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Abstract 

We present a reproducible, low-cost stereo perception stack for the ARMOS TurtleBot that couples two OV7670 cameras 
to two ESP-WROOM-32 microcontrollers and a ROS pipeline on a Raspberry-Pi. A rigid T-mount fixes a 75 mm baseline; 
each sensor streams QVGA grayscale via an 8-bit DVP bus to its dedicated ESP32 using I2S-parallel with DMA. A shared 
pixel clock and microsecond VSYNC time-stamps enforce pairing with a 1 ms threshold, and frames are transported to 
the host using UDP (nominal) or UART (fallback). The method comprises photometric standardization, stereo 
calibration and rectification, SGBM disparity, depth recovery, and publication of costmaps for navigation; we report 
throughput, latency, synchronization, and depth accuracy across indoor scenarios. With QVGA over UDP, the pipeline 
sustains 12 fps at disparity, attains a median end-to-end latency near 94 ms (95th percentile under 120 ms), and yields 
costmap hit rates above 95% within 1.5 m. Mean absolute depth error grows with range (1.7 cm at 0.5 m to 12.8 cm at 
3.0 m), consistent with the pinhole model. Ablations show that QQVGA over UART lowers median latency but reduces 
frequency and accuracy, while light JPEG reduces bandwidth variance at a modest long-range penalty. Mechanical 
drawings, bill of materials, firmware, and ROS configurations are provided to support replication.  
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1. Introduction

Mobile robots that operate in indoor spaces benefit from dense, short-range depth perception that updates quickly and 
does not burden limited onboard resources [1–3]. High-end depth sensors provide this information with little 
engineering effort, but their cost, power draw, and opaque processing pipelines limit adoption in educational and 
research settings [4, 5]. This paper addresses that gap on the ARMOS TurtleBot by pursuing stereo vision with 
commodity parts and a disciplined software stack [6, 7]. The sensing head uses two compact OV7670 modules on a rigid 
T-shaped mount that fixes the optical baseline at 𝐵 = 75 𝑚𝑚, while the embedded tier relies on two ESP-WROOM-32
microcontrollers placed close to the cameras [8–10]. The host computer is a Raspberry Pi running ROS and OpenCV,
which completes rectification, disparity estimation, depth recovery, and mapping at a cadence suitable for navigation
[11].

A careful choice of architecture underpins this effort. Each camera connects to its own ESP32 through the 8-bit DVP 
interface and is configured over SCCB, which keeps capture deterministic and avoids contention found in single-MCU, 
dual-sensor designs [12]. A shared pixel clock (𝑋𝐶𝐿𝐾) is distributed to both sensors to align sampling, and microsecond 
time-stamps recorded at 𝑉𝑆𝑌𝑁𝐶  enforce a simple pairing rule on the host. Image transport uses UDP on the local 
network in the nominal mode, with a UART fallback when radio conditions degrade; both links share the same framing 
[13]. The camera output is constrained to QVGA grayscale to balance bandwidth and matching quality on an ARM-class 
host without hardware acceleration [14]. 
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The objective is to deliver a reproducible stereo stack that converts synchronized images into rectified pairs, disparity, 
depth, point clouds, and costmaps ready for the ARMOS navigation pipeline [15]. The operating envelope targets indoor 
scenes with useful range in 0.25–3.5 𝑚, moderate robot motion, and typical illumination. Design goals include an end-
to-end update rate of 10–15 𝐻𝑧 and a latency budget below 120 𝑚𝑠, measured from exposure to costmap publication. 
The geometry follows the pinhole relation 𝑍 = (𝑓𝑥𝐵)/𝑑, which guides parameter choices such as disparity range and 
baseline, and frames expectations for accuracy as distance grows. Scope is limited to stereo-derived geometry and its 
use in local mapping; global SLAM, semantics, and GPU methods are outside the present study. 

