) and deep 
learning (DL) architectures, have demonstrated superior forecasting performance for both short- and long-term energy 
yield. For instance, hybrid approaches that integrate Long Short-Term Memory (LSTM) networks with physics-
informed constraints achieve up to a 35% reduction in Mean Absolute Percentage Error (MAPE) compared to 
conventional hydrodynamic simulations [113]. Furthermore, predictive control algorithms utilizing real-time sensor 
data can dynamically optimize turbine blade pitch and yaw, improving net energy capture by as much as 18% without 
significantly increasing mechanical stress [114]. 

3.7.2. Economic Considerations 

Economically, the adoption of smart predictive models offers considerable potential to reduce operational and 
maintenance (O&M) costs. ML-powered condition-based maintenance strategies can minimize unnecessary inspections 
while preventing catastrophic equipment failures, saving medium-sized tidal farms an estimated $0.5–1.2 million 
annually [115]. However, high upfront investment in sensing infrastructure and computational platforms remains a 
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major barrier, particularly in resource-constrained regions. The balance between capital expenditure (CAPEX) and long-
term cost savings is strongly site-specific: projects in regions with highly variable tidal resources derive greater 
economic benefit from predictive optimization, whereas those in stable flow regimes may experience reduced returns 
on investment. 

3.7.3. Environmental Impact 

A significant comparative advantage of smart predictive systems lies in their potential to minimize ecological 
disturbances. By accurately forecasting peak flow periods and adjusting turbine operations dynamically, these systems 
can reduce collision risks for marine organisms and limit hydrodynamic disruptions that affect sediment transport and 
fish migration [116]. In contrast, conventional control systems often operate at fixed settings, inadvertently heightening 
environmental impacts. Moreover, AI-driven eco-optimization algorithms can balance energy harvesting objectives 
with biodiversity conservation, thereby supporting both SDG 7 (Affordable and Clean Energy) and SDG 14 (Life Below 
Water). 

3.7.4. Scalability and Integration 

Scalability presents a mixed outcome when comparing AI-based systems with traditional approaches. On the one hand, 
smart predictive models excel in handling multi-turbine arrays and integrating heterogeneous data streams such as 
satellite altimetry, sonar mapping, and meteorological forecasts. On the other hand, their effectiveness depends heavily 
on continuous data availability and robust computational resources [117]. While interoperability with Supervisory 
Control and Data Acquisition (SCADA) platforms is steadily improving, the lack of standardization across turbine 
manufacturers and project operators remains a critical challenge to large-scale adoption. 

3.7.5. Synthesis of Comparative Findings 

Table 2 Comparative strengths and weaknesses of smart predictive models versus traditional approaches in the context 
of ocean and tidal current power generation. 

Criteria Traditional Models Smart Predictive Models 

Forecast Accuracy Moderate High (up to 35% MAPE reduction) 

Adaptability Low High (real-time adaptation) 

O&M Cost Reduction Limited Significant (up to $1.2M/year) 

Environmental Impact Often neglected Actively minimized 

CAPEX Requirements Low to Moderate High initial investment 

Scalability Moderate High with data and infrastructure availability 

 

While traditional models retain some advantages in simplicity, low capital requirements, and ease of interpretation, 
smart predictive models offer transformative improvements in accuracy, adaptability, and sustainability. Future 
advancements in low-cost sensor networks, edge computing, and standardized data exchange protocols are likely to 
reduce the current adoption barriers, paving the way for their widespread application in ocean and tidal current energy 
systems. 
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Table 3 Comparism of Relevant Literatures. 

Paper Title Paper 
Reference 

Objectives Methods Used Results Practical 
Implications 

Featuring Wave and 
Tidal Energy 
Conversion With AI 
and ML 

[118] Incorporate AI and 
ML in wave energy 
conversion; 
support clean 
energy in cities 

AI, ML 
techniques 

Enhanced wave 
energy 
conversion 
efficiency 

Supports 
sustainable 
urban living; 
improves energy 
systems 

Abundance Ocean 
Wave Energy to 
Electricity With AI 
and IoT 

[119] Explore AI and IoT 
in wave energy 
conversion 

AI, IoT solutions Improved 
efficiency and 
sustainability 

Supports clean 
energy in smart 
cities 

Integrated DL 
Model for 
Predicting Power 
from WEC 

[120] Predict power from 
wave energy 
converters 

LSTM + PCA, 
SVM, RT, GPR, ET 

Outperformed 
LSTM alone; 
reduced 
operational costs 

Improved 
electricity 
management, 
reduced 
uncertainty 

AI Nonlinear Auto-
Regressive NN 
Modeling of Sea 
Wave Generator 

[121] Model/design sea 
wave generator 

NARX-NN, two-
layer NN 

Efficient tracking 
of generator 
output with low 
error 

Enables ships to 
be powered by 
sea wave 
generators 

AI-powered Digital 
Twin of the Ocean 

[122] Real-time wave 
height prediction 

LSTM, deep 
ensemble, 
calibration 

R² > 0.9, 50% 
better 
uncertainty 
quality 

Improves WEC 
availability, 
stability 

Swarm 
Intelligence-based 
Multi-Layer Kernel 
Meta ELM for Tidal 
Power Prediction 