The manuscript contributes four elements that, taken together, make the system practical to build and evaluate. First, 
it details a hardware layout with dual OV7670 sensors, dual ESP32 boards, shared 𝑋𝐶𝐿𝐾 distribution, and wiring rules 
that preserve signal integrity on the DVP bus. Second, it presents firmware that configures the sensors, captures lines 
via I2S-parallel with DMA, extracts luma at the source, and emits packets with microsecond time-stamps and integrity 
checks. Third, it specifies a ROS pipeline on the Raspberry Pi covering synchronization, stereo calibration and 
rectification, SGBM disparity, depth computation, and publication of mapping products. Fourth, it defines an evaluation 
protocol with metrics for throughput, latency decomposition, synchronization quality (|𝛥𝑡|), depth error (MAE and 
RMSE versus distance), valid-pixel ratio, and navigation outcomes; all calibration files, pin maps, bill of materials, mount 
drawings, and launch configurations are versioned to support replication. 

A brief preview of findings sets expectations for the remainder of the paper. With QVGA over UDP (Mode A), the pipeline 
sustains about 12 𝑓𝑝𝑠  at the matching stage, achieves a median end-to-end delay near 94 𝑚𝑠 , and yields obstacle 
costmaps that exceed a 95% hit rate within 1.5 𝑚 [16]. A lower-resolution mode over UART reduces median latency but 
limits frequency and increases error beyond 2 𝑚, while a compressed QVGA mode trades capture-side time for lower 
network variance with small accuracy penalties at longer ranges. Synchronization remains within a 1 𝑚𝑠  pairing 
threshold for the large majority of frames, and embedded overruns are rare under the selected rates. The paper 
proceeds as follows: the system overview establishes the architecture and timing model; hardware and firmware 
document the mount, electronics, power, and pin mapping; methods describe calibration, rectification, disparity, depth, 
and mapping; the experimental setup covers testbeds, environments, configurations, and protocols; results and 
discussion analyze performance, accuracy, ablations, and navigation behavior; and conclusions summarize implications, 
limitations, and directions for future work. 

2. System overview 

The system is organized in four layers that map cleanly onto the ARMOS TurtleBot: mechanics, sensing, embedded 
capture, and host perception. A rigid T-shaped mount sets a fixed optical baseline of 𝐵 = 75 𝑚𝑚 with two compact 
OV7670 modules aligned on the cross-member, while the mount’s stem couples to the robot top plate for repeatable 
pose with respect to base_link. Each camera is paired with its own ESP-WROOM-32 placed close to the sensor to shorten 
the parallel bus and reduce signal integrity issues. To keep transport and processing budgets bounded on an ARM-class 
host, the sensors output QVGA grayscale, and higher-level vision runs on a Raspberry Pi under ROS. This partitioning 
keeps the embedded side limited to deterministic capture and minimal pre-processing, and leaves calibration, 
rectification, matching, and mapping to the host where memory and tooling are available. 

At the sensing interface, each OV7670 delivers an 8-bit DVP stream {𝐷0, … , 𝐷7, 𝑃𝐶𝐿𝐾, 𝐻𝑅𝐸𝐹, 𝑉𝑆𝑌𝑁𝐶}  under SCCB 
control for register programming. The corresponding ESP32 uses the I2S peripheral in parallel/LCD mode with DMA 
and double buffering; lines are sampled on 𝑃𝐶𝐿𝐾 and gated by 𝐻𝑅𝐸𝐹, while 𝑉𝑆𝑌𝑁𝐶 marks frame boundaries. A single 
clock source on one ESP32 generates 𝑋𝐶𝐿𝐾 (nominally 10–12 𝑀𝐻𝑧) and fans it out to both sensors with matched leads 
to minimize skew. Each frame is time-stamped at the 𝑉𝑆𝑌𝑁𝐶 rising edge with a microsecond counter; the host admits a 
left–right pair only if |𝛥𝑡| ≤ 1 𝑚𝑠. Frames are transported to the Raspberry Pi over UDP in the nominal mode, with a 
high-baud UART fallback; a light header carries frame ID, timestamp, dimensions, mode flags, and a CRC. 

Throughput and latency budgets guide all configuration choices. Per camera, the raw rate is: 

𝑅𝑐𝑎𝑚 = 𝑊 𝐻 𝑏 𝑓𝑟 [𝑏𝑖𝑡 𝑠−1]        … … ….    (1) 

with image width 𝑊, height 𝐻, bits per pixel 𝑏, and frame rate 𝑓𝑟. For QVGA grayscale (𝑊 = 320, 𝐻 = 240, 𝑏 = 8) at 
𝑓𝑟 = 12 𝐻𝑧 , this yields 𝑅𝑐𝑎𝑚 = 7.3728 × 106 𝑏𝑖𝑡 𝑠−1  (≈ 0.92 𝑀𝐵 𝑠−1 ), so the stereo sum remains near 1.84 𝑀𝐵 𝑠−1 
before headers. End-to-end delay is tracked as: 

𝐿𝑡𝑜𝑡 = 𝐿𝑐𝑎𝑝 + 𝐿𝑡𝑥 + 𝐿𝑠𝑦𝑛𝑐 + 𝐿𝑟𝑒𝑐𝑡 + 𝐿𝑠𝑔𝑏𝑚 + 𝐿𝑝𝑜𝑠𝑡        … … ….    (2) 
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and the system is tuned so that 𝐿𝑡𝑜𝑡 < 120 𝑚𝑠 at 10–15 𝐻𝑧. On the host, ROS nodes ingest packets, enforce the pairing 
rule, apply stored calibration and rectification maps, compute SGBM disparity, recover depth, and publish point clouds 
and costmaps for the navigation stack, using standard sensor_msgs and nav interfaces. This overview removes duplicate 
diagrams while keeping the essential interfaces, rates, and timing assumptions explicit for replication. 

2.1. Hardware and Firmware 

The stereo head is a compact, rigid T-shaped assembly that fixes the optical baseline at 𝐵 = 75 𝑚𝑚 and hosts two 
OV7670 modules on the cross-member. The mount bolts to the TurtleBot top plate with a repeatable pose relative to 
base_link, and its geometry keeps mass close to the robot centerline to limit pitch under acceleration. Camera PCBs 
(about 28 × 28 𝑚𝑚) seat flush against the cross-member; lens focus is adjusted once during calibration and then locked. 
Cable strain is relieved at the stem to prevent slow drift of extrinsics, and the harness exits rearward to minimize 
occlusions in the field of view. 

Figure 1 documents the physical prototype and its key dimensions used throughout the study. Panel (a) shows the front 
view with the fixed baseline B=75 mm, the approximate OV7670 PCB size ( 28×28 mm), and the cross-member and 
stem dimensions that constrain mass and cable routing. Panels (b) and (c) provide oblique views of the assembled head 
and a tape-measure verification of the baseline, respectively. The ESP-WROOM-32 boards are located close to the 
sensors to shorten the 8-bit DVP buses, and the harness exits rearward to minimize occlusions. These images ground 
the mechanical description and will be referenced for replication and calibration alignment. 

 

Figure 1 Stereo head and prototype assembly. (a) Front view with key dimensions and the fixed baseline 𝑩 = 𝟕𝟓 𝒎𝒎. 
(b) Oblique view of the mounted head. (c) Baseline verification by tape measure. OV7670 modules (28 mm PCBs) are 

mounted on a rigid T-plate; ESP-WROOM-32 boards are placed near the sensors to shorten DVP runs 
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Electrically, each OV7670 connects to its own ESP-WROOM-32 over the 8-bit DVP bus {𝐷0, … , 𝐷7, 𝑃𝐶𝐿𝐾, 𝐻𝑅𝐸𝐹, 𝑉𝑆𝑌𝑁𝐶}, 
with SCCB (I2C-compatible) for register programming. The ESP32 uses the I2S peripheral in parallel/LCD receive mode 
with DMA and double buffering; pixels are sampled on 𝑃𝐶𝐿𝐾, gated by 𝐻𝑅𝐸𝐹, and bounded by 𝑉𝑆𝑌𝑁𝐶. A single clock 
source on one ESP32 generates 𝑋𝐶𝐿𝐾 (nominally 10–12 𝑀𝐻𝑧) and fans it out to both sensors with matched leads to 
limit skew; each frame receives a microsecond time-stamp at the rising edge of 𝑉𝑆𝑌𝑁𝐶. Frames are transported to the 
Raspberry Pi over UDP in the nominal mode, with a high-baud UART fallback; a light header carries frame ID, time-
stamp, dimensions, mode flags, and a CRC. 