[123] Forecast tidal 
current-to-power 

Swarm 
Decomposition, 
Meta ELM 

MSE reduced 5×, 
R² = 0.9933 

Optimizes power 
management, 
grid stability 

 Multi-Layer 
Artificial Neural 
Networks Based 
MPPT-Pitch Angle 
Control of a Tidal 
Stream Generator 

[124] Improve tidal 
power quality 

ANN, MPPT, 
pitch control 

Smoothed power 
output in swell 

Better 
integration of 
tidal power 

Machine Learning 
Applications in 
Wave Energy 
Forecasting.  

[125] Examine ML 
methods for wave 
energy 

DL, ensemble, 
hybrid models 

Hybrid models 
improved 
accuracy 

Enhanced 
forecasting for 
grid integration 

AI in Renewable 
Energy and 
Efficiency 

[126] Estimate energy 
potential, optimize 
ops 

AI, ANN Accurate 
estimation and 
optimization 

Improves 
renewable 
energy 
performance 

Novel Wave Height 
& Energy Spectrum 
Forecasting 

[127] Evaluate 
forecasting models 

SMB, EANN, 
WANN 

EANN best for 
hourly, 
WANN/SMB for 
daily 

Optimizes 
offshore energy, 
shipping 
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3.8. Challenges and Limitations 

The integration of smart predictive models for enhancing energy efficiency in ocean and tidal current power generation 
offers promising opportunities; however, it is not without its challenges and limitations. These barriers span technical, 
environmental, economic, and regulatory dimensions, often requiring holistic approaches to overcome. 

3.8.1. Technical Challenges 

One of the most significant technical hurdles is the high variability and unpredictability of ocean and tidal currents. 
While machine learning (ML) and artificial intelligence (AI) models are designed to handle complex data patterns, their 
predictive accuracy is contingent on the quality, resolution, and availability of historical and real-time data. In many 
regions, comprehensive datasets on oceanographic conditions are sparse, outdated, or inconsistent, leading to model 
overfitting or underperformance when applied to real-world conditions [128]. Additionally, deploying sensors and 
monitoring systems in harsh marine environments subjects hardware to corrosion, biofouling, and extreme mechanical 
stress. This affects data continuity, which is crucial for training and updating predictive algorithms. Furthermore, 
computational requirements for advanced models such as deep neural networks can be prohibitive in offshore 
operations, necessitating edge-computing solutions or hybrid cloud architectures that can withstand latency and 
connectivity issues [129]. 

3.8.2. Environmental and Ecological Concerns 

While predictive models can optimize turbine performance, the algorithms themselves do not eliminate environmental 
risks. Ocean and tidal energy devices can disrupt marine habitats, migratory patterns, and sediment transport. 
Predictive control strategies may inadvertently increase operational loads on equipment during sensitive periods, 
unless explicitly trained with ecological impact constraints. Integrating biodiversity-aware AI models remains an 
underexplored area that could ensure efficiency improvements do not come at the expense of ecosystem stability [130]. 

3.8.3. Economic and Infrastructural Barriers 

The cost of implementing AI-driven predictive systems remains high, particularly for small-scale or pilot ocean energy 
projects in developing economies. Expenses include high-precision sensors, subsea communication systems, 
computational infrastructure, and skilled personnel for data science and marine engineering. Without long-term 
financing mechanisms or policy incentives, commercial-scale adoption may be restricted to well-funded projects in 
developed nations. Moreover, the lack of standardization in data formats and interoperability between predictive 
models and existing SCADA (Supervisory Control and Data Acquisition) systems can hinder seamless integration. 

3.8.4. Regulatory and Policy Limitations 

Regulatory frameworks for marine energy are still nascent in many jurisdictions. Many ocean energy projects undergo 
lengthy permitting processes due to marine spatial planning requirements, environmental impact assessments, and 
stakeholder consultations. Predictive models can help in risk-based decision-making, but unclear or fragmented policy 
environments may discourage investment in intelligent optimization systems [131]. In addition, data privacy and 
cybersecurity concerns arise when cloud-based AI systems handle sensitive operational and environmental datasets. 

3.8.5. Research Gaps 

While the literature demonstrates the potential of predictive AI in improving tidal and ocean current energy conversion 
efficiency, limited field validation remains a key bottleneck. Most models are trained and tested in simulated 
environments or short-term pilot studies, which may not capture long-term degradation effects, extreme weather 
events, or seasonal variability. Future work should focus on multi-year validation studies and cross-site transferability 
of models to enhance generalizability. Overcoming these challenges will require multidisciplinary collaboration 
between ocean engineers, AI developers, ecologists, and policymakers. Addressing these limitations can pave the way 
for reliable, efficient, and environmentally sustainable ocean and tidal current power generation systems powered by 
smart predictive models. 