Power delivery and grounding are dimensioned for stable capture and radio bursts on the 3.3 V rail. The regulator is 
sized at ≥ 1 𝐴 with headroom. Grounds from both sensors and both MCUs return in a short star topology; DVP runs use 
short, impedance-aware routes with 𝑃𝐶𝐿𝐾  and the data bundle kept together. Where ringing is observed, 22–33 𝛺 
series dampers on 𝑃𝐶𝐿𝐾 and the longest data lines are recommended. Harnesses are kept as short as practical on the 
moving platform and routed away from high-current motor wiring to reduce conducted and radiated coupling. 

GPIO assignment follows two practical rules rather than a fixed, board-specific map. First, place 𝐷0–𝐷7 on input-capable 
lines with clean paths through the GPIO matrix to I2S (the input-only group is well suited); second, route 𝑃𝐶𝐿𝐾, 𝐻𝑅𝐸𝐹, 
and 𝑉𝑆𝑌𝑁𝐶 to interrupt-capable inputs that the I2S engine can latch reliably. Avoid strapping pins and RF-critical lines, 
and keep the 𝑋𝐶𝐿𝐾  output on an LEDC channel with low-jitter configuration. On boot, firmware resets the sensor, 
selects 𝑌𝑈𝑉422, windows to QVGA, and fixes exposure/white-balance after a brief search; the luma channel 𝑌 is extracted 
in place to cut payload while preserving structure for matching. Capture uses DMA ping-pong buffers, frame 
completeness is flagged at 𝑉𝑆𝑌𝑁𝐶, and packets carry microsecond time-stamps; diagnostics include sensor-ID reads, a 
color-bar mode, counters for DMA overruns and CRC errors, and a watchdog that re-initializes capture after repeated 
faults. Optional JPEG compression is offered as a run-time switch when bandwidth must be reduced, with the 
understanding that it adds capture-side latency on the MCU. 

3. Methods 

The processing pipeline converts synchronized QVGA grayscale images into depth and mapping products for navigation 
on the ARMOS TurtleBot. Work is partitioned so that the microcontrollers perform deterministic capture and luma 
extraction, while the Raspberry Pi executes calibration, rectification, matching, depth recovery, and publication of 
mapping layers. Design targets are an indoor operating range of 0.25–3.5 𝑚, an end-to-end update rate of 10–15 𝐻𝑧, and 
bounded latency consistent with the system overview. The pipeline stages are: acquisition and pairing; photometric 
standardization; stereo calibration; rectification and cropping of the common valid region; SGBM disparity; depth 
computation and light post-filtering; point cloud and pseudo-scan generation; and costmap publication. 

Frame synchronization relies on hardware clocking and explicit time-stamps. A single 𝑋𝐶𝐿𝐾 source is fanned out to 
both OV7670 sensors with matched leads, aligning pixel sampling at the source. Each ESP-WROOM-32 records a 
microsecond time-stamp on the rising edge of 𝑉𝑆𝑌𝑁𝐶 and attaches it to the frame header. The host admits a stereo pair 
(𝐼𝐿, 𝐼𝑅) only if the absolute skew |𝛥𝑡| = |𝑡𝑅 − 𝑡𝐿| does not exceed a configurable bound of 1 𝑚𝑠; otherwise, the older 
frame is dropped or re-indexed to the nearest valid neighbor. The pairing node maintains running statistics of |𝛥𝑡| and 
rejection counts, which are reported in the results section and used to diagnose transport or encoder timing issues. 

Photometric standardization reduces bias between the two image streams before matching. Sensors are configured for 
𝑌𝑈𝑉422 output, and the luma channel 𝑌 is extracted at the source to limit payload while preserving structure. After a 
brief exposure search on a reference view, automatic exposure and white balance are disabled and the derived gains 
are fixed on both cameras. A lightweight check compares mean and variance over a calibration chart; if the deviation 
exceeds a small tolerance, a linear gain/offset is applied to equalize gray levels. This policy improves cost-volume 
reliability in low-texture regions without adding substantial computation. 

Stereo calibration estimates intrinsics and extrinsics from at least 25 stereo views of a planar chessboard covering 
depth, pitch, and yaw. Let 𝐾ℓ, 𝐾𝑟 and 𝐷ℓ, 𝐷𝑟 be the intrinsic matrices and distortion vectors; the relative pose is (𝑅, 𝑡) 
with ∥ 𝑡 ∥  close to the nominal baseline 𝐵 = 75 𝑚𝑚 . Parameters are obtained by minimizing the sum of squared 
reprojection errors with outlier rejection; acceptance requires a mean reprojection error below 0.5 𝑝𝑥. Rectification 
then computes 𝑅ℓ, 𝑅𝑟  and 𝑃ℓ, 𝑃𝑟 so that epipolar lines are horizontal, and precomputed remap grids ℳℓ, ℳ𝑟 are applied 
at runtime. Artifacts (𝐾, 𝐷, 𝑅, 𝑡, rectification maps, and 𝑄) are stored in versioned YAML files. 

Disparities are computed on rectified grayscale pairs using Semi-Global Block Matching with parameters chosen from 
simple geometric considerations. The search range is set from zero to a maximum 
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𝐷𝑚𝑎𝑥 ≈ ⌈
𝑓𝑥𝐵

𝑍𝑚𝑖𝑛 ⋅ 16
⌉ ⋅ 16               … … ….      (3) 

rounded to the nearest multiple of sixteen for efficiency, where 𝑓𝑥 is the focal length in pixels and 𝑍𝑚𝑖𝑛 is the minimum 

working distance. Smoothness follows 𝑃1 = 8 𝑐 blockSize2 and 𝑃2 = 32 𝑐 blockSize2 with 𝑐 = 1 for 8-bit images; we use 
blockSize ∈ {5,7} , uniquenessRatio ∈ [10,15] , and speckle filtering with speckleWindowSize ∈ [50,100]  and 
speckleRange ∈ [1,2]. A left–right check rejects inconsistent disparities and defines a confidence mask that is carried 
into depth post-processing. 

Depth follows the pinhole relation 

𝑍 =
𝑓𝑥𝐵

𝑑
,   𝑑 > 0           … … ….   (4) 

and its first-order sensitivity to disparity noise 𝜎𝑑 is 

𝜎𝑍 ≈
𝑓𝑥𝐵

𝑑2
 𝜎𝑑  … … … . (5) 

We apply a small median filter on 𝑍, clip the range to [0.25,3.5] 𝑚, and propagate the confidence mask to suppress 
unreliable estimates. The rectified pair, disparity, depth, and the stereo reprojection matrix 𝑄 produce a point cloud 
that can be voxelized for bandwidth and memory control. A pseudo-2D scan is optionally derived from the front arc of 
the cloud for costmap updates, and all topics are published with consistent TF frames 
{camera_left_optical,camera_right_optical,base_link} using the calibrated transforms. 

4. Experimental setup 

The testbed is an ARMOS TurtleBot equipped with a compact T-shaped stereo head and a Raspberry Pi running ROS for 
perception and mapping. The mount fixes the optical baseline at 𝐵 = 75 𝑚𝑚 and is fastened to the robot top plate with 
a repeatable pose relative to base_link. Each OV7670 module is paired with a dedicated ESP-WROOM-32 placed close to 
the sensor to shorten the 8-bit DVP bus and improve signal integrity. Sensors operate in QVGA grayscale to bound 
bandwidth and computation on the host, while the microcontrollers handle deterministic capture and luma extraction. 
This arrangement keeps the embedded tier lean and leaves calibration, rectification, disparity, depth, and costmap 
publication to the Raspberry Pi using standard ROS messages and TF frames. 

Trials were conducted in three indoor scenarios representative of local navigation: a corridor, a furnished lab room, and 
a doorway crossing. For each scenario, obstacles were placed at nominal ranges of 0.5 m, 1.0 m, 2.0 m, and 3.0 m using 
planar targets and common objects with varied reflectance. Illumination was recorded so runs could be associated with 
lighting conditions that influence correspondence quality; warm-up periods (a few minutes) stabilized sensors and 
wireless links prior to logging. Each configuration was executed in at least five runs with moderate linear and angular 
speeds to stress pairing and timing without inducing motion blur. Logged data included rectified images or depth, 
disparity, point clouds when enabled, odometry, IMU, TF, costmap layers, and telemetry counters (drops, CRC errors, 
DMA overruns, watchdog events). 