3.9. Future Directions and Recommendations 

The integration of smart predictive models in ocean and tidal current power generation is still in its early stages, leaving 
significant room for technological, operational, and economic advancements. Future research should focus on 
enhancing model accuracy, scalability, and adaptability to diverse marine environments. Emerging technologies such 
as Explainable AI (XAI) can be deployed to increase transparency in decision-making, enabling operators and 
stakeholders to trust model outputs, especially in high-stakes energy projects. Furthermore, hybrid predictive 
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frameworks that combine physics-based hydrodynamic models with data-driven AI algorithms can overcome 
limitations of purely statistical or empirical approaches, ensuring both accuracy and interpretability. Advancements in 
edge computing and IoT-enabled sensor networks will play a critical role in reducing latency and improving real-time 
energy optimization. Future systems could incorporate self-learning algorithms that adapt to seasonal hydrodynamic 
variations, marine ecosystem changes, and unforeseen operational disruptions without requiring frequent human 
intervention. These adaptive capabilities will be particularly valuable in regions with complex tidal cycles or 
unpredictable weather patterns. On the economic front, predictive models must be optimized not just for energy yield, 
but also for cost-effectiveness and lifecycle sustainability. Future research should investigate how multi-objective 
optimization techniques can balance competing priorities such as maximum energy capture, minimal maintenance 
costs, and reduced ecological impact. Additionally, digital twin technology can be leveraged to create virtual replicas of 
tidal farms, enabling scenario testing and predictive maintenance planning without risking real-world downtime. From 
a policy and regulatory standpoint, future efforts should focus on standardizing data collection protocols across 
different tidal energy projects to ensure interoperability and model portability. International collaboration could 
facilitate the creation of open-access marine energy datasets, reducing the time and cost of model training. The 
integration of climate change projections into predictive frameworks will also be essential, as rising sea levels, 
temperature shifts, and altered ocean currents may impact tidal energy patterns over the coming decades. There is a 
need to explore community-driven participatory modeling, where local knowledge of marine conditions complements 
sensor-based datasets. This collaborative approach could improve predictive accuracy in under-monitored regions and 
foster public acceptance of tidal energy projects. If these directions are pursued, smart predictive models have the 
potential to become a cornerstone technology in making ocean and tidal current power generation more efficient, 
sustainable, and resilient. 

4. Conclusion 

The integration of smart predictive models into ocean and tidal current power generation represents a transformative 
step toward achieving optimal energy efficiency, reliability, and sustainability in marine renewable energy systems. 
Unlike conventional reactive approaches, these models leverage artificial intelligence, machine learning, and data-
driven analytics to forecast energy production, optimize operational parameters, and predict potential maintenance 
needs. This enables a proactive, adaptive management strategy that reduces energy losses, minimizes downtime, and 
ensures consistent power output despite the inherent variability of marine environments. The adoption of predictive 
modeling in this domain is particularly critical because ocean and tidal current energy systems operate under dynamic 
and often harsh environmental conditions. Predictive models help operators anticipate fluctuations in current velocity, 
water temperature, turbulence, and biofouling effects, which traditionally hinder consistent performance. By 
integrating real-time sensor data with historical patterns, these models can dynamically adjust turbine pitch, generator 
load, and energy storage utilization, ultimately enhancing the net energy yield. From a sustainability perspective, smart 
predictive models play a pivotal role in aligning marine renewable energy systems with global clean energy targets, 
particularly Sustainable Development Goal 7 (Affordable and Clean Energy). By optimizing performance and extending 
equipment lifespan, they contribute to reducing the overall levelized cost of energy (LCOE), making ocean and tidal 
current power more economically competitive with fossil fuel-based generation. Moreover, their ability to reduce 
unnecessary maintenance interventions and vessel trips also minimizes the carbon footprint of marine energy 
operations. However, the full potential of these technologies can only be realized through overcoming key challenges 
such as high computational requirements, the need for robust offshore communication infrastructure, and the scarcity 
of large-scale, high-quality marine datasets for model training. Collaborative efforts between academia, industry 
stakeholders, and policymakers will be essential to establish standardized data-sharing protocols, incentivize 
innovation, and foster investment in marine digitalization. In conclusion, smart predictive models are not merely an 
operational enhancement but a strategic enabler of the future marine energy landscape. They hold the capacity to turn 
the unpredictability of ocean and tidal resources into a manageable and optimizable asset, unlocking higher efficiency, 
lower costs, and a cleaner energy future. As research and deployment efforts continue to mature, these technologies 
will play an indispensable role in scaling up ocean and tidal current energy, ensuring it becomes a reliable cornerstone 
of the global renewable energy mix. 
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