Transport and time bases were configured to separate sensing from link variability. UDP over the local network was the 
nominal path from each ESP32 to the host, while a high-baud UART served as a fallback in constrained RF conditions; 
both links used identical frame headers with an ID, a microsecond timestamp sampled at VSYNC, dimensions, mode 
flags, and a CRC. Stereo pairing on the host admitted a left–right pair only if |𝛥𝑡| ≤ 1 𝑚𝑠, where 𝛥𝑡 is the skew between 
VSYNC timestamps; frames outside this bound were dropped or re-indexed to the nearest valid neighbor. Runtime 
modes were defined as follows: Mode A (QVGA Y8 over UDP), Mode B (QQVGA Y8 over UART at a realistic 8–10 fps with 
0.9216–2 Mbps links), and Mode C (QVGA with light JPEG over UDP). 

Measurement definitions align with the methods and are kept consistent across scenarios. Throughput is reported as 
frames per second at ingest, rectification, disparity, depth, and costmap publication to expose bottlenecks. End-to-end 
latency is measured from the ESP32 VSYNC timestamp embedded in the frame header to the host time of costmap 
publication and analyzed using the additive model 𝐿𝑡𝑜𝑡 = 𝐿𝑐𝑎𝑝 + 𝐿𝑡𝑥 + 𝐿𝑠𝑦𝑛𝑐 + 𝐿𝑟𝑒𝑐𝑡 + 𝐿𝑠𝑔𝑏𝑚 + 𝐿𝑝𝑜𝑠𝑡. Synchronization 

quality is summarized as the mean, standard deviation, and high percentiles of |𝛥𝑡| for accepted pairs, together with the 
rejection rate at the 1 ms threshold. Accuracy is reported as mean absolute error and root-mean-square error of depth 
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in distance bins (0.5, 1.0, 2.0, 3.0 m), along with the valid-pixel ratio after filtering; navigation outcomes are summarized 
by costmap hit rate and task completion in corridor and doorway runs. All configuration files (firmware commits, ROS 
launch parameters, calibration YAML with hashes) were versioned so that individual runs can be reproduced from the 
archived artifacts. 

5. Results and discussion 

We report performance and accuracy using only tabular summaries to keep the section concise. All trials used the fixed 
baseline 𝐵 = 75 𝑚𝑚, QVGA or QQVGA grayscale, and the pipeline defined in the previous sections. Three runtime modes 
were exercised: Mode A (QVGA Y8 over UDP), Mode B (QQVGA Y8 over UART at a realistic 8–10 fps link budget), and 
Mode C (QVGA with light JPEG over UDP). Stage-wise throughput clustered near the target in Mode A, while Mode B was 
constrained by UART serialization despite the reduced resolution; Mode C traded capture-side time for lower network 
variance. The end-to-end budget followed the additive model 𝐿𝑡𝑜𝑡 = 𝐿𝑐𝑎𝑝 + 𝐿𝑡𝑥 + 𝐿𝑠𝑦𝑛𝑐 + 𝐿𝑟𝑒𝑐𝑡 + 𝐿𝑠𝑔𝑏𝑚 + 𝐿𝑝𝑜𝑠𝑡 and met 

the  < 120 𝑚𝑠 goal for the majority of frames in Modes A and C. 

To summarize the laboratory evaluation at a glance, Figure 2 aggregates outcomes over all runs and scenarios using 
compact curves. Panel (a) shows the cumulative distributions of end-to-end latency 𝐿𝑡𝑜𝑡 for Modes A/B/C, highlighting 
the median and 95th percentile relative to the 120 ms target. Panel (b) plots depth error versus distance (MAE (solid) 
and RMSE (dashed)) for the four ranges used in the protocol, with shaded bands indicating the interquartile spread 
across scenarios. Panel (c) reports the distribution of inter-camera skew |△ 𝑡| derived from microsecond VSYNC time-
stamps, with the 1 ms pairing threshold marked. Together, these views complement the tabular summaries by exposing 
variance and sensitivity trends that guide operating-mode selection. 

 

Figure 2 Aggregate laboratory results across all scenarios and runs. (a) CDFs of end-to-end latency 𝑳𝒕𝒐𝒕  for Modes 
A/B/C. (b) Depth error vs. distance (MAE solid, RMSE dashed) with interquartile bands. (c) Histogram (or KDE) of inter-
camera skew |𝜟𝒕| with the 1 ms pairing threshold. Curves are consistent with the metrics reported in Tables 1–3 

 

 

 



World Journal of Advanced Engineering Technology and Sciences, 2025, 16(02), 443-451 

449 

Table 1 Throughput and latency (condensed). Panel (a): stage rates (Hz). Panel (b): end-to-end latency (ms) and 
accuracy at 2.0 m (cm) with pair rejections (%) 

(a) Stage rates 

Mode Ingest (Hz) Rect. (Hz) SGBM (Hz) Costmap (Hz) 

A: QVGA–UDP 13.8 12.5 12.0 11.6 

B: QQVGA–UART 8.4 7.5 7.0 7.0 

C: QVGA–JPEG–UDP 12.2 11.8 11.2 11.0 

(b) Latency and accuracy 

Mode Median 𝐿𝑡𝑜𝑡 IQR 95th MAE@2.0 m / Rejects 

A: QVGA–UDP 94 22 118 6.4 / 1.9% 

B: QQVGA–UART 78 18 102 9.3 / 1.2% 

C: QVGA–JPEG–UDP 104 27 134 7.3 / 3.4% 

Synchronization quality was quantified from microsecond 𝑉𝑆𝑌𝑁𝐶 time-stamps recorded on each ESP32. With shared 
𝑋𝐶𝐿𝐾  and matched fanout, average inter-frame skew |𝛥𝑡|  remained well below the 1 ms pairing threshold across 
modes, and rejection rates were low (Table 2). Mode B showed slightly tighter skew statistics due to reduce in-source 
processing, while Mode C exhibited modestly heavier tails attributable to encoder variability. The weak correlation 
observed between |𝛥𝑡| and valid-pixel ratio suggests the pairing rule preserved geometric coherence under the tested 
motion profiles. These results align with the timing model and the hardware clocking arrangement described earlier. 

Table 2 Aggregated pairing and synchronization statistics across scenarios 

Mode Mean |𝜟𝒕| Std |𝜟𝒕| 99th |𝜟𝒕| Pair rejects 

A: QVGA–UDP 0.29 ms 0.21 ms 0.95 ms 1.9% 

B: QQVGA–UART 0.24 ms 0.17 ms 0.80 ms 1.2% 

C: QVGA–JPEG–UDP 0.36 ms 0.29 ms 1.08 ms 3.4% 

Depth accuracy and density followed the expected distance dependence implied by the pinhole model 𝑍 =
𝑓𝑥𝐵

𝑑
 and the 

first-order sensitivity 𝜎𝑍 ≈
𝑓𝑥𝐵

𝑑2 𝜎𝑑. Mode A provided the best overall balance between throughput and accuracy, with 

small errors in the near field and controlled growth at longer ranges; Mode C tracked closely at short ranges and showed 
a mild penalty where texture is weak; Mode B incurred larger errors beyond 2 m, consistent with reduced resolution 
and search range. Valid-pixel ratios declined with distance for all modes but remained high enough to sustain reliable 
costmaps indoors. Table 3 compiles mean absolute error (MAE), root-mean-square error (RMSE), and valid-pixel 
percentages for the four distance bins used in evaluation. 

Table 3 Depth accuracy (MAE/RMSE) and valid-pixel ratio by distance and mode 

Mode 0.5 m 1.0 m 2.0 m 3.0 m 

A: MAE / RMSE / Valid 1.7 / 2.5 cm / 96% 2.9 / 4.1 cm / 94% 6.4 / 9.0 cm / 90% 12.8 / 18.0 cm / 83% 

B: MAE / RMSE / Valid 2.2 / 3.2 cm / 95% 4.1 / 5.8 cm / 92% 9.3 / 13.0 cm / 86% 19.0 / 27.0 cm / 76% 

C: MAE / RMSE / Valid 1.9 / 2.8 cm / 95% 3.3 / 4.8 cm / 93% 7.3 / 10.6 cm / 88% 14.0 / 20.5 cm / 80% 

Mode A (QVGA over UDP) achieved the most balanced operating point: ∼ 12 fps at the matching stage, median 𝐿𝑡𝑜𝑡 ≈
94 𝑚𝑠, low rejection rates, and strong near-field accuracy that supports navigation costmaps above 95% hit rate within 
1.5 m. Mode B reduced median latency but limited frequency and long-range accuracy due to UART serialization and 
lower resolution, while Mode C moderated network variance at the cost of added capture latency and slightly higher 
pair rejection. Resource usage on the host was dominated by SGBM, and DMA overruns on the embedded side remained 
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rare at the chosen rates. These outcomes are consistent with the design choices laid out in the System Overview and 
Methods and validate the feasibility of a dual-OV7670, dual-ESP32 stereo stack for indoor navigation on the ARMOS 
TurtleBot.  

6. Conclusion 

This paper presented a reproducible stereo perception stack for the ARMOS TurtleBot that combines two OV7670 
sensors, two ESP-WROOM-32 microcontrollers, and a ROS-based pipeline on a Raspberry Pi. The mechanical head fixes 
a 75 𝑚𝑚 baseline and houses compact camera modules on a rigid T-shaped mount, which simplified calibration and 
day-to-day handling. The embedded tier captured QVGA grayscale streams using I2S-parallel with DMA, and a shared 
𝑋𝐶𝐿𝐾 enforced consistent sampling between sensors. On the host, rectification, SGBM disparity, and depth recovery 
delivered navigation-ready products without external accelerators. Across the study, the design met its principal target 
of an end-to-end update rate in the 10–15 𝐻𝑧  band with bounded latency and predictable behavior under indoor 
conditions. 

The quantitative evaluation showed that Mode A (QVGA over UDP) offered the most balanced operating point for 
navigation on the ARMOS platform. In this setting, stage rates clustered around 12 𝑓𝑝𝑠, the median end-to-end delay 
stayed near 94 𝑚𝑠, and the 95𝑡ℎ  percentile remained under the 120 𝑚𝑠 goal. Depth accuracy followed the expected 
range dependence with mean absolute errors of 1.7 𝑐𝑚 at 0.5 𝑚, 2.9 𝑐𝑚 at 1.0 𝑚, 6.4 𝑐𝑚 at 2.0 𝑚, and 12.8 𝑐𝑚 at 3.0 𝑚, 
while valid-pixel ratios stayed high in the near field. Synchronization statistics confirmed that the shared-clock strategy 
was effective: the mean inter-frame skew was below 0.3 𝑚𝑠, and pair rejections at a 1 𝑚𝑠 threshold were infrequent. In 
mapping trials, the resulting costmaps achieved hit rates above 95%  for obstacles within 1.5 𝑚 , and corridor and 
doorway traversals completed without intervention. 

The ablation studies clarified trade-offs that matter when deploying on constrained robots. Switching to Mode B 
(QQVGA over UART) reduced computation and median latency, but the serialized link capped the realized frequency 
and produced larger depth errors beyond two meters. Enabling lightweight compression in Mode C moderated network 
load and variability, yet it introduced additional capture-side delay and slightly higher pair rejection, with modest 
accuracy losses at longer distances where texture is scarce. These patterns are consistent with the first-order sensitivity 
model 𝜎𝑍 ∝ 𝑑−2 and with the role of photometric stability in block matching. Resource measurements indicated that the 
SGBM stage dominates CPU usage on the host, while the capture tasks maintained low overrun rates on the 
microcontrollers. 

There are limitations inherent to the chosen sensor and computation budget. Low-texture walls, specular patches, and 
reduced illumination remain challenging and lead to thinner disparity maps unless conservative filtering and clipping 
are applied. Wi-Fi congestion can raise variance in transport times, and although the system includes a UART fallback, 
that mode trades bandwidth for determinism. Mechanical shocks can degrade calibration over time, so routine checks 
and versioned artifacts are essential to preserve rectification quality. Finally, long-range accuracy is ultimately bounded 
by disparity resolution at QVGA and by the optics of the OV7670 modules, which were selected for cost and availability 
rather than sheer performance. 

Future work will focus on broadening robustness while preserving the low-cost spirit of the design. On the sensing side, 
swappable lenses with better control over field of view and focus would tighten calibration and improve texture capture 
without altering the electronics. On the algorithmic side, depth post-processing could incorporate confidence-weighted 
interpolation and small learned refinements that fit the Raspberry Pi budget, yielding denser maps with limited 
overhead. Clock distribution and timestamping may be hardened further with dedicated fanout and tighter jitter 
measurement to push pair acceptance at higher frame rates. Lastly, releasing the complete artifacts (mechanical 
drawings, firmware, ROS launch files, and calibration sets) will aid replication and provide a baseline for comparative 
studies on ARM-focused mobile platforms.  
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